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Method of choice Methods

Consider the unconstrained optimization problem to

minimize f(x), (1)

where f € C% on R” (f is continuous). Mostly, we assume that
f € C* holds (f is continuously differentiable), often also f € C?

» Size of the problem (n)?

v

Are V£ (x) and/or V2f(x) available; to what cost?

v

What it is the goal? (Global/local minimum, stationary
point?)

v

What are the convexity properties of 7

v

Do we have a good estimate of the location of a stationary
point x*? (Can we use locally-only convergent methods?)
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Example: curve fitting by least-squares Methods

» Suppose we have m data points (t;, b;) believed to be related
as

X1 +X2exp(X3t;)+X4exp(X5t;):b,-, i:]-v"'amv

with unknown parameters xi, ..., xs. (Here, exp(x) = €*.)
The best description minimizes the total “residual error,”
given by the norm of the residual

fi(x) := bi — [x1+x2 exp(x3t;) + xa exp(xst;)], i=1....m

» Resulting optimization problem:

m m

min F(x):=>_1fi(X)>=_(bi—[x1+x2 exp(xst;)+xa exp(x5t;)])>
x i=1 i=1

» Very often solved problem type within numerical analysis and
mathematical statistics
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Line search type algorithm Methods

Step 0. Starting point: xg € R". Set k:=0
Step 1. Search direction: p, € R"

Step 2. Line search: Find ay > 0 such that
f(xkx + axpy) < f(xk) holds

Step 3. Let Xx41 := Xk + QkPk

Step 4. Termination criterion: If fulfilled, then stop!
Otherwise, let k := k + 1 and go to step 1

wﬁpk)

(675 o
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Notes Methods

» The figure was plotted using several thousands of function
evaluations

» Never possible in reality! (And total waste of time)
» An “orienteering map" never exists

» Most algorithms are inherently local, only based on info at the
current point X, that is, f(xx), VFf(xx), and V2f(xx)

» Possibly also on previous points passed
» An algorithm is a “near-sighted mountain climber” when

trying to reach the summit (for a max problem!)

» The mountain climber is in a deep fog and can only check her
barometer for the height and feel the steepness of the slope
under her feet. Go as much uphill as possible
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Step 1: Search directions, |

» Remember descent directions are the direction where
f(xk + ap) < f(xk) for a € (0, ], for some 6 > 0. A few
natural choices exist.

> If VI(xk) # 07, then p = —VFf(xx)/||Vf(x)] is a descent
direction for f at x, (Part of necessary condition proof!)

» This steepest descent direction solves the problem to

d
minimize Vf(xx)Tp = —f(xx + ap
pER™p[=1 (i) GR" ||P|| 1 da x )

» This is the " near-sighted mountain climber” direction.
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Step 1: Search directions, Il

» Suppose Q € R™" is a symmetric, positive definite matrix.
Then p = —QVf(xk) is a descent direction for f at x,
because

VF(xi)Tp = —VF(x)TQVFf(x,) <0,
due to the positive definiteness of Q

» Special case: Q = 1" yields steepest descent

» Special case: Q = (V2f(xx))~!, if the Hessian is positive
definite. This is Newton’s method
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Newton's method Methods

» Steepest descent is most often not a very good algorithm.
(Computer exercise |)

» |t fails to take into account more than information about Vf

» A second-order Taylor approximation:
1
f(x+p) = f(x) = @x(p) = VF(x)'p + 5p  V*F(x)p
"Minimize' ¢« over p by setting the gradient of px(p) to zero:
Veex(p) = VF(X) + V2f(x)p = 0" <= V3f(x)p = —V(x)

»n=1 f(x)+f"(x)p=0 = p=—1f'(x)/f"(x)
» Provides descent if f”(x) > 0: f'(x)p = —[f'(x)]?/f"(x) <0
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Why do we not always choose Newton directions? | Methods

» Lack of positive definiteness. V2f(x) is not positive
definite (PD) (that is, some eigenvalue(s) is/are negative)

» Ex: n=1. If f’(x) <0, then the 'minimization’ of p(p) is
actually a maximization! Bad!

» Solution: Modify V2f(x) so that the result is PD.

» If X is an eigenvalue of V2f(x) then for any v € R, A + 7 is
an eigenvalue of V2f(x) + v1". Choosing ~ large enough
makes V2f(x) + 1" PD.

n

» Note: If the value of 7 is very large == V?f(x) + 1" ~ 11
= direction & steepest descent

» Name: Levenberg—Marquardt
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Why do we not always choose Newton directions? |l Methods

» Lack of enough differentiability. If f ¢ C2, or V2f(x) too
impractical to compute, what do we do? Try to construct
something that approximates a Hessian.

