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Question 1

(the simplex method)

a) We first rewrite the problem on standard form. We multiply the objective(2p)
and first constraint by −1 and introduce slack variables s1 and s2.

minimize z = −x1 −2x2

subject to −x1 +3x2 +s1 = 6
x1 +x2 +s2 = 1
x1, x2, s1, s2 ≥ 0.

By choosing (s1, s2) as basic variables, we obtain a BFS with B = I, hence
we can begin with phase II.

Calculating the vector of reduced costs for the non-basic variables x1, x2

yields (−1,−2)T. Least reduced cost implies that x2 is the entering vari-
able. The minimum ratio test shows that s1 should leave the basis. We have
the basic variables (x2, s2). The vector of reduced costs for the non-basic
variables x1 and s1 is (−5/3, 2/3)T. Hence x1 enters the basis. The mini-
mum ratio test implies that s2 leaves the basis. We now have x1, x2 as basic
variables. The vector of reduced costs for the non-basic variables s1, s2 is
(3/2, 5/2)T. Since the reduced costs are all non-negative, the current BFS is
optimal. We obtain (x1, x2)

T = B−1b = (9/2, 7/2)T as the optimal solution
and 23 as the optimal solution value for the original problem (−23 for the
problem in standard form).

b) In the optimal BFS, all the reduced costs are strictly greater than zero.(1p)
Hence the optimal solution is unique.

Question 2(3p)

(Newton’s method)

The search direction for Newton’s method is defined by solving the linear system

∇2f(xk)pk+1 = −∇f(xk). (1)

In our case we have
∇f =

(

3(x − 1)2, 2y
)

,
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and

∇2f =

(

6(x − 1) 0
0 2

)

.

Solving the linear system (1) for xk 6= 1 we obtain

pk+1 = −
(

xk − 1

2
, yk

)

.

Newton’s method with unit step yields

xk+1 = xk + pk+1 =
(

xk + 1

2
, 0
)

.

We will now use induction to prove that

(xk, yk) =
(

1 +
1

2k
(x0 − 1), 0

)

. (2)

We first prove (2) for the case k := 1.

(x1, y1) =
(

x0 + 1

2
, 0
)

=
(

1 +
x0 − 1

2
, 0
)

.

We now assume that (2) holds for the case k := n, and prove that it then holds
for k := n + 1.

(xn+1, yn+1) =
(

xn + 1

2
, 0
)

=
(

1

2
+

1

2

(

1 +
1

2n
(x0 − 1)

)

, 0
)

=
(

1 +
1

2n+1
(x0 − 1) , 0

)

.

Thus we have shown that (2) holds for all k ∈ N.

Newton’s method converges to the point (1, 0) which is neither a global nor a local
optimum since −ǫ3 = f(1− ǫ, 0) < f(1, 0) = 0 for all ǫ > 0. This contradicts the
definition of local optimality.

Question 3

(sufficient global optimality conditions)

a) This is Theorem 4.3.(1p)
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b) This is Theorem 5.45.(2p)

Question 4

(convexity)

a) The claim is true. Clearly, x4
1 is a convex function, and since we know(1p)

that a sum of convex functions remains convex, what is left to check is if
x2

2 + 4x2x3 + 5x2
3 := g(x2, x3) is convex. A computation of the eigenvalues

to the hessian of g shows that they are λ = 6 ±
√

32 > 0. Therefore, the
hessian is positive semidefinite for all x ∈ R

3 and thus, g is convex. We
conclude that f is convex.

b) The claim is true. Let h(x) := 2x1 − x2 and g(x) := x2
2 and observe that(1p)

they are both convex. f is not differentiable so we cannot use the same
procedure as in a); instead we use the definition. Let x1 and x2 be two
arbitrary points and let λ ∈ (0, 1). Since h and g are convex, we have that

h(λx1 + (1 − λ)x2) ≤ λh(x1) + (1 − λ)h(x2) and

g(λx1 + (1 − λ)x2) ≤ λg(x1) + (1 − λ)g(x2).

