
Lecture 8

Linear programming

Kin Cheong Sou
Department of Mathematical Sciences
Chalmers University of Technology and Göteborg University
November 17, 2013

FormulationLinear programs (LP)

Consider a linear program (LP):

z∗ = infimum cT x ,

subject to x ∈ P ,

where P is a polyhedron (i.e., P = {x | Ax ≤ b}).

◮ A ∈ Rm×n is a given matrix, and b is a given vector,

◮ Inequalities interpreted entry-wise (i.e., (Ax)i ≤ (b)i , i = 1, . . . ,m),

◮ Minimize a linear function, over a polyhedron (linear constraints).

TMA947 – Lecture 8 Linear programming 2 / 43

FormulationLinear programs (LP)

z∗ = infimum cT x ,

subject to x ∈ P ,

P

−c

TMA947 – Lecture 8 Linear programming 3 / 43

FormulationLinear programs (LP)

z∗ = infimum cT x ,

subject to x ∈ P ,

P

−c

x∗

TMA947 – Lecture 8 Linear programming 4 / 43

FormulationPolyhedra in different forms

Inequality constraints Ax ≤ b (i.e., x ∈ P) might look restrictive,
but in fact more general:

◮ x ≥ 0n ⇐⇒ −I nx ≤ 0n,

◮ Ax ≥ b ⇐⇒ −Ax ≤ −b,

◮ Ax = b ⇐⇒ Ax ≤ b and − Ax ≤ −b.

In particular, we often consider polyhedron in standard form:

P = {x ∈ Rn | Ax = b, x ≥ 0n}.

P is a polyhedron, since P = {x ∈ Rn | Ãx ≤ b̃} for some Ã and b̃.

TMA947 – Lecture 8 Linear programming 5 / 43

Standard formStandard form linear programs

We say that a LP is written in standard form if

z∗ = infimum cT x ,

subject to Ax = b,

x ≥ 0.

◮ Meaning that P = {x ∈ Rn | Ax = b, x ≥ 0}.

◮ Only considering nonnegative variables and equality constraints.

◮ But standard form LP can in fact model all LP’s.

TMA947 – Lecture 8 Linear programming 6 / 43

Standard formRewriting to standard form

◮ For example, if P = {x ∈ Rn | Ax ≤ b, x ≥ 0}, we can add slack
variables, s , in order to write P on standard form.

Ax ≤ b,
x ≥ 0n

⇐⇒
Ax + Ims = b,

x ≥ 0n

s ≥ 0m
⇐⇒

[A Im] v = b,
v ≥ 0n+m

◮ If some variable xj is free of sign, substitute it everywhere by

xj = x+j − x−j

where x+j , x−j ≥ 0

◮ We also assume that b ≥ 0m. If some element of b is negative,
multiply that constraint by −1.

TMA947 – Lecture 8 Linear programming 7 / 43

Standard formRewriting to standard form, example

minimize −2x
subject to x ≤ 1

x ≥ 0

minimize −2x
subject to x + s = 1

x , s ≥ 0

x0 1

P

−c

x0 1

P
1

s
−c

Equivalent LP’s, but different polyhedra!

TMA947 – Lecture 8 Linear programming 8 / 43

Extreme pointsOptimality, a geometric motivation

Minimizing cT x over P =⇒ an optimal solution at a vertex of P
(the unique optimal solution over P minimizing cT x for some c):

P
−c

x∗

If P has a vertex and if LP has an optimal solution,
then at least one optimal solution is a vertex.

A point x is a vertex of P ⇐⇒ x is an extreme point of P .

TMA947 – Lecture 8 Linear programming 9 / 43

Extreme pointsExtreme points

An extreme point of a convex set S is a point that cannot be
written as a convex combination of two other points in S .

P

TMA947 – Lecture 8 Linear programming 10 / 43

Extreme pointsExtreme points solution candidates

We focus on extreme points when searching for optimal solutions, but

◮ When does polyhedron {x ∈ Rn | Ax ≤ b} have extreme points?

◮ Extreme points are geometrical objects... hard to put in algorithm

Work with LP in standard form (i.e., P = {x | Ax = b, x ≥ 0}) because

A nonempty polyhedron in standard form always has an extreme point

Instead of geometric objects such as extreme points, we work with their
algebraic equivalence – basic feasible solution in standard form LP.

◮ We will show, indeed, basic feasible solutions are extreme points
and vice versa.

TMA947 – Lecture 8 Linear programming 11 / 43

Extreme pointsBasic feasible solution (BFS)

Standard form polyhedron P={x | Ax=b, x≥0}, A∈Rm×n, rank(A)=m

A point x̄ is a basic feasible solution (BFS) if

◮ x̄ ≥ 0, and x̄ is a basic solution.

