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Convex set Convex sets

Let S CR". The set S is convex if

xt,x>e S

1 2
A e (0,1) } = I ACES,

/.x2

-

//'/)\xl + (1= A)x?

A set is thus convex if all convex combination of any two points in the
set lies in the set. See the figure.
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Exam ples Convex sets

» The empty set is a convex set
> The set {x € R" | ||x|| < a} is convex for any a € R
> The set {x € R" | ||x|| = a} is non-convex for any a > 0

» The set {0,1,2,3} is non-convex

Ax+ (1 — A)x? ¢

Figure: A non-convex set
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Intersections of convex sets Convex sets

Theorem
Let Sk, k € K be a collection of convex sets. Then, the intersection
Nkeic Sk is a convex set.

Proof:

TMAO94T — Lecture 2 Convexity



Affine and convex hull Convex sets

We define the affine hull of a finite set V = {v!,v? ... vk} as

k
Al,...,/\kER, Z)\':l}

aff V = {/\1v1 IS V¥4
i=1

We define the convex hull of a finite set V = {v!,v2 ... vk} as

k
Ay A >0, Z)\;zl}
i=1

The sets are defined by all possible affine (convex) combinations of the k

conv V := {Alvl + -+ )\kvk

points.
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Affine and convex hull Convex sets

4 aff vV conv V
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More on the convex hull Convex sets

In general, we can define the convex hull of a set S as
» the unique minimal convex set containing S,
> the intersection of all convex sets containing S, or

» the set of all convex combinations of points in S.

Any point x € conv S, where S C R" can thus be expressed as a convex
combination of points in S.

How many do we need? 2 minutes
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Caratheodory’s Theorem Convex sets

Caratheodory’s Theorem
Let x € conv S, where S C R". Then x can be expressed as a convex
combination of n+ 1 or fewer points of S.

Proof:
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Polytope Convex sets

A subset P of R" is a polytope if it is the convex hull of finitely many
points in R".

v4

Figure: A polytope generated by seven points

A cube and a tetrahedron are examples of polytopes in R3.
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Extreme points

Convex sets

A point v of a convex set P is a extreme point if whenever

v=2Xx!4(1-X)x?
xL,x®c P } = v=x!=x°
Ae(0,1)

v4

Figure: The red dots are the extreme points
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Extreme points

Convex sets

An intuitive theorem then is

Theorem

Let P be the polytope conv V, where V = {v!,... vk} C R". Then
P is equal to the convex hull of its extreme points.

» We have up untill now described convex sets by a number of points
— interior representation.

> We now look at convex sets described by linear constraints —
exterior representation.

TMAO947 — Lecture 2 Convexity




Polyhed ra Convex sets

A subset P of R” is a polyhedron if there exists a matrix A € R™*" and
a vector b € R™ such that

P={xecR"|Ax < b}

> Ax<b < ax<b;, i=1,...,m (a; rowiof A)
» a;x < b;, i=1,...,m are half-spaces, so

> P is the intersection of m half-spaces.
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Polyhedra, example | Convex sets

LetPZ{X€R2|X221, x1+2x <6, 2X1—X222}

X1
2xX1 — Xp = 2
x1+2x =06 r
2 b
P
1F Xp = 1
I/ 1 1 1 1 X2
1 2 3 4 5
0 -1 -1
Figure: The polyhedron P, where A= | 1 2 | andb= | 6
-2 1 -2

TMAO947 — Lecture 2 Convexity



Polyhedra, example Il (unbounded) Convex sets

LetPZ{X€R2|X221, 2X1—X222}

X1 ,'I 2X]_ — Xo = 2

3+

1F X2:1
/ .

Figure: The polyhedron P, where A = (_02 _11> and b = (:;)
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Polytope vs. Polyhedron Convex sets

To make a clear distinction between a polytope and a polyhedron.

» Polytope = The convex hull of finitely many points.

» Polyhedron = The intersection of finitely many half-spaces

Theorem
A set P is a polytope if and only if it is a bounded polyhedron.
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Algebraic representation of extreme points Convex sets

We can now define the extreme points of a polyhedron.

Let x€ P={x€R" | Ax <b}, where A € R™*" with rank A = n
and b € R™. Further, let Ax = b be the equality subsystem of
Ax < b. Then X is an extreme point of P if and only if rank A = n.

