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Global and local optimality, R and R” Introduction

minimize f(x), (1a)
subject tox € S, (1b)

S C R" nonempty set, f : R” — R U {+occ} a given function

f(x)

=
(05}
x
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Interesting points Introduction

(i) boundary points of S

(i) stationary points, that is, where f'(x) =0
(iii) discontinuities in f or f’

Here:

(i) 1,7

(i) 2,3,4,5,6

(iii) none
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Logical reasoning Introduction

» There must exist an optimal solution,  Existence condition
» No other point than 1-7 can be optimal Necessary condition

» Thus, one of the points 1-7 is optimal. By direct
computation, it must be 2 Sufficient condition
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Global and local minimum Introduction

» x* € S is a global minimum of f over S if it attains the
lowest value of f over S:

f(x*) < f(x), xe$S

» x* € 5§ is a local minimum of f over S if there exists a small
enough ball intersected with S around x* such that it is an
optimal solution in that smaller set: with
B:(x*) :={y € R" | |ly — x*|| < ¢} being the Euclidean ball
with radius € centered at x*, we get

Jde > 0 such that f(x*) < f(x), x € SN B:(x")

» x* € S is a strict local minimum of f over S if f(x*) < f(x)
holds above for x # x*
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Overview Existence
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Refresher: open/closed sets in R” Existence

» We call S open if for every x € S there is an £ > 0 such that
{zeR"|||z—x| <e} = B(x) CS. Ex: the interval (0, c0)

» We call S closed if R"\S is open. Ex: the interval [0, c0).

» A limit point of a set S is a point x such that there is a
sequence {x,}72; C S where x; — x.

» Can equivalently define a closed as a set which contains all its
limit points.

» If S is both closed and bounded it is called compact.
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Compact sets Existence

Proposition: (Convergent subsequences)

Let S be compact and {xx}72; C S. Then there is a
convergent subsequence {x, }°; where lim;_, x4, = x for
some x € S.

Intuition:

» A sequence is an infinite set
of points in S

» Divide S into small blocks.

» At least one box contains
infinitely many points in the
sequence.
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Weierstrass Theorem | Existence

Weierstrass’ Theorem (simple version): Consider the
problem (1), where S is a nonempty, closed and bounded set
and f is continuous on S. Then, there exists a nonempty,
closed and bounded (i.e., compact) set of optimal solutions to
the problem (1)

Proof.

- Construct a problem such that no optimal solution exists.
- How does it violate Weierstrass theorem?
2 min.

TMA947 — Lecture 3 Introduction to optimality conditions



*Weak coercivity, | Existence

S C R" nonempty and closed, f : S — R

> f is weakly coercive with respect to the set S if either S is

bounded or
lim f(x) =00
[|x||—o0
x€S
holds

» The weak coercivity of f : S — R is equivalent to the property
that f has bounded level sets (Why?)
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*Lower semi-continuity Existence

S C R" nonempty and closed, f : § = R

» f is lower semi-continuous at X € S if the value f(X) is less
than or equal to every limit of f as x, — X
In other words, f is lower semi-continuous at X € S if

Xk — X = f(x) < liminf f(xx)
k—o00

> Lower semi-continuity of f is equivalent to the closedness of
all its sub-level sets lev¢(b) = {x € S| f(x) < b}, b€ R, as
well as the closedness of its epigraph
{(x,y) :x €S,y > f(x)} (Why?)

» Lower semi-continuous functions in one variable have the
appearance shown in the figure on the next slide.

» Continuity < f and —f lower semi-continuous.
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*Lower semicontinuity, Il Existence

T

X

Figure: A lower semi-continuous function in one variable
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*Weierstrass' Theorem |l Existence

Weierstrass’ Theorem: Let S C R"” be a nonempty and
closed set, and f : S — R be a lower semi-continuous function
on S. If f is weakly coercive with respect to S, then there
exists a nonempty, closed and bounded (thus compact) set of
optimal solutions to the problem (1)

Proof. Let X € S be any feasible solution. The level set
S={xe€S|f(x)<f(x)}is closed (by lower semi-continuity) and
bounded (by weak coercivity). Clearly the optimal solutions of (1)
and miny 3 f(x) coincide. The theorem follows in the same way as
the simple version.