A point x̄ is a basic solution if

◮ Ax̄ = b, and

◮ the columns of A corresponding to non-zero components of x̄
are linearly independent (and extendable to a basis of Rm).

(Recall that: Ax̄ =
∑n

j=1 aj x̄j , where aj is column j of A.)

TMA947 – Lecture 8 Linear programming 12 / 43

Extreme pointsBasic and non-basic variables

For any BFS x̄ , we can reorder the variables according to

x̄ =

(
xB
xN

)

, A = (B,N), c =

(
cB
cN

)

,

such that

◮ B ∈ Rm×m, rank(B) = m.

◮ xN = 0n−m.

◮ xB = B−1b (as a consequence of Ax̄ = BxB + NxN = b).

We call

◮ xB the basic variables. If xB ≯ 0 then BFS x̄ is called degenerate.

◮ xN the non-basic variables.

◮ B the basis matrix. Each BFS is associated with at least one basis.

TMA947 – Lecture 8 Linear programming 13 / 43

Extreme pointsBFS = extreme point

Theorem
Assume rank(A) = m. A point x̄ is an extreme point of the set
{x ∈ Rn | Ax = b, x ≥ 0} if and only if it is a basic feasible solution.

Proof: We show it on blackboard, or consult Theorem 8.7 in text.

Thus,

◮ “vertex = extreme point = basic feasible solution (BFS)”.

◮ So, we focus optimal solution search in BFS’s (extreme points).
Now let’s formally show that the restriction is justified!

TMA947 – Lecture 8 Linear programming 14 / 43

Extreme pointsRepresentation theorem, standard form

◮ P = {x ∈ Rn | Ax = b, x ≥ 0} (i.e., polyhedron in standard form)

◮ V = {v1, . . . , vk} be the extreme points of P

◮ C = {x ∈ Rn | Ax = 0, x ≥ 0}

◮ D = {d1, . . . , d r} be the extreme directions of C

Representation Theorem (standard form polyhedron)
Every point x ∈ P is the sum of a convex combination of points in V

and a non-negative linear combination of points in D, i.e.

x =

k∑

i=1

αiv
i +

r∑

j=1

βjd
j ,

where α1, . . . , αk ≥ 0,
∑k

i=1 αi = 1 and β1, . . . , βr ≥ 0

Proof: See text Theorem 8.9 (In the proof, Th. 8.9 should be Th. 3.26).

TMA947 – Lecture 8 Linear programming 15 / 43

Extreme pointsIllustration of representation theorem

Representation theorem provides “inner representation” of polyhedron.

◮ (a) x is convex combo. of v2 and y , and y is convex combo. of v1

and v3 =⇒ x is convex combo. of v1, v2 and v3.

◮ (b) x is convex combo. of v1 and v2, plus β2d
2.

v1

v2

v3

v4

x

y

(a) Bounded case

v1

v2

d1

d2

x
y

(b) Unbounded case

TMA947 – Lecture 8 Linear programming 16 / 43

Extreme pointsOptimality of extreme points

Now we can present the theorem regarding optimality of extreme points

Theorem
Consider the standard form LP problem

z∗ = infimum z = cT x ,

subject to x ∈ P ,

This problem has a finite optimal solution if and only if P is
nonempty and z is bounded on P , meaning that cTd j ≥ 0 for all
d j ∈ D

Moreover, if the problem has a finite optimal solution, then there
exists an optimal among the extreme points.

Proof: We show it on blackboard, or see Theorem 8.10 in text.

TMA947 – Lecture 8 Linear programming 17 / 43

The simplex algorithmSummary so far

So far, we have seen

◮ All linear programs can be written in standard form.

◮ Vertex = extreme point = basic feasible solution (BFS).

◮ If a standard form LP has finite optimal solution, then it has an
optimal BFS.

We finally have rationale to search only the BFS’s to solve a standard
form LP. This is the main characteristic of the simplex algorithm.

TMA947 – Lecture 8 Linear programming 18 / 43

The simplex algorithmGraphic illustration

Start at a BFS, in this case (0, 0)T .

P

−c = (1, 1)T

x1

x2
x1 − 2x2 = −1

3x1 + 2x2 = 9
(0, 0)T

TMA947 – Lecture 8 Linear programming 19 / 43

The simplex algorithmGraphic illustration

Find a feasible descent direction towards an adjacent BFS.

