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Methods
Method of choice

Consider the unconstrained optimization problem to

imize f 1
minimize (x), (1)

where f € C% on R" (f is continuous). Mostly, we assume that
f € C! holds (f is continuously differentiable), sometimes even C?

@ Size of the problem (n)?
@ Are V£(x) and/or V2f(x) available; to what cost?

@ What it is the goal? (Global/local minimum, stationary
point?)

@ What are the convexity properties of 7?

@ Do we have a good estimate of the location of a stationary
point x*? (Can we use locally-only convergent methods?)
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Methods
Example: curve fitting by least-squares

@ Suppose we have m data points (t;, b;) believed to be related
as

x1 + x2 exp(x3t;) + xa exp(xst;) = bj, i=1...,m,

with unknown parameters xi, ..., xs. (Here, exp(x) = €*.)
The best description minimizes the total “residual error,”
given by the norm of the residual

fi(x) := bj — [x1 +x2 exp(x3t;) + x4 exp(x5t;)], ir=1,...,m

@ Resulting optimization problem:

m

m
)1(161]1RI% f(x):= Z fi(x)]>= Z(b,-—[xl—i-xz exp(xat;)+x4 exp(xst;)])?
i=1 i=1

@ Very often solved problem type within numerical analysis and
mathematical statistics
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Typical algorithm

Step 0.
Step 1.
Step 2.

Step 3.
Step 4.

Starting point: xog € R". Set k :=0
Search direction: p, € R"

Step length: ay > 0 such that f(xx + axpy) < f(xk)
holds

Let Xkt1 = Xk + axPk
Termination criterion: If fulfilled, then stop!
Otherwise, let k .= k+ 1 and go to step 1

\—yapk)

(675 o
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Methods
Notes

@ The figure was plotted using several thousands of function
evaluations

@ Never possible in reality! (And total waste of time)
@ An “orienteering map” never exists

@ Most algorithms are inherently local, only based on info at the
current point x, that is, f(xx), Vf(xk), and V2f(xx)

@ Possibly also on previous points passed
@ An algorithm is a “near-sighted mountain climber” when
trying to reach the summit (for a max problem!)

@ The mountain climber is in a deep fog and can only check her
barometer for the height and feel the steepness of the slope
under her feet
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Methods
Step 1: Search directions

o If VF(xk) # 07, then p = —Vf(xx) is a descent direction for
f at x, (Part of necessary condition proof!)

@ This steepest descent direction solves the problem to

minimize Vf(xx)Tp
pER™||p[|=1

@ Suppose Q € R™" is a symmetric, positive definite matrix.
Then p = —QVf(xk) is a descent direction for f at x,
because

VF(x)Tp = —VF(xx)TQVF(x4) < 0,

due to the positive definiteness of Q

@ Special case: Q = 1" yields steepest descent

@ Special case: Q7! = V2f(x), if the Hessian is positive
definite. This is Newton's method
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Methods
*Additional requirements

@ Purpose: prevent the descent directions to deteriorate in
quality, and prevent premature convergence

@ Practical criteria:

IVE(xk)Tpe] = sil|[ VAP, and  [Ipgll < s2]|VF(x)])s

or

VF(xe)T
B (k) Pk s, and gl > 2| VF(xi)||

IVEi) - llewll

o Interpretations: Vf(xx)Tp, is the directional derivative of f at
Xk in the direction of p,. Make sure it stays away from zero!

@ Also, make sure that p, stays bounded and that it tends to
zero if and only if Vf(x,) does

@ These conditions hold for the above examples
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Methods
Newton's method

@ Steepest descent is most often not a very good algorithm.
Why?
It fails to take into account more than information about V£

@ A second-order Taylor approximation:
1
f(x+p) = F(x) = ¢x(p) = VF(x) P+ 5p" V2 (x)p

Minimize @y over p by setting the gradient of x(p) to zero:

Vpex(p) = VF(x) + V2f(x)p = 0" <= V3f(x)p = —Vf(x)

n=1 f'(x)+f"(x)p=0 = p=—f'(x)/f"(x)