Therefore,

f(λx1 + (1 − λ)x2) = max
{

h(λx1 + (1 − λ)x2), g(λx1 + (1 − λ)x2)
}

≤
max

{

λh(x1) + (1 − λ)h(x2), λg(x1) + (1 − λ)g(x2)
}

≤
max

{

λh(x1), λg(x1)
}

+ max
{

(1 − λ)h(x2), (1 − λ)g(x2)
}

=

λf(x1) + (1 − λ)f(x2),

where the last inequality comes from the obvious fact that

max {a + b, c + d} ≤ max {a, c} + max {b, d} .

c) The claim is false. The hessian to f is given by(1p)

∇2f(x) =

(

12x1 + 2x2
2 4x1x2

4x1x2 12x2
2 + 8

)

and we conclude that its eigenvalues at x = (0, 0)T are λ1 = 8 and λ2 = 0,
i.e., the matrix is positive semidefinite but not positive definite. Therefore



EXAM SOLUTION
TMA947/MAN280 — OPTIMIZATION, BASIC COURSE 4

we cannot conclude anything about the local convexity from this fact. But
now look at the line given by

{

x1 = t
x2 = 0

and let x1 =

(

ε
0

)

, x2 =

(

−ε
0

)

.

We have f(x1) = 2ε3, f(x2) = −2ε3 and f(λx1 +(1−λ)x2) = 2ε3(2λ−1)3.
Therefore, we get that f(λx1 + (1 − λ)x2) > λf(x1) + (1 − λ)f(x2) when
(2λ − 1)3 > 2λ − 1 which is true for all λ < 1/2. This counter-example
shows that f is not locally convex around the origin.

Question 5(3p)

(linear programs)

The set in question is described by primal–dual feasibility, and the inverse of
weak duality. As the first two parts of the constraints describe weak duality, in
total the system describes strong duality:

Ax ≥ b,

x ≥ 0n,

ATy ≤ c,

y ≥ 0m,

cTx ≤ bTy

Question 6(3p)

modelling

Let xij be the flow sent through edge (i, j) ∈ E. Introduce an auxiliary variable
yij for each edge (i, j) ∈ E, which is the cost associated with edge (i, j) ∈ E.
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Then the problem can be formulated as

minimize
∑

(i,j)∈E

yij ,

subject to yij ≥ ml
ij + kl

ijxij , (i, j) ∈ E, l = 1, . . . , n,
∑

j:(i,j)∈E

xij =
∑

j:(j,i)∈E

xji, i ∈ V \ {s, t},
∑

j:(s,j)∈E

xsj = d,

∑

j:(j,t)∈E

xjt = d,

0 ≤ xij ≤ cij , (i, j) ∈ E.

Question 7(3p)

Lagrangian duality

a) Lagrangian relaxing the constraint yields the Lagrangian function L(x, µ) =
x2

1 − 4x1 + 2x2
2 + µ(2x1 + x2 − 2). From the stationary conditions for the

Lagrangian, we get that

x1(µ) =

{

2 − µ, 0 ≤ µ ≤ 2,
0, µ ≥ 2;

x2(µ) = 0, µ ≥ 0.

We then get the following expression for the Lagrangian dual function, to
be maximized over µ ≥ 0.

q(µ) =

{

−µ2 + 2µ − 4, 0 ≤ µ ≤ 2,
−2µ, µ ≥ 2,

Calculating the derivative of q, we get

q′(µ) =

{

−2µ + 2, 0 ≤ µ ≤ 2,
−2, µ ≥ 2,

It is clear that q is concave and differential for every µ ≥ 0. It is in fact
strictly concave.

b) Setting q′(µ) = 0 as a first guess, we obtain q′(µ) = 0 for µ = 1. Since
the dual problem is convex this is the optimal solution, i.e., µ∗ = 1, with
objective value q(µ∗) = −3.
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c) The Lagrangian optimal solution in x for µ = µ∗ is, from a), x = (1, 0)T. x

is feasible and f(x) = q(µ∗), so by weak duality, x is an optimal solution.
According to duality theory for convex problems over polyhedral sets, all
primal optimal solutions are generated from Lagrangian optimal solutions
given an optimal dual vector. Since x(µ∗) here is the unique vector x =
(1, 0)T this must also be the unique optimal solution to the primal problem.


