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Method of choice Methods

Consider the unconstrained optimization problem to

minimize
x∈Rn

f (x), (1)

where f ∈ C 0 on R
n (f is continuous). Mostly, we assume that

f ∈ C 1 holds (f is continuously differentiable), often also f ∈ C 2

◮ Size of the problem (n)?

◮ Are ∇f (x) and/or ∇2f (x) available; to what cost?

◮ What it is the goal? (Global/local minimum, stationary
point?)

◮ What are the convexity properties of f ?

◮ Do we have a good estimate of the location of a stationary
point x∗? (Can we use locally-only convergent methods?)
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Example: curve fitting by least-squares Methods

◮ Suppose we have m data points (ti , bi ) believed to be related
as

x1 + x2 exp(x3ti ) + x4 exp(x5ti ) = bi , i = 1, . . . ,m,

with unknown parameters x1, . . . , x5. (Here, exp(x) = e
x .)

The best description minimizes the total “residual error,”
given by the norm of the residual

fi (x) := bi − [x1 +x2 exp(x3ti )+x4 exp(x5ti )], i = 1, . . . ,m

◮ Resulting optimization problem:

min
x∈R5

f (x) :=
m∑

i=1

|fi (x)|
2 =

m∑

i=1

(bi−[x1+x2 exp(x3ti )+x4 exp(x5ti )])
2

◮ Very often solved problem type within numerical analysis and
mathematical statistics
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Line search type algorithm Methods

Step 0. Starting point: x0 ∈ R
n. Set k := 0

Step 1. Search direction: pk ∈ R
n

Step 2. Line search: Find αk > 0 such that
f (xk + αkpk) < f (xk) holds

Step 3. Let xk+1 := xk + αkpk

Step 4. Termination criterion: If fulfilled, then stop!
Otherwise, let k := k + 1 and go to step 1
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Notes Methods

◮ The figure was plotted using several thousands of function
evaluations

◮ Never possible in reality! (And total waste of time)

◮ An “orienteering map” never exists

◮ Most algorithms are inherently local, only based on info at the
current point xk , that is, f (xk), ∇f (xk), and ∇2f (xk)

◮ Possibly also on previous points passed

◮ An algorithm is a “near-sighted mountain climber” when
trying to reach the summit (for a max problem!)

◮ The mountain climber is in a deep fog and can only check her
barometer for the height and feel the steepness of the slope
under her feet. Go as much uphill as possible
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Step 1: Search directions, I Methods

◮ Remember descent directions are the direction where
f (xk + αp) < f (xk) for α ∈ (0, δ], for some δ > 0. A few
natural choices exist.

◮ If ∇f (xk) 6= 0n, then p = −∇f (xk)/‖∇f (x)‖ is a descent
direction for f at xk (Part of necessary condition proof!)

◮ This steepest descent direction solves the problem to

minimize
p∈Rn:‖p‖=1

∇f (xk)Tp = min
p∈Rn:‖p‖=1

d

dα
f (xk + αp)

◮ This is the ”near-sighted mountain climber” direction.
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Step 1: Search directions, II Methods

◮ Suppose Q ∈ R
n×n is a symmetric, positive definite matrix.

Then p = −Q∇f (xk) is a descent direction for f at xk ,
because

∇f (xk)Tp = −∇f (xk)TQ∇f (xk) < 0,

due to the positive definiteness of Q

◮ Special case: Q = In yields steepest descent

◮ Special case: Q = (∇2f (xk))−1, if the Hessian is positive
definite. This is Newton’s method
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Newton’s method Methods

◮ Steepest descent is most often not a very good algorithm.
(Computer exercise I)

◮ It fails to take into account more than information about ∇f

◮ A second-order Taylor approximation:

f (x + p) − f (x) ≈ ϕx(p) := ∇f (x)Tp +
1

2
pT∇2f (x)p

’Minimize’ ϕx over p by setting the gradient of ϕx(p) to zero:

∇pϕx(p) = ∇f (x) + ∇2f (x)p = 0n ⇐⇒ ∇2f (x)p = −∇f (x)

◮ n = 1: f ′(x) + f ′′(x)p = 0 =⇒ p = −f ′(x)/f ′′(x)

◮ Provides descent if f ′′(x) > 0: f ′(x)p = −[f ′(x)]2/f ′′(x) < 0
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Why do we not always choose Newton directions? I Methods

◮ Lack of positive definiteness. ∇2f (x) is not positive
definite (PD) (that is, some eigenvalue(s) is/are negative)

◮ Ex: n = 1. If f ′′(x) < 0, then the ’minimization’ of ϕx(p) is
actually a maximization! Bad!