P

−c = (1, 1)T

x1

x2
x1 − 2x2 = −1

3x1 + 2x2 = 9
(0, 0)T

TMA947 – Lecture 8 Linear programming 20 / 43

The simplex algorithmGraphic illustration

Move along the search direction until a new BFS is found.

P

−c = (1, 1)T

x1

x2
x1 − 2x2 = −1

3x1 + 2x2 = 9

(3, 0)T

TMA947 – Lecture 8 Linear programming 21 / 43

The simplex algorithmGraphic illustration

Find a new feasible descent direction at the current BFS.

P

−c = (1, 1)T

x1

x2
x1 − 2x2 = −1

3x1 + 2x2 = 9

(3, 0)T

TMA947 – Lecture 8 Linear programming 22 / 43

The simplex algorithmGraphic illustration

Move along the search direction.

P

−c = (1, 1)T

x1

x2
x1 − 2x2 = −1

3x1 + 2x2 = 9

(2, 3/2)T

TMA947 – Lecture 8 Linear programming 23 / 43

The simplex algorithmGraphic illustration

If no feasible descent directions exist, the current BFS is declared optimal.

P

−c = (1, 1)T

x1

x2
x1 − 2x2 = −1

3x1 + 2x2 = 9

x∗ = (2, 3/2)T

TMA947 – Lecture 8 Linear programming 24 / 43

The simplex algorithmDeveloping the simplex algorithm

To develop the simplex algorithm, we translate geometric intuition into
algebraic manipulations. We need to...

◮ Find a feasible descent direction at any BFS.

◮ Determine the step size to move along a feasible descent direction.

◮ Certify optimality at an optimal BFS.

TMA947 – Lecture 8 Linear programming 25 / 43

The simplex algorithmBasic feasible solution, recap

A BFS x̄ satisfies Ax̄ = b, x̄ ≥ 0, can reorder the variables such that

x̄ =

(
xB
xN

)

, A = (B,N), c =

(
cB
cN

)

,

such that

◮ Basis matrix B ∈ Rm×m, rank(B) = m.

◮ Non-basic variables xN = 0n−m.

◮ Basic variables xB ≥ 0, xB = B−1b (as a consequence of Ax̄ = b).

We call a BFS x̄ degenerate if xB ≯ 0. x̄ non-degenerate if xB > 0.

TMA947 – Lecture 8 Linear programming 26 / 43

The simplex algorithmBasic feasible solution, example

Consider standard form LP

minimize 2x1 + 0 · x2 + 0 · x3 + 0 · x4

subject to x1 + x2 + x3 + x4 = 2

2x1 + 0 · x2 + 3x3 + 4x4 = 2

x1, x2, x3, x4 ≥ 0

An example BFS has basic variables xB = (x1, x2) and nonbasic variables
xN = (x3, x4). A = (B,N) with

B =

(
1 1
2 0

)

, N =

(
1 1
3 4

)

, xB = B−1b =

(
1
1

)

, xN =

(
0
0

)

TMA947 – Lecture 8 Linear programming 27 / 43

The simplex algorithmSearch direction

◮ At BFS x̄ =

(
xB
xN

)

with A = (B,N); iterate update x̄ ← x̄ + θd for

step-size θ ≥ 0 with search direction d =

(
dB
dN

)

.

◮ Update only one non-basic variable: Let dN = ej , for
j = 1, . . . , n−m (ej is the j-th unit vector in Rn−m).

◮ dB is not arbitrary – it is decided by feasibility of x̄ + θd :

◮ A(x̄ + θd) = b =⇒ Ad = 0 =⇒ dB = −B−1Nj

◮ search directions become dj =

(
−B−1Nj

ej

)

, j = 1, . . . , n −m

e.g., B =

(
1 1
2 0

)

, N =

(
1 1
3 4

)

, d1 =







−3/2
1/2
1
0







, d2 =







−2
1
0
1







TMA947 – Lecture 8 Linear programming 28 / 43

The simplex algorithmSearch direction, in picture

Consider feasible search directions changing only one non-basic variable.

That is, dj =

(
−B−1Nj

ej

)

, j = 1, . . . , n −m.

BFS

infeasible

direction

more than one non basic

variable changing

d
1

d
2

◮ We will show dj indeed goes along the edge of polyhedron.

◮ Question: Is direction dj going to decrease the objective value?

TMA947 – Lecture 8 Linear programming 29 / 43

The simplex algorithmReduced costs

◮ From x̄ to x̄ + θdj , objective value change is

cT (x̄ + θdj − x̄) = θ · cTdj = θ · (cTB , cTN)

(
−B−1Nj

ej

)

:= θ · (c̃N)j

(c̃N)j := (cTN − cTB B−1N)
j
is the reduced cost for non-basic var (xN)j

c̃N := (cTN − cTB B−1N)
T
are reduced costs for non-basic variables

◮ If (c̃N)j ≥ 0, dj does not decrease objective value.