Provides descent if f”(x) > 0: f'(x)p = —[f'(x)]?/f"(x) < 0
Corresponding story in R™: p = —[V2f(x)] "1V f(x), yields
descent at non-stationary points if V2f(x) is positive definite!
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Methods

Why do we not always choose Newton directions? |

o Lack of positive definiteness. V2f(x) is not positive
definite (PD) (that is, some eigenvalue(s) is/are negative)

@ Solution: add diagonal matrix so that the result is PD: if A is
an eigenvalue of V2f(x) then for any v € R, A+ v is an
eigenvalue of V2f(x) 4+ v1"; choose 7 large enough to make
A=+ > 0 for all eigenvalues A

@ Note: If the value of v is very large = direction =~ steepest
descent

@ Name: Levenberg—Marquardt
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Methods

Why do we not always choose Newton directions? |l

@ Lack of enough differentiability. If f ¢ C?, what do we do?

@ n = 1: the secant method:-

f/(Xk) — f,(Xk_]_)

Xk — Xk—1

f"(Xk) =

@ n > 1. quasi-Newton: choose approximate matrix By so that
Bk(Xk - xk—l) = Vf(xk) - Vf(xk_l),

+ additional choices (the above does not specify the entire
matrix Bg!), so that, for example, By, 1 can be computed
easily from By, and so that By is symmetric and positive
definite
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Methods

Why do we not always choose Newton directions? Il

o Computational burden. It may be too much to ask for to
solve a linear system many times when n > 1000 or so; it is
enough to do some work on the linear system and still get a
descent property. (See The Book, p. 275 for an example)

@ There are many specific choices of matrices B that lead to a
variety of quasi-Newton methods

Michael Patriksson

Lecture 4: Unconstrained optimization algorithms



Methods
Step 2: Line search

@ Approximately solve the one-dimensional problem to
migizngize o(a) = f(xk + apy)
Its optimality conditions are that
¢(a’)=0, o ¢(a")=0, a" >0,
that is,
V(xe+a'pe)Tpe >0, o Vi(x+a*pe) pe =0, a* >0,

holds
o If a* >0, then ¢/(a*) = 0 holds = Vf(xx + a*p,)Tp, =0

® The search direction p, then is orthogonal to the gradient of
f at the point xx + a*p,
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Step 2: An illustration

Figure: A line search in a descent direction
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Methods
Approximate line search

@ No point solving the one-dimensional problem exactly! Why?
The optimum to the entire problem lies elsewhere!

o Interpolation: Use f(xx), VF(xk), VFf(xx)Tpx to model a
quadratic function approximating f along p,. Minimize it by
using the analytic formula for quadratics

@ Newton's method: Repeat the improvements gained from a
quadratic approximation: a = a — ¢'(a)/¢"(a)

@ Golden section: Derivative-free method that shrinks an
interval wherein a solution to ¢'(«) = 0 lies

Michael Patriksson Lecture 4: Unconstrained optimization algorithms



Methods

Armijo rule, |

@ ldea: quickly generate a step « which provides “sufficient”
decrease in f. Note: f(xx + apy) ~ f(xx) + a - VF(xk) g,
valid for small values of & > 0

® Requirement: we get a decrease in f which is at least a
fraction of that predicted in the right-hand side above. Let
w € (0,1) be this fraction. Acceptable step lengths are ae > 0
satisfying

p(a) = ¢(0) < pay'(0), (2a)
that is,

F(xk + apy) = F(xk) < paVF(xe)py (2b)
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Methods

Armijo rule, Il

@ Can add condition making « also large enough (Wolfe)

R o
©(0) + ay’(0) ©(0) + pay'(0)
Figure: The interval (R) accepted by the Armijo step length rule
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Convergence
*Typical convergence result

@ Suppose f € C*, and for the starting point xq the level set
leve (f(xg)) = {x € R"| f(x) < f(xo) } is bounded. Consider
the iterative algorithm, with the following choices for each k:

o p, satisfies the second sufficient descent condition (see *-slide
above);
@ ||pgll < M, where M is some positive constant; and
@ the Armijo step length rule is used
Then, the sequence {xy} is bounded, the sequence {f(xx)} is
descending, lower bounded and therefore converges, and every
limit point of {xx} is stationary

