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November 1, 2012



Convex setsConvex set

Let S ⊆ R
n. The set S is convex if

x1, x2 ∈ S
λ ∈ (0, 1)

}

=⇒ λx1 + (1 − λ)x2 ∈ S ,

x1

x2

λx1 + (1 − λ)x2

S

A set is thus convex if all convex combination of any two points in the
set lies in the set. See the figure.
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Convex setsExamples

◮ The empty set is a convex set

◮ The set {x ∈ R
n | ||x|| ≤ a} is convex for any a ∈ R

◮ The set {x ∈ R
n | ||x|| = a} is non-convex for any a > 0

◮ The set {0, 1, 2, 3} is non-convex

x1

x2

λx1 + (1 − λ)x2 S

Figure: A non-convex set
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Convex setsIntersections of convex sets

Theorem

Let Sk , k ∈ K be a collection of convex sets. Then, the intersection
∩k∈KSk is a convex set.

Proof:
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Convex setsAffine and convex hull

We define the affine hull of a finite set V = {v1, v2, . . . , vk} as

aff V :=

{

λ1v
1 + · · · + λkv

k

∣

∣

∣

∣

∣

λ1, . . . , λk ∈ R,

k
∑

i=1

λi = 1

}

We define the convex hull of a finite set V = {v1, v2, . . . , vk} as

conv V :=

{

λ1v
1 + · · · + λkv

k

∣

∣

∣

∣

∣

λ1, . . . , λk ≥ 0,

k
∑

i=1

λi = 1

}

The sets are defined by all possible affine (convex) combinations of the k

points.
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Convex setsAffine and convex hull

v1 v1v1

v2v2v2

V aff V conv V

TMA947 – Lecture 2 Convexity 6 / 43



Convex setsMore on the convex hull

In general, we can define the convex hull of a set S as

◮ the unique minimal convex set containing S ,

◮ the intersection of all convex sets containing S , or

◮ the set of all convex combinations of points in S .

Any point x ∈ conv S , where S ⊆ R
n can thus be expressed as a convex

combination of points in S .

How many do we need? 2 minutes
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Convex setsCaratheodory’s Theorem

Caratheodory’s Theorem

Let x ∈ conv S , where S ⊆ R
n. Then x can be expressed as a convex

combination of n + 1 or fewer points of S .

Proof:
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Convex setsPolytope

A subset P of R
n is a polytope if it is the convex hull of finitely many

points in R
n.

v1

v2

v3

v4

v5

v6

v7

Figure: A polytope generated by seven points

A cube and a tetrahedron are examples of polytopes in R
3.
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Convex setsExtreme points

A point v of a convex set P is a extreme point if whenever

v = λx1 + (1 − λ)x2

x1, x2 ∈ P
λ ∈ (0, 1)







=⇒ v = x1 = x2.

v1

v2

v3

v4

v5

v6

v7

Figure: The red dots are the extreme points
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Convex setsExtreme points

An intuitive theorem then is

Theorem

Let P be the polytope conv V , where V = {v1, . . . , vk} ⊂ R
n. Then

P is equal to the convex hull of its extreme points.

◮ We have up untill now described convex sets by a number of points
– interior representation.

◮ We now look at convex sets described by linear constraints –
exterior representation.
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Convex setsPolyhedra

A subset P of R
n is a polyhedron if there exists a matrix A ∈ R

m×n and
a vector b ∈ R

m such that

P = {x ∈ R
n | Ax ≤ b}

◮ Ax ≤ b ⇐⇒ aix ≤ bi , i = 1, . . . , m. (ai row i of A)

◮ aix ≤ bi , i = 1, . . . , m are half-spaces, so

◮ P is the intersection of m half-spaces.
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Convex setsPolyhedra, example I

Let P = {x ∈ R
2 | x2 ≥ 1, x1 + 2x2 ≤ 6, 2x1 − x2 ≥ 2}

x1

x2

1

1

2

2

3

3 4 5

x2 = 1

x1 + 2x2 = 6
2x1 − x2 = 2

P

Figure: The polyhedron P , where A =





0 −1
1 2
−2 1



 and b =





−1
6
−2




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Convex setsPolyhedra, example II (unbounded)

Let P = {x ∈ R
2 | x2 ≥ 1, 2x1 − x2 ≥ 2}

x1

x2

1

1

2

2

3

3 4 5

x2 = 1

2x1 − x2 = 2

P

Figure: The polyhedron P , where A =

(

0 −1
−2 1

)

and b =

(

−1
−2

)
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Convex setsPolytope vs. Polyhedron

To make a clear distinction between a polytope and a polyhedron.

◮ Polytope = The convex hull of finitely many points.

◮ Polyhedron = The intersection of finitely many half-spaces

Theorem

A set P is a polytope if and only if it is a bounded polyhedron.
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Convex setsAlgebraic representation of extreme points

We can now define the extreme points of a polyhedron.

Let x̄ ∈ P = {x ∈ R
n | Ax ≤ b}, where A ∈ R

m×n with rank A = n
and b ∈ R

m. Further, let Āx̄ = b̄ be the equality subsystem of
Ax̄ ≤ b. Then x̄ is an extreme point of P if and only if rank Ā = n.

