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Linear programs (LP) Formulation

Consider a linear program (LP):

z* =infimum c¢'x,

subjectto  x € P,
where P is a polyhedron (i.e., P = {x | Ax < b}).
» A€ R™*"is a given matrix, and b is a given vector,

> Inequalities interpreted entry-wise (i.e., (Ax); < (b);, i=1,...,m),

> Minimize a linear function, over a polyhedron (linear constraints).
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Polyhedra in different forms Formulation

Inequality constraints Ax < b (i.e., x € P) might look restrictive,
but in fact more general:

» x> 0" < —["x<0",
» Ax > b <— —Ax < —b,
» Ax=b «<— Ax<b and — Ax < —b.
In particular, we often consider polyhedron in standard form:
P={xeR"|Ax=0b, x> 0"}.

P is a polyhedron, since P = {x € R" | Ax < b} for some A and b.
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Standard form linear programs Standard form

We say that a LP is written in standard form if

T

z* =infimum ¢’ x,
subject to Ax = b,
x> 0.

> Meaning that P = {x e R" | Ax = b, x > 0}.
» Only considering nonnegative variables and equality constraints.

» But standard form LP can in fact model all LP's.
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Rewriting to standard form Standard form

> For example, if P = {x € R"” | Ax < b, x > 0}, we can add slack
variables, s, in order to write P on standard form.

Ax < b, Ax+17s ig’n [AI™v = b,
x >0 X = m A v o >0mtm
s >0

> If some variable x; is free of sign, substitute it everywhere by

= xT — x~
X =X =

where xj+,xj_ >0

» We also assume that b > 0. If some element of b is negative,
multiply that constraint by —1.
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Rewriting to standard form, example Standard form

minimize —2x minimize —2x
subjectto x <1 subjectto x+s=1
x>0 x,s >0

|
s}
~

Equivalent LP’s, but different polyhedral!
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Optimality, a geometric motivation Extreme points

Minimizing ¢"x over P = an optimal solution at a vertex of P
(the unique optimal solution over P minimizing c T x for some c):

If P has a vertex and if LP has an optimal solution,
then at least one optimal solution is a vertex.

A point x is a vertex of P <= x is an extreme point of P.
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Extreme pOI nts Extreme points

An extreme point of a convex set S is a point that cannot be
written as a convex combination of two other points in S.
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Extreme points solution candidates Extreme points

We focus on extreme points when searching for optimal solutions, but
> When does polyhedron {x € R" | Ax < b} have extreme points?

» Extreme points are geometrical objects... hard to put in algorithm

Work with LP in standard form (i.e., P = {x | Ax = b, x > 0}) because

A nonempty polyhedron in standard form always has an extreme point

Instead of geometric objects such as extreme points, we work with their
algebraic equivalence — basic feasible solution in standard form LP.

» We will show, indeed, basic feasible solutions are extreme points
and vice versa.
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Basic feasible solution (BFS) Extreme points

Standard form polyhedron P={x | Ax=b,x>0}, AcR™*", rank(A)=m

A point X is a basic feasible solution (BFS) if

» X >0, and X is a basic solution.

A point X is a basic solution if
» Ax = b, and
» the columns of A corresponding to non-zero components of x
are linearly independent (and extendable to a basis of R™).

(Recall that: Ax = 37, a;X;, where a; is column j of A.)
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Basic and non-basic variables Extreme points

For any BFS X, we can reorder the variables according to
%= (XB>, A=(B,N), c= (CB>,
XN cn
such that

> B e R™™ rank(B) = m.
> xy=0""".
> xg = B71h (as a consequence of AX = Bxg + Nxy = b).
We call
> xg the basic variables. If xg # 0 then BFS X is called degenerate.
» xp the non-basic variables.

» B the basis matrix. Each BFS is associated with at least one basis.
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BFS = extreme point Extreme points

Theorem
Assume rank(A) = m. A point X is an extreme point of the set
{x € R"| Ax = b, x > 0} if and only if it is a basic feasible solution.

Proof: We show it on blackboard, or consult Theorem 8.7 in text.