To create the equality subsystem, strike out all rows i/ with a;x < b,
require equality for the rest.
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Algebraic representation, example | Convex sets

X1

shwt2ems , 217272 Let P = {x € R? | Ax < b}, where
0 -1 -1

5L A=|1 2 | andb=| 6
-2 1 —2

xp =1

1 1 1 1 1 *2 LOOk at )_( - (3/27 ].)T

> The second inequality is 1-(3/2) 42+ (1) < 6, so we strike that row.

» The first and second constraints are fulfilled with equality, so

~ 0 -1 -1
A= (5 )aman=(3)

> rank A = 2, so X is an extreme point!
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Algebraic representation, example Il Convex sets

X1
shwt2ems , 217272 Let P = {x € R? | Ax < b}, where
0 -1 -1
oL A=1]1 2 |andb=| 6
P -2 1 -2
1+ ° xp =1
/ x=(2,1)7
1 1 1 1 1 *2 LOOk at )_( — (27 ].)T
1 2 3 4 5

> The second inequality is 1-(2) +2- (1) < 6, so we strike that row.
» The third inequality is —2- (2) +1- (1) < —2, so we strike that row.
» A= (0 -1)andb=(-1)

> rank A =1, so X is not an extreme point!
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Algebraic representation, example Il Convex sets

Why is this important?

» When considering linear programs (LPs), at least one of the extreme
points are an optimal solution (if there exist one)

» How many extreme points can there exist?
2 minutes

> To find an extreme point, just choose n linearly independent rows
(= rank A = n) and solve the equality subsystem

> i.e. there can at most be (")

» This is the basic idea behind the simplex algorithm
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Convex sets

A subset C C R" is a cone if Ax € C whenever x € C and A > 0.

Example: The set {x € R” | Ax < 0} is a polyhedral cone in R".

Figure: A convex cone Figure: A non-convex cone
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The representation theorem Convex sets

Theorem

Let the polyhedron @ = {x € R" | Ax < b} and let {v!,... vk} be
its extreme points.

Define P :=conv ({v!,...,v¥}) and C:={x € R" | Ax < 0}.
Then Q=P+ C={x€eR"|x=u+vforsomeuec PandveC(C}

Meaning that each polyhedron can be written as the sum of a polytope
and a polyhedral cone.
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The representation theorem, example | Convex sets

A
Il
=

Bounded polyhedron = polytope
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The representation theorem, example Il Convex sets

Unbounded polyhedron = polytope + polyhedral cone
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Separation theorem Convex sets

An intuitive result is:
"If a point y does not lie in a closed convex set S, then there exist a

hyperplane separating the y from S”.

Theorem

Suppose that the set S C R" is closed and convex, and that the
point y does not lie in S. Then there exist a @ € R and 7 # 0" such
that 77y >aand #'x < a forall x € S.

Proof: Later in the course.
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Separation theorem,

exam pIe Convex sets

X L] y:(272)T

t’x=a & X1 +x0 =2
S Xt

-
N

/

Figure: The hyperplane 77 x

the unit disc. == (1,1)7 an
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Convexity



Farkas' Lemma Convex sets

A very important result is the following

Theorem
Let A € R™" and b € R™. Then exactly one of the systems

Ax = b, (1)
x >0,
and
ATr <0, (2)
b 7 >0,

has a feasible solution, and the other is inconsistent.
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Farkas' Lemma Convex sets

What Farkas' Lemma says is the following:

» Either the vector b lies in the cone spanned by the columns of A, i.e.

> or the vector b does not lie in the cone, meaning that there exist a
hyperplane 7 separating the vector from the cone, i.e.

ATr < 0, b 7 >0.

Proof of Farkas’ Lemma:
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Definition Convex functions

Suppose S C R" is convex. A function f : R” — R is convex on S if

x1L,x’¢c S

A e (0,1) } = f (/\Xl +(1- /\)x2) < /\f(xl) +(1 - /\)f(x2)

» A function is strictly convex on S if < holds in place of < for all
xt #£ x2.

» A function f is concave if —f is convex.
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Example, | Convex functions

f (A4 (1= 2)x%) < AM(x') + (1= N)f(x)

The linear interpolation between two points on the function never is
lower than the function.