To create the equality subsystem, strike out all rows i with ai x̄ < bi ,

require equality for the rest.
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Convex setsAlgebraic representation, example I

x1

x2

1

1

2

2

3

3 4 5

x̄ = (3/2, 1)T
x2 = 1

x1 + 2x2 = 6
2x1 − x2 = 2

P

Let P = {x ∈ R
2 | Ax ≤ b}, where

A =





0 −1
1 2
−2 1



 and b =





−1
6
−2





Look at x̄ = (3/2, 1)T .

◮ The second inequality is 1 · (3/2)+ 2 · (1) < 6, so we strike that row.

◮ The first and second constraints are fulfilled with equality, so

◮ Ā =

(

0 −1
−2 1

)

and b =

(

−1
−2

)

◮ rank Ā = 2, so x̄ is an extreme point!
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Convex setsAlgebraic representation, example II

x1

x2

1

1

2

2

3

3 4 5

x̄ = (2, 1)T
x2 = 1

x1 + 2x2 = 6
2x1 − x2 = 2

P

Let P = {x ∈ R
2 | Ax ≤ b}, where

A =





0 −1
1 2
−2 1



 and b =





−1
6
−2





Look at x̄ = (2, 1)T .

◮ The second inequality is 1 · (2) + 2 · (1) < 6, so we strike that row.

◮ The third inequality is −2 · (2) + 1 · (1) < −2, so we strike that row.

◮ Ā =
(

0 −1
)

and b =
(

−1
)

◮ rank Ā = 1, so x̄ is not an extreme point!

TMA947 – Lecture 2 Convexity 18 / 43



Convex setsAlgebraic representation, example II

Why is this important?

◮ When considering linear programs (LPs), at least one of the extreme
points are an optimal solution (if there exist one)

◮ How many extreme points can there exist?
2 minutes

◮ To find an extreme point, just choose n linearly independent rows
(⇒ rank Ā = n) and solve the equality subsystem

◮ i.e. there can at most be
(

m

n

)

◮ This is the basic idea behind the simplex algorithm
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Convex setsCones

A subset C ⊆ R
n is a cone if λx ∈ C whenever x ∈ C and λ > 0.

Example: The set {x ∈ R
n | Ax ≤ 0} is a polyhedral cone in R

n.

C

Figure: A convex cone

C

C

Figure: A non-convex cone
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Convex setsThe representation theorem

Theorem

Let the polyhedron Q = {x ∈ R
n | Ax ≤ b} and let {v1, . . . , vk} be

its extreme points.

Define P := conv
(

{v1, . . . , vk}
)

and C := {x ∈ R
n | Ax ≤ 0}.

Then Q = P + C = {x ∈ R
n | x = u + v for some u ∈ P and v ∈ C}

Meaning that each polyhedron can be written as the sum of a polytope
and a polyhedral cone.
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Convex setsThe representation theorem, example I

Q

P
C = ∅

Bounded polyhedron = polytope
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Convex setsThe representation theorem, example II

Q

P
C

Unbounded polyhedron = polytope + polyhedral cone
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Convex setsSeparation theorem

An intuitive result is:
”If a point y does not lie in a closed convex set S , then there exist a
hyperplane separating the y from S”.

Theorem

Suppose that the set S ⊆ R
n is closed and convex, and that the

point y does not lie in S . Then there exist a α ∈ R and π 6= 0n such
that π

Ty > α and π
Tx ≤ α for all x ∈ S .

Proof: Later in the course.
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Convex setsSeparation theorem, example

x1

x2 y = (2, 2)T

S
π

Tx = α ⇔ x1 + x2 = 2

Figure: The hyperplane π
Tx = α separates the point y = (2, 2)T from

the unit disc. π = (1, 1)T and α = 2.
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Convex setsFarkas’ Lemma

A very important result is the following

Theorem

Let A ∈ R
m×n and b ∈ R

m. Then exactly one of the systems

Ax = b, (1)

x ≥ 0,

and

AT
π ≤ 0, (2)

bT
π > 0,

has a feasible solution, and the other is inconsistent.
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Convex setsFarkas’ Lemma

What Farkas’ Lemma says is the following:

◮ Either the vector b lies in the cone spanned by the columns of A, i.e.

b = Ax, x ≥ 0,

◮ or the vector b does not lie in the cone, meaning that there exist a
hyperplane π separating the vector from the cone, i.e.

AT
π ≤ 0, bT

π > 0.

Proof of Farkas’ Lemma:
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Convex functionsDefinition

Suppose S ⊆ R
n is convex. A function f : R

n → R is convex on S if

x1, x2 ∈ S
λ ∈ (0, 1)

}

=⇒ f
(

λx1 + (1 − λ)x2
)

≤ λf (x1) + (1 − λ)f (x2)

◮ A function is strictly convex on S if < holds in place of ≤ for all
x1 6= x2.