◮ Solution: Modify ∇2f (x) so that the result is PD.

◮ If λ is an eigenvalue of ∇2f (x) then for any γ ∈ R, λ+ γ is
an eigenvalue of ∇2f (x) + γIn. Choosing γ large enough
makes ∇2f (x) + γIn PD.

◮ Note: If the value of γ is very large =⇒ ∇2f (x) + γIn ≈ γIn

=⇒ direction ≈ steepest descent

◮ Name: Levenberg–Marquardt
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Why do we not always choose Newton directions? II Methods

◮ Lack of enough differentiability. If f 6∈ C 2, or ∇2f (x) too
impractical to compute, what do we do? Try to construct
something that approximates a Hessian.

◮ n = 1: the secant method: replace f ′′(x) with

f ′(xk) − f ′(xk−1)

xk − xk−1

◮ n > 1: quasi-Newton: choose approximate matrix Bk so that

Bk(xk − xk−1) = ∇f (xk) −∇f (xk−1),

+ additional choices (the above does not specify the entire
matrix Bk !), so that, for example, Bk+1 can be computed
easily from Bk , and so that Bk is symmetric and positive
definite
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Why do we not always choose Newton directions? III Methods

◮ Computational burden. It may be too much to ask for to
solve a linear system many times when n > 1000 or so; it is
enough to do some work on the linear system and still get a
descent property. (See The Book, p. 275 for an example)

◮ There are many specific choices of matrices Bk that lead to a
variety of quasi-Newton methods
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∗Additional requirements Methods

◮ Purpose: prevent the descent directions to deteriorate in
quality, and prevent premature convergence

◮ Practical criteria:

|∇f (xk)Tpk | ≥ s1‖∇f (xk)‖2, and ‖pk‖ ≤ s2‖∇f (xk)‖,

or

−
∇f (xk)Tpk

‖∇f (xk)‖ · ‖pk‖
≥ s1, and ‖pk‖ ≥ s2‖∇f (xk)‖

◮ Interpretations: ∇f (xk)Tpk is the directional derivative of f at
xk in the direction of pk . Make sure it stays away from zero!

◮ Also, make sure that pk stays bounded and that it tends to
zero if and only if ∇f (xk) does

◮ These conditions hold for the above examples
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Step 2: Line search Methods

◮ Approximately solve the one-dimensional problem to

minimize
α≥0

ϕ(α) := f (xk + αpk)

Its optimality conditions are that

ϕ′(α∗) ≥ 0, α∗ · ϕ′(α∗) = 0, α∗ ≥ 0,

These are the variational inequality. That is,

∇f (xk+α∗pk)Tpk ≥ 0, α∗·∇f (xk+α∗pk)Tpk = 0, α∗ ≥ 0,

holds

◮ If α∗ > 0, then ϕ′(α∗) = 0 holds =⇒ ∇f (xk + α∗pk)Tpk = 0

◮ The search direction pk then is orthogonal to the gradient of
f at the point xk + α∗pk
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Step 2: An illustration Methods
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Figure: A line search in a descent direction
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Approximate line search Methods

◮ No point solving the one-dimensional problem exactly! Why?
The optimum to the entire problem lies elsewhere!

◮ Interpolation: Use f (xk),∇f (xk)Tpk , f (xk + pk) to model a
quadratic function approximating f along pk . Minimize it by
using the analytic formula for quadratics

◮ Newton’s method: Repeat the improvements gained from a
quadratic approximation: α := α− ϕ′(α)/ϕ′′(α)

◮ Golden section: Derivative-free method that shrinks an
interval wherein a solution to ϕ′(α) = 0 lies (similar to
interval-halving for solving f(x) = 0)
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Step length too long Methods

Figure: Choosing α too large may cause oscillations.
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Step length too short Methods

Figure: Choosing α too small may stall progress.
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Armijo rule, I Methods

◮ Idea: quickly generate a step α which provides “sufficient”
decrease in f . Note: f (xk + αpk) ≈ f (xk) + α · ∇f (xk)Tpk ,
valid for small values of α > 0