Thus,

> ‘“vertex = extreme point = basic feasible solution (BFS)

> So, we focus optimal solution search in BFS's (extreme points).
Now let's formally show that the restriction is justified!
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Representation theorem, standard form  Extreme points

P={xeR"| Ax=b, x > 0} (i.e., polyhedron in standard form)

v

» V ={vl,..., vk} be the extreme points of P
» C={xeR"|Ax=0, x >0}
» D={d",...,d"} be the extreme directions of C

Representation Theorem (standard form polyhedron)
Every point x € P is the sum of a convex combination of points in V
and a non-negative linear combination of points in D, i.e.

k r
X = Za;vi—FZﬁde,
i=1 j=1

where ay,...,ax >0, Zf;laizland Bis.sBr 20

Proof: See text Theorem 8.9 (In the proof, Th. 8.9 should be Th. 3.26).
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[llustration of representation theorem Extreme points

Representation theorem provides “inner representation” of polyhedron.

» (a) x is convex combo. of v? and y, and y is convex combo. of v!
and v3 = x is convex combo. of v!, v2 and v3.

» (b) x is convex combo. of v! and v2, plus 3»d?.

(a) Bounded case (b) Unbounded case

TMAO947 — Lecture 8 Linear programming



Optimality of extreme points Extreme points

Now we can present the theorem regarding optimality of extreme points

Theorem
Consider the standard form LP problem

Z* =infimum z=c"x,

subject to x € P,

This problem has a finite optimal solution if and only if P is
nonempty and z is bounded on P, meaning that ¢’ ¢’ > 0 for all
d €D

Moreover, if the problem has a finite optimal solution, then there
exists an optimal among the extreme points.

Proof: We show it on blackboard, or see Theorem 8.10 in text.
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Summary so far The simplex algorithm

So far, we have seen

» All linear programs can be written in standard form.
> Vertex = extreme point = basic feasible solution (BFS).

» If a standard form LP has finite optimal solution, then it has an
optimal BFS.

We finally have rationale to search only the BFS's to solve a standard
form LP. This is the main characteristic of the simplex algorithm.
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Gra phIC illustration The simplex algorithm

Start at a BFS, in this case (0,0)7.

X2

X1—2X2:—1

e

_, (070)T

x1
\ 3x, 4 2% = 9
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Gra phIC illustration The simplex algorithm

Find a feasible descent direction towards an adjacent BFS.

X2

X1—2X2:—1

e

X1
>
oo \
3x1+2x% =9
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Gra phIC illustration The simplex algorithm

Move along the search direction until a new BFS is found.

X1—2X2:—1

(37 O)T X1

3x1 +2x =9
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Gra phIC illustration The simplex algorithm

Find a new feasible descent direction at the current BFS.

X172X2:71

(3,0)T X1

3x1+2x% =9
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Gra phIC illustration The simplex algorithm

Move along the search direction.

X2

X1—2X2:—1

x1
\ 3x, 4 2% = 9
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Gra phIC illustration The simplex algorithm

If no feasible descent directions exist, the current BFS is declared optimal.

X2

X1—2X2:—1

x* = (2,3/2)T

x1
\ 3x, 4 2% = 9
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Developing the simplex algorithm  The simplex algorithm

To develop the simplex algorithm, we translate geometric intuition into
algebraic manipulations. We need to...

» Find a feasible descent direction at any BFS.
» Determine the step size to move along a feasible descent direction.

» Certify optimality at an optimal BFS.

TMAO947 — Lecture 8 Linear programming



Basic feasible solution, recap The simplex algorithm

A BFS X satisfies Ax = b, X > 0, can reorder the variables such that
%= (XB>, A=(B,N), c= (CB>,
XN CcN

» Basis matrix B € R™*™, rank(B) = m.

such that

» Non-basic variables xy = 0",

» Basic variables xg > 0, xg = B~!b (as a consequence of AX = b).

We call a BFS x degenerate if xg # 0. X non-degenerate if xg > 0.
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Basic feasible solution, example The simplex algorithm

Consider standard form LP

minimize 2x; + 0-x + 0-x3 + 0-xq
subjectto  x3 + X0 + x3 + Xg = 2
2x1 + 0-x + 3x3 + 4dx, =
X1, X, x3, X4 >0

An example BFS has basic variables xg = (x1, x2) and nonbasic variables
xn = (x3,x1). A= (B, N) with

(11 (11 a1, (1 /(0
(Y (Y e () ()
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Search direction The simplex algorithm

» At BFS x = <§B> with A = (B, N); iterate update X < X + 6d for
N

step-size § > 0 with search direction d = (ZB).
N

» Update only one non-basic variable: Let dy = ¢;, for
Jj=1,...,n—m (e is the j-th unit vector in R"~").