Example: f(x) = |[x —y||, S any closed non-empty set, any

y € R". Weierstrass Theorem yields that for any point y € R”,
there is always (at least) one 'nearest’ point in S.
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Fundamental Theorem of global optimality Optimality

Consider the problem (1), where S is a convex set and f is
convex on S. Then, every local minimum of f over S is also a
global minimum

Proof.

Intuitive image: If x* is a local minimum, then f cannot go
down-hill from x* in any direction, but if X has a lower value, then
f has to go down-hill sooner or later. This cannot be the shape of
any convex function.
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Reminder: differentiability Optimality

We call f : R” — R differentiable at xg, if there is a Vf(xg) such
that . d)
F(x;d) = lim (X0 T 1 t) = Fx0) _ (o) Td

for all d, and call f differentiable if this holds for all xg. If f is
differentiable at xg, Taylor's Theorem guarantees the existence of a
"function’ o(t) such that

f(x) = f(x0) + V(x0)" (x = x0) + o([|x = o),
jim 2L8)

t—0t t

If V£(x) is continous, then f is called continuously differentiable,
denoted by f € C1. Similarly defined is f € C?, where we also have

=0.

f(x) = f(Xo)+Vf(Xo)T(X—Xo)+%(X—Xo)TVZf(Xo)(X—XoHO(HX—XoHz)v

where the matrix V2f(xg) € R™" is called the Hessian of f at xo.
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Local optimality over R", f € C!, descent Optimality

If x* is a local minimum of fon R" and f € C1, then
Vf(x*)=0

Proof.
Note: the other direction is not true, this is a necessary condition
(consider f(x) = x3).

Descent direction: Let x € R". We call p a direction of
descent with respect to f at x if

36 > 0 such that f(x + ap) < f(x) for every a € (0, ]
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Descent directions Optimality

Suppose that f : R” — R U {+oc} is in C! around a point x
for which f(x) < 400, and that p € R”. If Vf(x)Tp < 0 then
the vector p defines a direction of descent with respect to f at
X.
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Local optimality over R", f € C? Optimality

x*is a local min of fon R" — {

Vi(x*)=0"
V2f(x*) is p.s.d.

Proof-

Vf(x*)=0"
V2f(x*) is p.d.

} = x* fs a strict local min of f on R"

Proof-

» Note: n=1: x* € Ris a local minimum = f’(x*) = 0 and

f”(x*) >0

» Note: n=1: f'(x*) =0and f"(x*) >0 = x* €Ris a
strict local minimum
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Optimality over R", convex case Optimality

Let f € C!, and f be convex. Then,

x* is a global minimum of f on R" <= Vf(x*)=10"

Proof.
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Necessary opt. conditions, |: Variational Inequality (VI) Optimality

Suppose S CR”, f : R" — RU {+oco}isin Cl around x € S

(a) If x* € S'is a local minimum of f on S then
V£(x*)Tp > 0 holds for every feasible direction p at x*

(b) Suppose that S is convex and that f isin C! on S. If
x* € S is a local minimum of f on S then

Vi) T (x—x*) >0, xe85 (2)

Proof.
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Convex case Optimality

» We refer to (2) as a variational inequality and x* as
stationary

» Suppose S C R" is nonempty and convex. Let f € C! on S,
convex. Then,

*

x* is a global minimum of f on S <= (2) holds

» Proof.

» Compare with the case S = R"!
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Separation Theorem revisited (proof), 1 Optimality

» The Separation Theorem was earlier stated and used in order
to establish Farkas’ Lemma. The VI stationarity conditions,
and Weierstrass’ Theorem, can be used to establish it.