◮ Requirement: we get a decrease in f which is at least a
fraction of that predicted in the right-hand side above. Let
µ ∈ (0, 1) be this fraction. Acceptable step lengths are α > 0
satisfying

ϕ(α) − ϕ(0) ≤ µαϕ′(0), (2a)

that is,

f (xk + αpk) − f (xk) ≤ µα∇f (xk)pk (2b)

◮ In practice: Initial guess α. If (2) not satisfied, try α/2;
repeat.
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Armijo rule, II Methods

αR

ϕ(0) + αϕ′(0) ϕ(0) + µαϕ′(0)

ϕ(α)

Figure: The interval (R) accepted by the Armijo step length rule
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∗Typical convergence result Convergence

◮ Suppose f ∈ C 1, and for the starting point x0 the level set
levf (f (x0)) = { x ∈ R

n | f (x) ≤ f (x0) } is bounded. Consider
the iterative algorithm, with the following choices for each k:

◮ pk satisfies the second sufficient descent condition (see *-slide
above);

◮ ‖pk‖ ≤ M, where M is some positive constant; and
◮ the Armijo step length rule is used

Then, the sequence {xk} is bounded, the sequence {f (xk)} is
descending, lower bounded and therefore converges, and every
limit point of {xk} is stationary

◮ For convex f much stronger convergence properties:

Optimum exists ⇐⇒ {xk} converges to an optimal solution

Theorem is a consequence of a more general theorem.
Master-classes!
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Step 4: Termination criteria Convergence

◮ Lesson 1: Cannot terminate based on the exact optimality
conditions, because ∇f (x) = 0n rarely happens!

◮ Recommended/Common:

1. ‖∇f (xk)‖ ≤ ε1(1 + |f (xk)|), ε1 > 0 small;
2. f (xk−1) − f (xk) ≤ ε2(1 + |f (xk)|), ε2 > 0 small; and
3. ‖xk−1 − xk‖ ≤ ε3(1 + ‖xk‖), ε3 > 0 small

◮ Why? Need to cover cases of very steep and very flat
functions

◮ May need to use ∞-norm: ‖x‖∞ := max1≤j≤n |xj |, for large n
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Termination, II Convergence

◮ Problem with the scaling of the problem: If

xk−1 = (56.00, 0.042, 0.000001)T,

xk = (56.01, 0.0421, 0.000009)T;

‖xk−1 − xk‖∞ = ‖(−0.01,−0.001,−0.000008)T‖∞

= 0.01

◮ Small absolute error but large relative error (800% in the third
coordinate)!

◮ Better to apply the algorithm from a scaled problem where
elements of x have similar magnitude.

◮ Many out-of-the-box algorithms do not check this. User
responsibility!
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Why is the C 1 property important? I Implicit functions

◮ Suppose f is only in C 0, not C 1. Example:

f (x) := maximum
i∈{1,...,m}

{cT

i x + bi}, x ∈ R
n

◮ This is a piece-wise linear and convex function (see next page)

◮ It is differentiable almost everywhere, but not at the optimal
solution!

◮ Ignoring non-differentiability may lead to the convergence to a
non-optimal point. In other words, methods for minimizing
non-differentiable function cannot only rely on gradient values

◮ Convex functions always has subgradients, corresponding to
all the possible slopes of the function (Lecture 9).
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Why is the C 1 property important? II Implicit functions

f (x)

x

Figure: A piece-wise linear convex function
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Minimizing implicit functions, I Implicit functions

◮ Common in engineering and natural science applications that
f is not explicitly given but through a simulation:

x ∈ R
n y ∈ R

mSimulation

◮ The wish is to minimize a function of both x and y: f (x, y);
find the vector x that gives the best response y for f

◮ The form of the response y = y(x) from the input x is
normally unknown

◮ Cannot differentiate x 7→ f (x, y(x))

◮ Two distinct possibilities!
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Minimizing implicit functions, II Implicit functions

◮ (1) Numerical differentiation of f by using a difference
formula:

◮ Let ei = (0, 0, . . . , 0, 1, 0, . . . , 0)T be the unit vector in R
n.

Then,

f (x + αei ) = f (x) + αeT

i ∇f (x) + (α2/2)eT

i ∇
2f (x)ei + . . .

= f (x) + α∂f (x)/∂xi + (α2/2)∂2f (x)/∂x2
i + . . .