» n = 1: the secant method: replace f”(x) with

f'(xk) — f'(xk—1)

Xk — Xk—1

» n > 1. quasi-Newton: choose approximate matrix By so that
Bk(Xk — Xk—l) = Vf(xk) — Vf(xk_l),

+ additional choices (the above does not specify the entire
matrix B!), so that, for example, Bx;1 can be computed
easily from By, and so that By is symmetric and positive
definite
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Why do we not always choose Newton directions? Il Methods

» Computational burden. It may be too much to ask for to
solve a linear system many times when n > 1000 or so; it is
enough to do some work on the linear system and still get a
descent property. (See The Book, p. 275 for an example)

» There are many specific choices of matrices By that lead to a
variety of quasi-Newton methods
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*Additional requirements Methods

» Purpose: prevent the descent directions to deteriorate in
quality, and prevent premature convergence

» Practical criteria:

V(i) pil = 1| VAx)2 and Ipell < 2| VF(xi)l,

or

VF(x )T
_ VIR and ol = 2l VA

IVExi) - il —

» Interpretations: Vf(x)Tpy is the directional derivative of f at
Xk in the direction of p,. Make sure it stays away from zero!

» Also, make sure that p, stays bounded and that it tends to
zero if and only if Vf(x,) does

» These conditions hold for the above examples
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Step 2: Line search Methods

» Approximately solve the one-dimensional problem to

minimize p(a) := f(xx + apy)
a>0

Its optimality conditions are that

¢(a’) =0, o ¢(a”)=0, a" =0,
These are the variational inequality. That is,
VF(xe+a'pe)Tpe >0, o Vi(xe+a'py)Tpy =0, a* >0,

holds
» If a* >0, then ¢/(a*) = 0 holds = Vf(xx + a*p,) P, =0

» The search direction p, then is orthogonal to the gradient of
f at the point xx + a*p,
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Step 2: An illustration Methods

Figure: A line search in a descent direction
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Approximate line search Methods

» No point solving the one-dimensional problem exactly! Why?
The optimum to the entire problem lies elsewhere!

» Interpolation: Use f(xx), Vf(xx) TPy, f(xk + px) to model a
quadratic function approximating f along p,. Minimize it by
using the analytic formula for quadratics

» Newton’s method: Repeat the improvements gained from a
quadratic approximation: a = a — ¢'(a)/¢"(a)

» Golden section: Derivative-free method that shrinks an
interval wherein a solution to ¢’(a) = 0 lies (similar to
interval-halving for solving f(x) = 0)
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Step length too long Methods

Figure: Choosing « too large may cause oscillations.
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Step length too short Methods

Figure: Choosing « too small may stall progress.
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Armijo rule, | Methods

» ldea: quickly generate a step a which provides “sufficient”
decrease in f. Note: f(xx + apy) =~ f(xx) + a - VF(xk) g,
valid for small values of & > 0

» Requirement: we get a decrease in f which is at least a
fraction of that predicted in the right-hand side above. Let
u € (0,1) be this fraction. Acceptable step lengths are o > 0
satisfying

p(@) — ¢(0) < pay'(0), (2a)
that is,
f(xkx + apy) — f(xk) < paVi(xg)pk (2b)

» In practice: Initial guess . If (2) not satisfied, try a/2;
repeat.
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Armijo rule, I Methods

R «
©(0) + a’(0) ©(0) + pay'(0)
Figure: The interval (R) accepted by the Armijo step length rule
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*Typical convergence result Convergence

» Suppose f € CL, and for the starting point xo the level set
leve (f(x0)) = {x € R"| f(x) < f(xo) } is bounded. Consider
the iterative algorithm, with the following choices for each k:

> p, satisfies the second sufficient descent condition (see *-slide
above);
> |lpxll < M, where M is some positive constant; and
» the Armijo step length rule is used
Then, the sequence {xy} is bounded, the sequence {f(xx)} is
descending, lower bounded and therefore converges, and every
limit point of {xy} is stationary

» For convex f much stronger convergence properties:

Optimum exists <= {xy} converges to an optimal solution

Theorem is a consequence of a more general theorem.
Master-classes!
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Step 4: Termination criteria Convergence

» Lesson 1: Cannot terminate based on the exact optimality
conditions, because Vf(x) = 0" rarely happens!
» Recommended/Common:
L |IVF(xe)|l <er(1+|f(xk)]), e1 > 0 small;
2. f(xk—1) — F(xk) < e2(1 4+ |F(x4)]), €2 > 0 small; and
3. |Ixk—1 — xk|| < e3(1 + ||x]]), €3 > 0 small
» Why? Need to cover cases of very steep and very flat
functions

> May need to use co-norm: ||x||o 1= maxi<j<n |X;j|, for large n
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Termination, |l Convergence

» Problem with the scaling of the problem: If

xx_1 = (56.00,0.042,0.000001)7,
x, = (56.01,0.0421,0.000009)T;

Xk—1 — Xk||oo = ||(—0.01, —0.001, —0.000008)T |
=0.01

» Small absolute error but large relative error (800% in the third
coordinate)!

» Better to apply the algorithm from a scaled problem where
elements of x have similar magnitude.

