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Global and local optimality, R and R
n Introduction

minimize f (x), (1a)

subject to x ∈ S , (1b)

S ⊆ R
n nonempty set, f : R

n → R ∪ {+∞} a given function

x

f (x)

1 2 3 4 5 6 7S
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Interesting points Introduction

(i) boundary points of S

(ii) stationary points, that is, where f ′(x) = 0

(iii) discontinuities in f or f ′

Here:

(i) 1, 7

(ii) 2, 3, 4, 5, 6

(iii) none
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Logical reasoning Introduction

◮ There must exist an optimal solution, Existence condition

◮ No other point than 1–7 can be optimal Necessary condition

◮ Thus, one of the points 1–7 is optimal. By direct
computation, it must be 2 Sufficient condition
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Global and local minimum Introduction

◮ x∗ ∈ S is a global minimum of f over S if it attains the
lowest value of f over S :

f (x∗) ≤ f (x), x ∈ S

◮ x∗ ∈ S is a local minimum of f over S if there exists a small
enough ball intersected with S around x∗ such that it is an
optimal solution in that smaller set: with
Bε(x

∗) := { y ∈ R
n | ‖y − x∗‖ < ε } being the Euclidean ball

with radius ε centered at x∗, we get

∃ε > 0 such that f (x∗) ≤ f (x), x ∈ S ∩ Bε(x
∗)

◮ x∗ ∈ S is a strict local minimum of f over S if f (x∗) < f (x)
holds above for x 6= x∗
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Refresher: open/closed sets in R
n Existence

◮ We call S open if for every x ∈ S there is an ε > 0 such that
{z ∈ R

n | ‖z − x‖ < ε} = Bε(x) ⊂ S . Ex: the interval (0,∞)

◮ We call S closed if R
n\S is open. Ex: the interval [0,∞).

◮ A limit point of a set S is a point x such that there is a
sequence {xk}

∞
k=1

⊂ S where xk → x.

◮ Can equivalently define a closed as a set which contains all its
limit points.

◮ If S is both closed and bounded it is called compact.
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Compact sets Existence

Proposition: (Convergent subsequences)
Let S be compact and {xk}

∞
k=1

⊂ S . Then there is a
convergent subsequence {xki

}∞
i=1

where limi→∞ xki
= x for

some x ∈ S .

Intuition:

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1 ◮ A sequence is an infinite set
of points in S

◮ Divide S into small blocks.

◮ At least one box contains
infinitely many points in the
sequence.
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Weierstrass Theorem I Existence

Weierstrass’ Theorem (simple version): Consider the
problem (1), where S is a nonempty, closed and bounded set
and f is continuous on S . Then, there exists a nonempty,
closed and bounded (i.e., compact) set of optimal solutions to
the problem (1)

Proof.

- Construct a problem such that no optimal solution exists.
- How does it violate Weierstrass theorem?
2 min.
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*Weak coercivity, I Existence

S ⊆ R
n nonempty and closed, f : S → R

◮ f is weakly coercive with respect to the set S if either S is
bounded or

lim
‖x‖→∞

x∈S

f (x) = ∞

holds

◮ The weak coercivity of f : S → R is equivalent to the property
that f has bounded level sets (Why?)
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∗Lower semi-continuity Existence

S ⊆ R
n nonempty and closed, f : S → R

◮ f is lower semi-continuous at x̄ ∈ S if the value f (x̄) is less
than or equal to every limit of f as xk → x̄
In other words, f is lower semi-continuous at x̄ ∈ S if

xk → x̄ =⇒ f (x̄) ≤ lim inf
k→∞

f (xk)

◮ Lower semi-continuity of f is equivalent to the closedness of
all its sub-level sets levf (b) = {x ∈ S | f (x) ≤ b}, b ∈ R, as
well as the closedness of its epigraph
{(x, y) : x ∈ S , y ≥ f (x)} (Why?)

◮ Lower semi-continuous functions in one variable have the
appearance shown in the figure on the next slide.

◮ Continuity ⇔ f and −f lower semi-continuous.
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*Lower semicontinuity, II Existence

x

f

Figure: A lower semi-continuous function in one variable
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∗Weierstrass’ Theorem II Existence

Weierstrass’ Theorem: Let S ⊆ R
n be a nonempty and

closed set, and f : S → R be a lower semi-continuous function
on S . If f is weakly coercive with respect to S , then there
exists a nonempty, closed and bounded (thus compact) set of
optimal solutions to the problem (1)

Proof. Let x̄ ∈ S be any feasible solution. The level set
S̄ = {x ∈ S | f (x) ≤ f (x̄)} is closed (by lower semi-continuity) and
bounded (by weak coercivity). Clearly the optimal solutions of (1)
and minx∈S̄

f (x) coincide. The theorem follows in the same way as
the simple version.