» dpg is not arbitrary — it is decided by feasibility of x + 6d:
» AX+60d)=b = Ad=0 = dg=—-B7!N;

. . —B_le .
» search directions become d; = . ,Jj=1...,n—m
j

~3/2 —2

(11 (11 12 B
e.g.,B—<2 0), N—<3 4>, dl— 1 s dz—
0

=N
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Search direction, in picture The simplex algorithm

Consider feasible search directions changing only one non-basic variable.

_R-1ypn.
Thatis,dj:< Be_ NJ), j=1,....,n—m.
]

infeasible
direction BFS

> We will show d; indeed goes along the edge of polyhedron.

> Question: Is direction d; going to decrease the objective value?
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Reduced costs

The simplex algorithm

» From X to X 4 0d;, objective value change is

T(s = T r 7 (—B7N
c (x+0dj—x)=0-c'dj=0-(cg,cy) e:
J

) =0 (&),

(&w); := (cy — cg BT'N); is the reduced cost for non-basic var (xy);

T o
(cfy — cAB7IN)" are reduced costs for non-basic variables

> If (&v);j > 0, d; does not decrease objective value.

> If (&v)j < 0, consider update X + 6d; with 6 as large as possible
since objective value change is 6 - (¢v); < 0 as long as 6 > 0.

Question: What is the maximum value of @ that we can choose?
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Reduced costs, in picture The simplex algorithm

To see which directions dj are profitable, we form reduced costs (&y);
which are inner products of cost vector ¢ and directions dj.

Question: Iterate moves along d; with (&y); < 0, but how far?
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Update along search direction The simplex algorithm

At BFS 5 = (x£,0)", negative reduced cost for (xy); (i-e., (év); < 0).
> lterate update
- . (XB ds o XB—QB_le
Lo () o (%) = (5 o

> If B7'N; <0 then X+ 6d; >0 for all § > 0. Let § — oo, and we
conclude that objective value is unbounded from below.

> If B1N; £ 0 some entry of xg — §B~ N, becomes 0 as 6 increases.

* H (x8) H * (xB)i
Thus, 0 < 0" = k:(Bm;\?)po BNy and let i be st. 0% = =ty

> Thus, we arrive at new iterate X + 6*d; with (xg — 0*B~*N;); = 0.
Note: #* can be zero if X is degenerate!
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Example, continued The simplex algorithm

BFS x =(1,1,0,0), B = (; é) N = (é z11>'CB: <(2)> N= <8>

Reduced costs: )
T T T o1 1 1\ /1 1
Cy = (CN —Cg B N) = - (2 0) 2 0 3 4 = (_37 _4)

Both dir's dy = (—3/2,1/2,1,0) and d» = (—2,1,0, 1) are profitable.

3/2 , )
For dy, BN, = <_1//2> max step-size §* = (B(*B/)Vll)l = ﬁ =2/3.
1 ~3/2 0
P B 12 | |4/3
Updated iterate: x + 6*d; = 0 +(2/3) 1 =23
0 0 0
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Iterate update, in picture The simplex algorithm

Updating X + 0d; either tells us objective value is unbounded (left
picture), or a possibly new point X + 6*d; is reached (right picture).

3
BFS 0d, 6> BFS 0%d, new BFS?

Question: What is X + 6*d;? Is it a BFS? How is it related to x?
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Change of basis The simplex algorithm

From X to X + 6*d;, the i-th basic variable (xg); becomes zero, whereas
J-th non-basic variable (xy); (i.e., the (m + j)-th variable) becomes 6*:

- XB)i _ 0
X = (xg); X+0"d =
* .
0 0% e
> Can show the columns ay,...,a;—1, am+j, di+1, - - -, am are linearly

independent (forming a new basis), and X + 6*d; is indeed a BFS.