4

f(Ax —i—;(l — A)x2)

X1 Axg + (1= A)x X2

Figure: A convex function
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Example, [ Convex functions

Two important examples:

» f(x) =c’x+ d, where c € R, d € R is both convex and concave.

> f(x) = ||x|| is convex, f(x) = ||x||? is strictly convex.

Proposition (sum of convex functions)
The non-negative linear combination of convex functions is convex.

Proposition (composite functions)

Suppose S CR" and PCR. Let g : S — R be convex on S and
f : P — R be convex and non-decreasing on P.

Then the composite function f(g) is convex on {x € S | g(x) € P}.
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Epigraph, | Convex functions

The epigraph of a function f : R" — R" U {400} is defined as

epif :=={(x,a) eR" xR | f(x) < a}.

epi f f(x)

Figure: The epigraph of a non-convex function. Note that the boundary
of epif is the graph of f.
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Epigraph, [ Convex functions

The epigraph of a function f : R” — R" U {400} restricted to the
set S C R” is defined as

epis f :={(x,a) € S xR | f(x) < a}.

f(x)

(|
1
1
1
1
1
1
1
1
1
1
1
1
1

: S

Figure: The epigraph of a non-convex function restricted to S
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Epigraph, [ Convex functions

We now make a connection between convex functions and convex sets.

Suppose S C R" is a convex set. Then, the function
f: R" — RU{oo} is convex on S if and only if its epigraph
restricted to S is a convex set in R™1.

Figure: The epigraph of a convex function restricted to S
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Level set Convex functions

Let f : R” — R be a function. The level set of f with respect to
the b is the set

leve(b) : {x € R"|f(x) < b}

leve(b) b%

If £ is convex, then for every value of b € R, lev¢(b) is closed and convex.
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Convex sets, | Convex functions

Another important connection between convex functions and convex sets.

Proposition
Suppose g : R" — R is a convex function. Then the set
{x € R"|g(x) < 0} is a convex set.

Proof
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Convex sets, Il Convex functions

Another important connection between convex functions and convex sets.

Proposition
Suppose g : R” — R is an affine function. Then the set
{x € R"|g(x) = 0} is a convex set.

Proof
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Case: f € Cl Convex functions

We now consider the special case when f € C!, meaning that f is
differentiable and has a continuous gradient.

Theorem
f € C! is convex on the open, convex set S if and only if

f(x) > f(x) + VF()T(x — %), forall x,x € S.

» Meaning that the every tangent plane to the graph of f lies on, or
below, the epigraph of f, or

» that each first-order approximation of f lies below f.
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Case: f € C!, Example Convex functions

Figure: A convex function. The first-order approximation lies below the
function.
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Case: f € Cl Convex functions

Theorem
f € C! is convex on the open, convex set S if and only if

f(x) > f(x) + VF(x)"(x — %), forall x,x € S.

Proof:
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Case: f € Cl Convex functions

Another equivalent way of writing this is the following.

Theorem
f € C! is convex on the open, convex set S if and only if

[VF(x)— V()]  (x—y) >0

> Meaning that the gradient of f is monotone on S, or

> that the angle between Vf(x) — Vf(y) and x — y should be
between —7/2 and /2.
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Case: f € C2 Convex functions

Now the case when f € C?, meaning that it is twice differentiable with
continuous Hessian. Then the following hold

Theorem
Let f € C? on an open, convex set S C R”. Then

a) fisconvexon S <= V2f(x) =0 forallx€ S

b) V2f(x) = 0 for all x € S = f is strictly convex on S.

Proof sketch: Use Taylor expansion and mean-value theorem.

Note that in b), "<=" does not hold. Take for example f(x) = x*.
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Case: f € C2 Convex functions

An important example of a function in C? is the quadratic function

1
f(x) = §XTQX —q'x,

which is convex on R” if and only if Q = 0. This because V?f(x) = Q
independent of x.
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Convex optimization problem Convex problems

We can now say that the optimization problem

minimize  f(x), (3a)
subject to  gj(x) <0, i€Z, (3b)
gi(x)=0, i€é, (3¢)

x€X, (3d)

is convex if
» f is a convex function,
> gi, i €1 are convex functions,
> gi, i € £ are affine functions, and

» X is a convex set.
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