Example: f (x) = ‖x − y‖, S any closed non-empty set, any
y ∈ R

n. Weierstrass Theorem yields that for any point y ∈ R
n,

there is always (at least) one ’nearest’ point in S .
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Fundamental Theorem of global optimality Optimality

Consider the problem (1), where S is a convex set and f is
convex on S . Then, every local minimum of f over S is also a
global minimum

Proof.

Intuitive image: If x∗ is a local minimum, then f cannot go
down-hill from x∗ in any direction, but if x̄ has a lower value, then
f has to go down-hill sooner or later. This cannot be the shape of
any convex function.
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Reminder: differentiability Optimality

We call f : R
n → R differentiable at x0, if there is a ∇f (x0) such

that

f ′(x0;d) = lim
t→0

f (x0 + td) − f (x0)

t
= ∇f (x0)

Td

for all d, and call f differentiable if this holds for all x0. If f is
differentiable at x0, Taylor’s Theorem guarantees the existence of a
’function’ o(t) such that

f (x) = f (x0) + ∇f (x0)
T(x − x0) + o(‖x − x0‖),

lim
t→0+

o(t)

t
= 0.

If ∇f (x) is continous, then f is called continuously differentiable,
denoted by f ∈ C 1. Similarly defined is f ∈ C 2, where we also have

f (x) = f (x0)+∇f (x0)
T(x−x0)+

1

2
(x−x0)

T∇2f (x0)(x−x0)+o(‖x−x0‖
2),

where the matrix ∇2f (x0) ∈ R
n×n is called the Hessian of f at x0.
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Local optimality over R
n, f ∈ C 1, descent Optimality

If x∗ is a local minimum of f on R
n and f ∈ C 1, then

∇f (x∗) = 0

Proof.
Note: the other direction is not true, this is a necessary condition
(consider f (x) = x3).

Descent direction: Let x ∈ R
n. We call p a direction of

descent with respect to f at x if

∃δ > 0 such that f (x + αp) < f (x) for every α ∈ (0, δ]
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Descent directions Optimality

Suppose that f : R
n → R ∪ {+∞} is in C 1 around a point x

for which f (x) < +∞, and that p ∈ R
n. If ∇f (x)Tp < 0 then

the vector p defines a direction of descent with respect to f at
x.
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Local optimality over R
n, f ∈ C 2 Optimality

x∗is a local min of f on R
n =⇒

{

∇f (x∗) = 0n;
∇2f (x∗) is p.s.d.

Proof.

∇f (x∗) = 0n

∇2f (x∗) is p.d.

}

=⇒ x∗ is a strict local min of f on R
n

Proof.

◮ Note: n = 1: x∗ ∈ R is a local minimum =⇒ f ′(x∗) = 0 and
f ′′(x∗) ≥ 0

◮ Note: n = 1: f ′(x∗) = 0 and f ′′(x∗) > 0 =⇒ x∗ ∈ R is a
strict local minimum
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Optimality over R
n, convex case Optimality

Let f ∈ C 1, and f be convex. Then,

x∗ is a global minimum of f on R
n ⇐⇒ ∇f (x∗) = 0n

Proof.
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Necessary opt. conditions, I: Variational Inequality (VI)Optimality

Suppose S ⊆ R
n, f : R

n → R ∪ {+∞} is in C 1 around x ∈ S

(a) If x∗ ∈ S is a local minimum of f on S then
∇f (x∗)Tp ≥ 0 holds for every feasible direction p at x∗

(b) Suppose that S is convex and that f is in C 1 on S . If
x∗ ∈ S is a local minimum of f on S then

∇f (x∗)T(x − x∗) ≥ 0, x ∈ S (2)

Proof.
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Convex case Optimality

◮ We refer to (2) as a variational inequality and x∗ as
stationary

◮ Suppose S ⊆ R
n is nonempty and convex. Let f ∈ C 1 on S,

convex. Then,

x∗ is a global minimum of f on S ⇐⇒ (2) holds

◮ Proof.

◮ Compare with the case S = R
n!
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Separation Theorem revisited (proof), 1 Optimality

◮ The Separation Theorem was earlier stated and used in order
to establish Farkas’ Lemma. The VI stationarity conditions,
and Weierstrass’ Theorem, can be used to establish it.

Suppose that C ⊆ R
n is closed and convex, and that the point

y does not lie in C . Then there exist a vector π 6= 0n and
α ∈ R such that π

Ty > α and π
Tx ≤ α for all x ∈ C

x1

x2

2

2
C

y = (1.5, 1.5)T

π
Tx = α ⇐⇒ x1 + x2 = 2
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Separation Theorem revisited (proof), 2 Optimality

◮ Proof. Consider the problem of finding the closest point to y
in C, that is,

min
x∈S

h(x)

where h(x) = 1

2
‖x − y‖2

◮ Weierstrass guarantees an optimal solution x∗ ∈ C .