◮ So, for small α > 0,

∂f (x)

∂xi

≈
f (x + αei ) − f (x)

α
(forward difference)

∂f (x)

∂xi

≈
f (x + αei ) − f (x − αei )

2α
(central difference)
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Minimizing implicit functions, III Implicit functions

◮ Value of α typically set to a function of the machine precision;
too large → bad approximation of the partial derivative;
too small → numerical cancellation

◮ May work well if the simulation is accurate, otherwise bad
derivative information. Requires cheap simulations!

◮ (2) Derivative-free methods are available. (Not counting
subgradient methods, because they demand f to be convex!)
Either builds explicit models f̂ of the objective function from
evaluations of f at test points, or evaluates f at grid points
that are moved around, shrunk or expanded. Names and
terms: Nelder–Mead, Pattern search, surrogate models, radial
basis functions, . . .
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Methods based on interpolating/approximating f Implicit
functions

◮ Alternative: create explicit algebraic (e.g., polynomial) model
f̃ based on visited points xk ; solve this problem with gradient
methods; evaluate its optimum in the real problem (i.e.,
perform a simulation); update f̃ with the new information =⇒
minimizes the number of simulations!

◮ Recent application: diesel engine optimization for Volvo
Powertrain and Volvo Car Corporation

◮ Optimize fuel consumption, keep soot/nitrogen emissions at
an acceptable level

◮ Simulations hard (42 hours each) and response contains noise

◮ New method developed based on approximate (surrogate)
models
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Trust region methods, I *Advanced

Remember the line search algorithm form:

Step 0. Starting point: x0 ∈ R
n. Set k := 0

Step 1. Search direction: pk ∈ R
n

Step 2. Line search: Find αk > 0 such that
f (xk + αkpk) < f (xk) holds

Step 3. Let xk+1 := xk + αkpk

Step 4. Termination criterion: If fulfilled, then stop!
Otherwise, let k := k + 1 and go to step 1

Trust region does steps 1 and 2 simultaneously.
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∗Trust region methods, II *Advanced

◮ Trust region methods often use quadratic models (as does
Newton)

◮ Avoids line searches by bounding the length of the search
direction, at the same time influencing its direction

◮ Let ψk(p) := f (xk) + ∇f (xk)Tp + 1

2
pT∇2f (xk)p

◮ The accuracy of this approximation decreases when xk + p is
far away from xk

◮ We trust the model ψk to be a good approximation of
f (xk + p) only in a neighbourhood of xk : ‖p‖ ≤ ∆k

◮ Very useful when ∇2f (xk) is not positive semi-definite
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∗Trust region methods, III *Advanced

◮ Relatively easy (but not trivial) to minimize ψk(p) subject to
‖p‖ ≤ ∆k

◮ Idea: when ∇2f (xk) is badly conditioned, ∆k should be small
(more of a steepest descent method); if well conditioned, ∆k

should be large to allow for unit steps (Newton! fast
convergence)

◮ If ∆k is small enough, f (xk + pk) < f (xk) holds

◮ Even if ∇f (xk) = 0n holds, f (xk + pk) < f (xk) still holds, if
∇2f (xk) is not positive definite

◮ Progress from stationary points if at saddle points or local
maxima

◮ This method type is what many of MATLABs optimization
routines use by default.

TMA947 – Lecture 4 Unconstrained optimization algorithms 35 / 37



∗Trust region methods, IV *Advanced

◮ Update of trust region size based on a measure of similarity
between the model ψk and f : Let

ρk =
f (xk) − f (xk + pk)

f (xk) − ψk(pk)
=

actual reduction

predicted reduction

If ρk ≤ µ let xk+1 = xk (unsuccessful step), else
xk+1 = xk + pk (successful step)

Value of ∆k+1 depends on ρk :

µ <
ρk ≤ µ =⇒ ∆k+1 = 1

2
∆k ,

ρk < η =⇒ ∆k+1 = ∆k ,
ρk ≥ η =⇒ ∆k+1 = 2∆k
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∗Trust region methods, V *Advanced

Figure 6 illustrates the trust region subproblem

xk

x∗

Figure: Trust region and Newton step. The ellipses are level curves of the
quadratic model; the circle defines the trust region

TMA947 – Lecture 4 Unconstrained optimization algorithms 37 / 37


	Choice of methods
	Convergence
	Implicit functions
	*Advanced methods