◮ A function f is concave if −f is convex.
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Convex functionsExample, I

f
(

λx1 + (1 − λ)x2
)

≤ λf (x1) + (1 − λ)f (x2)

The linear interpolation between two points on the function never is
lower than the function.

x

x1 x2λx1 + (1 − λ)x2

f (x1)

f (x2)

f (λx1 + (1 − λ)x2)

λf (x1) + (1 − λ)f (x2)

y y = f (x)

Figure: A convex function
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Convex functionsExample, II

Two important examples:

◮ f (x) = cTx + d , where c ∈ R
n, d ∈ R is both convex and concave.

◮ f (x) = ||x|| is convex, f (x) = ||x||2 is strictly convex.

Proposition (sum of convex functions)
The non-negative linear combination of convex functions is convex.

Proposition (composite functions)
Suppose S ⊆ R

n and P ⊆ R. Let g : S → R be convex on S and
f : P → R be convex and non-decreasing on P .
Then the composite function f (g) is convex on {x ∈ S | g(x) ∈ P}.
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Convex functionsEpigraph, I

The epigraph of a function f : R
n → R

n ∪ {+∞} is defined as

epi f := {(x, α) ∈ R
n × R | f (x) ≤ α} .

x

f (x)epi f

Figure: The epigraph of a non-convex function. Note that the boundary
of epi f is the graph of f .
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Convex functionsEpigraph, II

The epigraph of a function f : R
n → R

n ∪ {+∞} restricted to the
set S ⊆ R

n is defined as

epiS f := {(x, α) ∈ S × R | f (x) ≤ α} .

x

f (x)epiS f

S

Figure: The epigraph of a non-convex function restricted to S
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Convex functionsEpigraph, III

We now make a connection between convex functions and convex sets.

Suppose S ⊆ R
n is a convex set. Then, the function

f : R
n → R ∪ {∞} is convex on S if and only if its epigraph

restricted to S is a convex set in R
n+1.

x

f (x)
epiS f

S

Figure: The epigraph of a convex function restricted to S
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Convex functionsLevel set

Let f : R
n → R be a function. The level set of f with respect to

the b is the set
levf (b) : {x ∈ R

n | f (x) ≤ b}

x

f (x)

b

levf (b)

If f is convex, then for every value of b ∈ R, levf (b) is closed and convex.
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Convex functionsConvex sets, I

Another important connection between convex functions and convex sets.

Proposition

Suppose g : R
n → R is a convex function. Then the set

{x ∈ R
n | g(x) ≤ 0} is a convex set.

Proof
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Convex functionsConvex sets, II

Another important connection between convex functions and convex sets.

Proposition

Suppose g : R
n → R is an affine function. Then the set

{x ∈ R
n | g(x) = 0} is a convex set.

Proof
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Convex functionsCase: f ∈ C
1

We now consider the special case when f ∈ C 1, meaning that f is
differentiable and has a continuous gradient.

Theorem

f ∈ C 1 is convex on the open, convex set S if and only if

f (x) ≥ f (x̄) + ∇f (x̄)T (x − x̄), for all x, x̄ ∈ S .

◮ Meaning that the every tangent plane to the graph of f lies on, or
below, the epigraph of f , or

◮ that each first-order approximation of f lies below f .
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Convex functionsCase: f ∈ C
1, Example

x

f (x)

f (x̄) + f ′(x̄)(x − x̄)

x̄

Figure: A convex function. The first-order approximation lies below the
function.
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Convex functionsCase: f ∈ C
1

Theorem

f ∈ C 1 is convex on the open, convex set S if and only if

f (x) ≥ f (x̄) + ∇f (x̄)T (x − x̄), for all x, x̄ ∈ S .

Proof:
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Convex functionsCase: f ∈ C
1

Another equivalent way of writing this is the following.

Theorem

f ∈ C 1 is convex on the open, convex set S if and only if

[∇f (x) −∇f (y)]T (x − y) ≥ 0

◮ Meaning that the gradient of f is monotone on S , or

◮ that the angle between ∇f (x) −∇f (y) and x − y should be
between −π/2 and π/2.
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Convex functionsCase: f ∈ C
2

Now the case when f ∈ C 2, meaning that it is twice differentiable with
continuous Hessian. Then the following hold

Theorem

Let f ∈ C 2 on an open, convex set S ⊆ R
n. Then

a) f is convex on S ⇐⇒ ∇2f (x) � 0 for all x ∈ S

b) ∇2f (x) ≻ 0 for all x ∈ S =⇒ f is strictly convex on S .

Proof sketch: Use Taylor expansion and mean-value theorem.

Note that in b), ”⇐=” does not hold. Take for example f (x) = x4.
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Convex functionsCase: f ∈ C
2

An important example of a function in C 2 is the quadratic function

f (x) =
1

2
xTQx − qTx,

which is convex on R
n if and only if Q � 0. This because ∇2f (x) = Q

independent of x.
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Convex problemsConvex optimization problem

We can now say that the optimization problem

minimize f (x), (3a)

subject to gi(x) ≤ 0, i ∈ I, (3b)

gi(x) = 0, i ∈ E , (3c)

x ∈ X , (3d)

is convex if

◮ f is a convex function,

◮ gi , i ∈ I are convex functions,

◮ gi , i ∈ E are affine functions, and

◮ X is a convex set.
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