◮ (VI) ⇒ ∇h(x∗)(x − x∗) ≥ 0 for all x ∈ C .

◮ ∇h(x) = x − y

◮ Set π := y − x∗ = −∇h(x∗) and α := π
Tx∗

◮ y 6∈ C : π
Ty− α = (y− x∗)Ty− (y− x∗)Tx∗ = ‖y− x∗‖2 > 0

◮ For any x ∈ C , the (VI) yields, −π
T(x− x∗) ≥ 0 ⇔ π

Tx ≤ α

◮ The hyperplane provided by the theorem is actually a tangent
to C , while the normal is y − x∗
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Projections Optimality

◮ In the previous slide we used the solution to the problem
minx∈S ‖x − y‖2.

◮ As the objective function ‖x − y‖2 is strictly convex, the
solution x∗ is actually a unique solution.

◮ So for any y ∈ R
n, and a closed convex set S , there is always

a unique nearest point x∗ ∈ S to y.

◮ We call this point the projection of y onto S . We denote this
by ProjS(y).

◮ Characterization from (VI): ProjS(y) is the (unique) vector
such that

(y − ProjS(y))T(x − ProjS(y)) ≤ 0, ∀x ∈ S
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Necessary optimality conditions, III: LP Optimality

x∗ ∈ S is stationary iff

minimum
x∈S

∇f (x∗)T(x − x∗) = 0

◮ Proof.

◮ Method basis: given xk ∈ S , find out if we are stationary by
minimizing ∇f (xk)T(x − xk) over x ∈ S . In some sense, we
find the x ∈ S which “violates optimality the most.” Perform
a line search in the direction from xk towards that point.
Repeat until convergence

◮ Names: Frank–Wolfe, Simplicial decomposition. Chapter 12
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Necessary optimality conditions, II: Projection Optimality

x∗ ∈ S is stationary iff

x∗ = ProjS [x∗ −∇f (x∗)]

◮ Proof.

◮ In other words, x∗ is stationary if and only if a step in the
direction of the steepest descent direction followed by a
Euclidean projection onto S means that we have not moved at
all. (If not, then we obtain a descent direction towards that
projected point—basis for the projection method in Chapter
12)
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Projections and normal cones, 1 Optimality

◮ The condition x∗ = ProjS(x∗ −∇f (x∗)) holds if the angle
between −∇f (x∗) and any feasible direction is at least 90◦.
These ’outwards’ directions is called the normal cone at x∗,
denoted NS(x∗).

��
��
��
��

S

y

x∗ −∇f (x∗)

x∗

NS(x∗)

Figure: Normal cone characterization of a stationary point
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Necessary optimality conditions, IV: Normal cone, 2 Optimality

◮ More formally, suppose S ⊆ R
n is closed and convex. Let

x ∈ R
n. Then, the normal cone to S at x is the set

NS(x) :=

{

{ v ∈ R
n | vT(y − x) ≤ 0, y ∈ S }, if x ∈ S ,

∅ otherwise

Characterization of stationary point at x∗ ∈ S , number IV:

−∇f (x∗) ∈ NS(x∗) (3)

◮ Equivalent to x∗ = ProjS(x∗).
◮ If S is a subspace =⇒ ∇f (x∗) is a normal to the subspace!
◮ Note: if x∗ interior point =⇒ NS(x∗) = {0n} (S = R

n =⇒
∇f (x∗) = 0n)

◮ Condition IV is the only version of the necessary conditions for
convex sets that extends to non-convex sets (will be
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Summary Optimality

◮ x∗ local min on closed convex set S =⇒ x∗ stationary

◮ x∗ stationary AND problem convex =⇒ x∗ global min on S

◮ S = R
n: ∇f (x∗) = 0n

◮ Four equivalent stationarity conditions for convex sets S :

1. S ⊂ R
n: (I) VI: ∇f (x∗)T(x − x∗) ≥ 0 for all x ∈ S

2. S ⊂ R
n: (II) Projection: x∗ = ProjS [x∗ −∇f (x∗)]

3. S ⊂ R
n: (III) LP: miny∈S ∇f (x∗)T(y − x∗) = 0

4. S ⊂ R
n: (IV) Normal cone: −∇f (x∗) ∈ NS(x∗)

◮ Only (IV) can be extended to the case of non-convex sets S

(the Karush–Kuhn–Tucker [KKT] conditions, Lecture 5–6)
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