◮ If (c̃N)j < 0, consider update x̄ + θdj with θ as large as possible
since objective value change is θ · (c̃N)j < 0 as long as θ > 0.

Question: What is the maximum value of θ that we can choose?

TMA947 – Lecture 8 Linear programming 30 / 43

The simplex algorithmReduced costs, in picture

To see which directions dj are profitable, we form reduced costs (c̃N)j
which are inner products of cost vector c and directions dj .

BFS
d
1

d
2

-c

Question: Iterate moves along dj with (c̃N)j < 0, but how far?

TMA947 – Lecture 8 Linear programming 31 / 43

The simplex algorithmUpdate along search direction

At BFS x̄ = (xTB , 0)T , negative reduced cost for (xN)j (i.e., (c̃N)j < 0).

◮ Iterate update

x̄ + θdj =

(
xB
0

)

+ θ

(
dB
dN

)

=

(
xB − θB−1Nj

θej

)

, θ ≥ 0

◮ If B−1Nj ≤ 0 then x̄ + θdj ≥ 0 for all θ ≥ 0. Let θ →∞, and we
conclude that objective value is unbounded from below.

◮ If B−1Nj � 0 some entry of xB − θB−1Nj becomes 0 as θ increases.

Thus, θ ≤ θ∗ = min
k:(B−1Nj)k>0

(xB)k
(B−1Nj)k

, and let i be s.t. θ∗ = (xB)i
(B−1Nj)i

.

◮ Thus, we arrive at new iterate x̄ + θ∗dj with (xB − θ∗B−1Nj)i = 0.
Note: θ∗ can be zero if x̄ is degenerate!

TMA947 – Lecture 8 Linear programming 32 / 43

The simplex algorithmExample, continued

BFS x̄ = (1, 1, 0, 0), B =

(
1 1
2 0

)

, N =

(
1 1
3 4

)

, cB =

(
2
0

)

, cN =

(
0
0

)

Reduced costs:

c̃TN = (cTN − cTB B−1N) = −
(
2 0

)
(
1 1
2 0

)
−1(

1 1
3 4

)

= (−3,−4)

Both dir’s d1 = (−3/2, 1/2, 1, 0) and d2 = (−2, 1, 0, 1) are profitable.

For d1, B
−1N1 =

(
3/2
−1/2

)

, max step-size θ∗ = (xB)1
(B−1N1)1

= 1
3/2 = 2/3.

Updated iterate: x̄ + θ∗d1 =







1
1
0
0







+ (2/3)







−3/2
1/2
1
0







=







0
4/3
2/3
0







TMA947 – Lecture 8 Linear programming 33 / 43

The simplex algorithmIterate update, in picture

Updating x̄ + θdj either tells us objective value is unbounded (left
picture), or a possibly new point x̄ + θ∗dj is reached (right picture).

BFS d1,
BFS *d

1 new BFS?

Question: What is x̄ + θ∗dj? Is it a BFS? How is it related to x̄?

TMA947 – Lecture 8 Linear programming 34 / 43

The simplex algorithmChange of basis

From x̄ to x̄ + θ∗dj , the i-th basic variable (xB)i becomes zero, whereas
j-th non-basic variable (xN)j (i.e., the (m + j)-th variable) becomes θ∗:

x̄ =









...
(xB)i
...
0









x̄ + θ∗dj =









...
0
...

θ∗ej









◮ Can show the columns a1, . . . , ai−1, am+j , ai+1, . . . , am are linearly
independent (forming a new basis), and x̄ + θ∗dj is indeed a BFS.

◮ We say (xB)i leaves the basis to become non-basic variable,
whereas (xN)j enters the basis to become basic variable.

◮ x̄ and x̄ + θ∗dj are in fact adjacent BFS’s (see text for formal
definition of adjacency).

TMA947 – Lecture 8 Linear programming 35 / 43

The simplex algorithmAdjacent BFS’s

In the figure, a is adjacent to b and d , and b is adjacent to a and c

P

a

b

c
d

Search direction dj is along the edge of polyhedron, from a BFS to
a BFS.

TMA947 – Lecture 8 Linear programming 36 / 43

The simplex algorithmAdjacency

Theorem
Two BFS’s are adjacent if and only if their sets of basic variables
differs in exactly one place.

Remember, (xB)i leaves the basis whereas (xN)j enters the basis during
the change from x̄ to x̄ + θ∗dj .