» Many out-of-the-box algorithms do not check this. User
responsibility!
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Why is the C! property important? | Implicit functions

» Suppose f is only in C% not C!. Example:

f(x) := maximum {c}'x + b;}, x € R”
ie{l,....m}

» This is a piece-wise linear and convex function (see next page)

» It is differentiable almost everywhere, but not at the optimal
solution!

» Ignoring non-differentiability may lead to the convergence to a
non-optimal point. In other words, methods for minimizing
non-differentiable function cannot only rely on gradient values

» Convex functions always has subgradients, corresponding to
all the possible slopes of the function (Lecture 9).
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is the C! property important? I functions

Figure: A piece-wise linear convex function
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Minimizing implicit functions, | Implicit functions

» Common in engineering and natural science applications that
f is not explicitly given but through a simulation:

Simulation y €R7

x € R”

» The wish is to minimize a function of both x and y: f(x,y);
find the vector x that gives the best response y for f

» The form of the response y = y(x) from the input x is
normally unknown

» Cannot differentiate x — f(x, y(x))

» Two distinct possibilities!
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Minimizing implicit functions, |l

» (1) Numerical differentiation of f by using a difference
formula:

> Let e; = (0,0,...,0,1,0,...,0)T be the unit vector in R".
Then,

f(x + ae;) = f(x) + ael VF(x) + (a?/2)el V2f(x)e; + ...
= f(x) + adf (x)/0x; + (o /2)0*F(x)/Ox7 + . ..
» So, for small a > 0,

Of(x) _ flx+ae;) — F(x)

3 ~ (forward difference)
X; a
f f ;) — f(x — ae; .
aa)(:) ~ (x+ae )2a (x = aei) (central difference)
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Minimizing implicit functions, IlI Implicit functions

» Value of « typically set to a function of the machine precision;
too large — bad approximation of the partial derivative;
too small — numerical cancellation

» May work well if the simulation is accurate, otherwise bad
derivative information. Requires cheap simulations!

» (2) Derivative-free methods are available. (Not counting
subgradient methods, because they demand f to be convex!)
Either builds explicit models f of the objective function from
evaluations of f at test points, or evaluates f at grid points
that are moved around, shrunk or expanded. Names and
terms: Nelder—Mead, Pattern search, surrogate models, radial
basis functions, . ..
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Methods based on interpolating/approximating f Implicit

» Alternative: create explicit algebraic (e.g., polynomial) model
f based on visited points x; solve this problem with gradient
methods; evaluate its optimum in the real problem (i.e.,
perform a simulation); update f with the new information —>
minimizes the number of simulations!

» Recent application: diesel engine optimization for Volvo
Powertrain and Volvo Car Corporation

» Optimize fuel consumption, keep soot/nitrogen emissions at
an acceptable level

» Simulations hard (42 hours each) and response contains noise

» New method developed based on approximate (surrogate)
models
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Trust region methods, | *Advanced

Remember the line search algorithm form:

Step 0. Starting point. xg € R". Set k :=0
Step 1. Search direction: p, € R"

Step 2. Line search: Find ay > 0 such that
f(xk + axpy) < f(xx) holds

Step 3. Let Xk41 = Xk + axPy

Step 4. Termination criterion: If fulfilled, then stop!
Otherwise, let k := k + 1 and go to step 1

Trust region does steps 1 and 2 simultaneously.
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*Trust region methods, I *Advanced

» Trust region methods often use quadratic models (as does
Newton)

» Avoids line searches by bounding the length of the search
direction, at the same time influencing its direction

> Let ¢y(p) = f(xk) + VF(xk)"p + 3P V2F (xi)p

» The accuracy of this approximation decreases when x, + p is
far away from xy

» We trust the model v, to be a good approximation of
f(xx + p) only in a neighbourhood of x, : ||p|| < Ak

» Very useful when V2f(x,) is not positive semi-definite
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*Trust region methods, Il *Advanced

> Relatively easy (but not trivial) to minimize 1, (p) subject to
Ipll < Ak

» Idea: when V2f(x) is badly conditioned, Ay should be small
(more of a steepest descent method); if well conditioned, Ay
should be large to allow for unit steps (Newton! fast
convergence)

> If Ay is small enough, f(xx + py) < f(xk) holds

» Even if VFf(xk) = 0" holds, f(xx + py) < f(xk) still holds, if
V2f(xx) is not positive definite

» Progress from stationary points if at saddle points or local
maxima

» This method type is what many of MATLABs optimization
routines use by default.
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*Trust region methods, 1V *Advanced

» Update of trust region size based on a measure of similarity
between the model 1, and f: Let

f(xx) — F(xk + Pg) actual reduction

Pe= f(xk) —vk(px)  predicted reduction

If pr < plet xxi11 = xk (unsuccessful step), else
Xk+1 = Xk + Py (successful step)
Value of Aky1 depends on py:

Pk < = Dyi1 = 3,
p< pk <N = Dyy1 =Dy,
Pk =1 = D1 =20k
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*Trust region methods, V *Advanced

Figure 6 illustrates the trust region subproblem

_

Figure: Trust region and Newton step. The ellipses are level curves of the
quadratic model; the circle defines the trust region
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