Suppose that C C R" is closed and convex, and that the point
y does not lie in C. Then there exist a vector 7 # 0" and
a € R such that 7Ty > a and #Tx < a for all x € C
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Separation Theorem revisited (proof), 2 Optimality

» Proof. Consider the problem of finding the closest point to y
in C, that is,

inh
iy <)

where h(x) = %Hx —y|?

Weierstrass guarantees an optimal solution x* € C.

(VI) = Vh(x*)(x —x*) >0 for all x € C.

Vh(x) =x—y

Set m:=y — x* = —Vh(x*) and o := 7 Tx*

yZC aly—a=(y—x)Ty—(y—x)"x" =y -x*|>*>0
For any x € C, the (VI) yields, -7t (x —x*) >0 @ n'x < a

The hyperplane provided by the theorem is actually a tangent
to C, while the normal is y — x*

vV V. vV vV v VY

TMA947 — Lecture 3 Introduction to optimality conditions



Projections Optimality

» In the previous slide we used the solution to the problem
minxes [|x — Y||2-

» As the objective function ||x — y||? is strictly convex, the
solution x* is actually a unique solution.

» So for any y € R”, and a closed convex set S, there is always
a unique nearest point x* € S to y.

» We call this point the projection of y onto S. We denote this
by Projs(y).

» Characterization from (VI): Projs(y) is the (unique) vector
such that

(y — Projs(y))"(x — Projs(y)) <0, VxeS
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Necessary optimality conditions, Ill: LP Optimality

x* € § is stationary iff

minimum V£(x*)T(x —x*) = 0
)

» Proof.

» Method basis: given x, € S, find out if we are stationary by
minimizing V£ (x,)T(x — xx) over x € S. In some sense, we
find the x € § which “violates optimality the most.” Perform
a line search in the direction from x, towards that point.
Repeat until convergence

» Names: Frank—Wolfe, Simplicial decomposition. Chapter 12
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Necessary optimality conditions, |l: Projection Optimality

x* € S is stationary iff

x* = Projs[x* — Vf(x")]

» Proof.

» In other words, x* is stationary if and only if a step in the
direction of the steepest descent direction followed by a
Euclidean projection onto S means that we have not moved at
all. (If not, then we obtain a descent direction towards that
projected point—basis for the projection method in Chapter
12)
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Projections and normal cones, 1 Optimality

» The condition x* = Projg(x* — Vf(x*)) holds if the angle
between —Vf(x*) and any feasible direction is at least 90°.

These 'outwards’ directions is called the normal cone at x*,
denoted Ns(x*).

NS(X*) x* — Vf(x*)

Figure: Normal cone characterization of a stationary point
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Necessary optimality conditions, IV: Normal cone, 2 Optimality

» More formally, suppose S C R” is closed and convex. Let
x € R"”. Then, the normal cone to S at x is the set

Ns(x) = {veR"|vI(y—x)<0, yeS}, ifxes,
° BRU otherwise

Characterization of stationary point at x* € S, number IV:

— VF(x*) € Ns(x%) (3)

» Equivalent to x* = Projg(x*).

» If S is a subspace = Vf(x*) is a normal to the subspace!

» Note: if x* interior point = Ns(x*) ={0"} (S=R" =
Vi(x*) =0")

» Condition IV is the only version of the necessary conditions for
convex sets that extends to non-convex sets (will be
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Summary Optimality

x* local min on closed convex set S = x* stationary

v

» x* stationary AND problem convex => x* global min on S

v

S=R" Vf(x*)=0"

v

Four equivalent stationarity conditions for convex sets S:
. SCR™ () VI: VA(x*)T(x —x*) >0 forall xe S

[

2. S C R": (Il) Projection: x* = Projg[x* — Vf(x*)]
3. SCR" (IN) LP: minyes VFA(x*)T(y —x*) =0
4. S C R™ (IV) Normal cone: —Vf(x*) € Ns(x*)

v

Only (IV) can be extended to the case of non-convex sets S
(the Karush—Kuhn—Tucker [KKT] conditions, Lecture 5-6)
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