> We say (xg); leaves the basis to become non-basic variable,
whereas (xy); enters the basis to become basic variable.

> X and X 4 0*d; are in fact adjacent BFS's (see text for formal
definition of adjacency).
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Adjacent BFS's The simplex algorithm

In the figure, a is adjacent to b and d, and b is adjacent to a and ¢

Search direction d; is along the edge of polyhedron, from a BFS to
a BFS.
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Adjacency The simplex algorithm

Theorem
Two BFS's are adjacent if and only if their sets of basic variables
differs in exactly one place.

Remember, (xg); leaves the basis whereas (xy); enters the basis during
the change from X to X + 6*d;.

» In principle, the simplex algorithm starts with a BFS corresponding
to a matrix B and then iteratively changes one of the columns in B
until optimality occurs.

» Basis matrix B is modified at every iteration, but BFS might stay
because of degeneracy (a degenerate BFS can be associated with
more than one basis)!
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To recap so far The simplex algorithm

We have seen so far...

> At a BFS with A= (B, N), compute search directions

_B-1p.
dj:< B NJ),jzl,...,n—m.
&

» Evaluate the reduced costs &y := (¢, — cZ B71N)T to see which

directions are profitable (which non-basic variable to enter basis).

> What happens when we update X + 0d; for some d; with (éy); < 0
— either objective value is unbounded or an adjacent BFS is reached.

But...

» What if &y > 0, as all our search directions are not profitable?
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Optimality criterion The simplex algorithm

If at a BFS with basis B, all reduced costs are nonnegative (&y > 0"~™),
then it is optimal and the simplex algorithm terminates:

Theorem

Let X be a BFS associated with basis matrix B, and let

Ev = (cj —chB~ 1N) be the corresponding vector of reduced
costs for the non-basic variables. If &y > 0, then X is optimal.

Proof: All feasible directions d at X = (xg,x7)" are of the form

_R-1
d_< BdNNd’V> — c’d=(c, —cEB N)dn
— —————

N

év >0 and dy > 0 (i.e., feasible direction) concludes the statement.
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The conceptual simplex algorithm  The simplex algorithm

1. Assume we have an initial BFS x = (xBT,x,DT with A= (B, N).
2. Compute reduced costs &y = (¢, — cg B7IN)T.

» If &y > 0, then current BFS is optimal, terminate.

» If & # 0, choose some non-basic var index j s.t. (&v); < 0.
3. Compute B~N,.

» If B71N; <0, then objective value is —oo, terminate.

i v _ ; (xg)
» If B7IN; £ 0, compute 6* = k:(B[T};\?)k>O (B*?AZ)V

4. Update X - X+ 0*d;. Let i be s.t. 0" = (B(f‘f,)\}j)l_. Update basis

B« {a - a1 amy; ait1 0 am

Reorder variables s.t. the first m variables are basic in X 4 6*d;.
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Finite termination The simplex algorithm

Q: Will the simplex algorithm terminate in finite number of steps?
A: Yes, if all BFS's are non-degenerate.

Theorem

If feasible set is nonempty and every BFS is non-degenerate,
then the simplex algorithm terminates in finite number of
iterations. At termination, two possibilities are allowed:

(a) an optimal basis B found with the associated optimal BFS.
(b) a direction d found s.t. Ad =0, d >0and c’d <0, thus
optimal objective value is —o0.

The simplex algorithm can be modified to finitely terminate even
with degenerate BFS (e.g., Bland's rule, see text)!
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Computational complexity The simplex algorithm

> The simplex algorithm works very well in practice.

. . . . n )
» The simplex algorithm can, in the worst case, visits all m BFS's
before termination — worst-case computation effort is exponential.

> Polynomial-time algorithms are available (e.g., ellipsoid algorithm,
interior point algorithms). See coming lectures.
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How do we obtain an initial BFS?  The simplex algorithm

We create a so called Phase-l problem by introducing artificial
variables a; in every row.
w* = minimize w = (1™)7 a,
subject to Ax+ /Ma= b,
X >0",
a>0".

> Why is this easier? Because a = b, x = 0" is an initial BFS.
» w* =0 = Optimal solution a* = 0"
x* BFS in the original problem

» w* >0 = There is no BFS to the original problem

The original problem is infeasible
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