◮ In principle, the simplex algorithm starts with a BFS corresponding
to a matrix B and then iteratively changes one of the columns in B

until optimality occurs.

◮ Basis matrix B is modified at every iteration, but BFS might stay
because of degeneracy (a degenerate BFS can be associated with
more than one basis)!

TMA947 – Lecture 8 Linear programming 37 / 43

The simplex algorithmTo recap so far

We have seen so far...

◮ At a BFS with A = (B,N), compute search directions

dj =

(
−B−1Nj

ej

)

, j = 1, . . . , n−m.

◮ Evaluate the reduced costs c̃N := (cTN − cTB B−1N)T to see which
directions are profitable (which non-basic variable to enter basis).

◮ What happens when we update x̄ + θdj for some dj with (c̃N)j < 0
– either objective value is unbounded or an adjacent BFS is reached.

But...

◮ What if c̃N ≥ 0, as all our search directions are not profitable?

TMA947 – Lecture 8 Linear programming 38 / 43

The simplex algorithmOptimality criterion

If at a BFS with basis B, all reduced costs are nonnegative (c̃N ≥ 0n−m),
then it is optimal and the simplex algorithm terminates:

Theorem
Let x̄ be a BFS associated with basis matrix B, and let

c̃N = (cTN − cTB B−1N)
T
be the corresponding vector of reduced

costs for the non-basic variables. If c̃N ≥ 0, then x̄ is optimal.

Proof: All feasible directions d at x̄ = (xTB , xTN)
T
are of the form

d =

(
−B−1N dN

dN

)

=⇒ cTd = (cTN − cTB B−1N)
︸ ︷︷ ︸

c̃T
N

dN

c̃N ≥ 0 and dN ≥ 0 (i.e., feasible direction) concludes the statement.

TMA947 – Lecture 8 Linear programming 39 / 43

The simplex algorithmThe conceptual simplex algorithm

1. Assume we have an initial BFS x̄ = (xTB , xTN)
T
with A = (B,N).

2. Compute reduced costs c̃N = (cTN − cTB B−1N)T .

◮ If c̃N ≥ 0, then current BFS is optimal, terminate.
◮ If c̃N � 0, choose some non-basic var index j s.t. (c̃N)j < 0.

3. Compute B−1Nj .

◮ If B−1Nj ≤ 0, then objective value is −∞, terminate.

◮ If B−1Nj � 0, compute θ∗ = min
k:(B−1Nj)k>0

(xB)k
(B−1Nj)k

.

4. Update x̄ ← x̄ + θ∗dj . Let i be s.t. θ∗ = (xB)i
(B−1Nj)i

. Update basis

B ←



a1 · · · ai−1 am+j ai+1 · · · am



 .

Reorder variables s.t. the first m variables are basic in x̄ + θ∗dj .

TMA947 – Lecture 8 Linear programming 40 / 43

The simplex algorithmFinite termination

Q: Will the simplex algorithm terminate in finite number of steps?
A: Yes, if all BFS’s are non-degenerate.

Theorem
If feasible set is nonempty and every BFS is non-degenerate,
then the simplex algorithm terminates in finite number of
iterations. At termination, two possibilities are allowed:
(a) an optimal basis B found with the associated optimal BFS.
(b) a direction d found s.t. Ad = 0, d ≥ 0 and cTd < 0, thus
optimal objective value is −∞.

The simplex algorithm can be modified to finitely terminate even
with degenerate BFS (e.g., Bland’s rule, see text)!

TMA947 – Lecture 8 Linear programming 41 / 43

The simplex algorithmComputational complexity

◮ The simplex algorithm works very well in practice.

◮ The simplex algorithm can, in the worst case, visits all

(
n

m

)

BFS’s

before termination – worst-case computation effort is exponential.

◮ Polynomial-time algorithms are available (e.g., ellipsoid algorithm,
interior point algorithms). See coming lectures.

TMA947 – Lecture 8 Linear programming 42 / 43

The simplex algorithmHow do we obtain an initial BFS?

We create a so called Phase-I problem by introducing artificial
variables ai in every row.

w∗ = minimize w = (1m)Ta,

subject to Ax + Ima = b,

x ≥ 0n,

a ≥ 0m.

◮ Why is this easier? Because a = b, x = 0n is an initial BFS.

◮ w∗ = 0 =⇒ Optimal solution a∗ = 0m

x∗ BFS in the original problem

◮ w∗ > 0 =⇒ There is no BFS to the original problem

The original problem is infeasible

TMA947 – Lecture 8 Linear programming 43 / 43

	Formulation
	Standard form
	Extreme points
	The simplex algorithm