@ For convex f much stronger convergence properties:
Optimum exists <= {xy} converges to an optimal solution

(Theorem established later for a more general algorithm)
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Convergence
Step 4: Termination criteria

@ Lesson 1: Cannot terminate based on the exact optimality
conditions, because Vf(x) = 0" rarely happens!
@ Recommended:
Q [|[VIA(xk)|l <e1(1+|f(xk)]), €1 > 0 small;
Q f(xk—1) — f(xk) < ea2(1+ |f(xk)]), €2 > 0 small; and
© |Ixk—1 — x«|| < e3(1+ [|xk]]), €3 > 0 small
@ Why? Need to cover cases of very steep and very flat
functions
@ May need to use co-norm: ||x||c := maxi<j<n |xj|, for large n
@ Problem with the scaling of the problem: If

xi_1 = (56.8894238, 0.045278842, 0.00000001798781)",
xx = (56.8897234, 0.045267545, 0.00000004629675)" ;
%1 — Xk|oe = ||(—0.0002996,0.000011297, —0.00000002830894)™ ||
— 0.0002996

@ Small absolute error but large relative error!
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Implicit functions

Why is the C! property important? |

@ Suppose f is only in C°, not C!. Example:

f(x) := maximum {c; x + b;}, x € R"
ie{1,....,m}
@ This is a piece-wise linear and convex function (see next page)
@ It is differentiable almost everywhere, but not at the optimal
solution!

@ Ignoring non-differentiability may lead to the convergence to a
non-optimal point. In other words, methods for minimizing
non-differentiable function cannot only rely on gradient values

@ Convex functions always has subgradients, corresponding to
all the possible slopes of the function

@ For more on subgradients and their use in algorithms, see
Chapter 6 on Lagrangian duality!
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Implicit functions

Why is the C! property important? I

Figure: A piece-wise linear convex function
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Implicit functions

Minimizing implicit functions, |

@ Common in engineering and natural science applications that
f is not explicitly given but through a simulation:

x € R" Simulation y € R™

@ The wish is to minimize a function of both x and y: f(x,y);
find the vector x that gives the best response y for f

@ The form of the response y = y(x) from the input x is
normally unknown

@ Cannot differentiate x — f(x,y(x))

@ Two distinct possibilities!
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Implicit functions

Minimizing implicit functions, Il

@ (1) Numerical differentiation of f by using a difference
formula:

o Let e, =(0,0,...,0,1,0,...,0)" be the unit vector in R".
Then,

Flx +ae) = £(x) + 0] VF(x) + (a?/2)ef V*F(x)e; + ...
= f(x) + adf (x)/0xi + (a® [2)D*F(x)/Ox} + ...
@ So, for small @ > 0,

OF(x) _ f(x+ae) — (x)

(forward difference)

OX; o

f f ) — f(x — ae; .
Of(x) ~ (x+ aej) — f(x — ae)) (central difference)
Ox; 2u
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Implicit functions

Minimizing implicit functions, IlI

@ Value of « typically set to a function of the machine precision;
too large — bad approximation of the partial derivative;
too small — numerical cancellation

@ May work well if the simulation is accurate, otherwise bad
derivative information. Requires cheap simulations!

@ (2) Derivative-free methods are available. (Not counting
subgradient methods, because they demand f to be convex!)
Either builds explicit models f of the objective function from
evaluations of f at test points, or evaluates f at grid points
that are moved around, shrunk or expanded. Names and
terms: Nelder—Mead, Pattern search, surrogate models, radial
basis functions, . ..

@ Check hand-out!

Michael Patriksson Lecture 4: Unconstrained optimization algorithms



Implicit functions

Methods based on interpolating/approximating f

@ Alternative: create explicit algebraic (e.g., polynomial) model
f based on visited points x; solve this problem with gradient
methods; evaluate its optimum in the real problem (i.e.,
perform a simulation); update f with the new information —>
minimizes the number of simulations!

@ Recent application: diesel engine optimization for Volvo
Powertrain and Volvo Car Corporation

@ Optimize fuel consumption, keep soot/nitrogen emissions at
an acceptable level

@ Simulations hard (42 hours each) and response contains noise

@ New method developed based on approximate (surrogate)
models
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