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Question 1

(the simplex method)

a)

b)

We first rewrite the problem on standard form. We multiply the objective
by —1 to obtain a minimization problem and introduce the variables x5
and x5 such that x5 = 25 — x5, and slack variables s; and s.

minimize z= -3z, -5 4T,

subject to 31 +2x5 —2x, —s; =
2ry 4wy -1, +sy =2
Ty, Ty, Ty, S, Sy >0.

In phase I the artificial variable a is added in the first constraint, s, is used
as the second basic variable. We obtain the problem

minimize w = a

subject to 3v1 +2xf -2z, —s +a =1
2ry 4wy -1y +59 =2
1, x;r, Ty, S1, So a > 0.

The starting BFS is thus (a, s2)T. Calculating the vector of reduced costs
for the non-basic variables z1, 23, x5 and s yields (—3,—2,2,1)T. Thus =,
enters the basis. The minimum ratio test shows that a should leave the
basis. We thus have a BFS without artificial variables, and may proceed
with pha se II.

We have the basic variables (x1,s2). The vector of reduced costs for the
non-basic variables z3, x5 and s; is (1, —1,—1). We may choose either x5
or s; to enter the basis. We take z; . The minimum ratio test implies that s
must leave the basis. We now have z1, x5 as basic variables. The vector of
reduced costs for the non-basic variables x5 , s1, s is (0, 1,3)T. The current
point is optimal. We thus have (xq, 75,23, 51, 82) = (3,4,0,0,0), or in the
original variables, (x1,z5) = (3, —4).

The reduced costs are not strictly positive; we can thus not conclude that
there is a unique optimal solution. We may introduce x3 into the basis; the
minimum ratio test can however not provide a variable that leaves the basis
(all entries are negative in B~'N;). This is because we may let 23 = «,
ry = 44 « for all @ > 0 and obtain an optimal solution in the problem
written on standard form. All these solutions however correspond to the
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same solution (xy,z2) = (3, —4) in the original problem. The solution in
the original problem is unique (which can also be realized by checking that
it is the only KKT point).

Question 2

(optimality conditions)

(2p) a) Thanks to the linearity of the constraints, the problem satisfies the Abadie
constraint qualification and the Karush—Kuhn—Tucker conditions are nec-
essary for the local optimality of *. As the problem is convex the KKT
conditions are also sufficient for * to be a global optimum.

Introducing the multiplier A for the equality constraint and p; > 0 for
the sign condition on z;, we obtain the Lagrange function L(z,pu,A) :=
=0\ 4+ 5 (f5(25) — [+ pylas). Setting the partial derivatives of L with
respect to each z; to zero yields

fi(x) = N+ 3, j=1,...,n. (1)

Further, the complementarity conditions state that

Together with the dual feasibility conditions that pj > 0 for all j and that
a* fulfills the primal feasibility conditions that * > 0" and -7, ] = b,
we have stated all the KK'T conditions.

(1p) b) Suppose that the triple (x*, u*, A*) € R™ x R x R" is a Karush-Kuhn—
Tucker point. For a j with 7 > 0 we must therefore have from (1) that
f'(z7) = A*. Suppose instead that x7 = 0. Then, since p; > 0 must hold,
we obtain from (1) that f'(x}) = \* + p5 > \*, and we are done.

Question 3

(modeling)

(1p) a) Introduce the variable z;; for the amount of money person i gives to person
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7. The model is to
n n
minimize Z Z Zij,
n
j=1 j=1 j=1
b) Introduce the variables y;;, where

)1 if person ¢ gives any money to person j
Y971 0 otherwise.

Then the model is to

n n
minimize Z Z Tij,

n ZZl]:nl 1
subject to di—i-inj iji:_zdjv 1=1,...,n,
j=1 j=1 =1
n
Zylﬂzl’ 7;:1,...,71,
j=1
xijSMyija izl,...,n,jzl,...,n,
[EUZO, izl,...,n,jzl,...,n,

yije{O,l}, izl,...,n,jzl,...,n,

where M is some large number. M = 3" , d; is large enough.

(3p) Question 4

(the Frank-Wolfe method)

Iteration 1: xo = (0,0)T is feasible and f(xg) = 0, so we get: [LBD,UBD] =
(—00,0]. Vf(xg) = (=3,—6)" and the solution to the LP min, V f(x) Ty is
obtained at y, = (2,2)T. Smce f is convex, g(y) := f(xo) + Vf(x0)' (y — xo) <
f(y) for all y € R)?f The LP problem is a relaxation of the original problem,
hence an optimal objective value gives a lower bound. The optimal objective value
of the LP is f(xo) + Vf(zo) (yy — xo) = 0 + (=3,—-6)T(2,2) = —18. Hence,
[LBD,UBD] = [-18,0]. The search direction is p, = y, — o = (2,2)*. Line
search: ¢(a) := f(xo + apy) = f((2a,2a)T) = 1202 — 18a. ¢/(a) = 24a — 18 =
0= «a=3/4<1. Hence, z, = (3/2,3/2)".

Iteration 2: f(xy) = —27/4, so [LBD,UBD| = [-18,-27/4]. Vf(x1) =
(3/2,—3/2)T and the solution to the LP min, Vf(x)"y is obtained at y, =
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(1,2)Y. f(zy) + Vf(x1)T(y, — x1) = —33/4, so [LBD,UBD] = [-33/4, —27/4].
The search direction is p; = y, — ;1 = (—1/2,1/2)T. Line search, ¢(a) =
Flan +ap,) = F(3/2— a/2.3/2+ a/2)T) = a*/4 — (6/4)a — 27/4. §(a) =
20/4—3/4=0= a=3>1. Hence, take a =1 and x5 = (1,2)7T.

x> = (1,2)T is a KKT point. The objective function is convex (all eigenvalues to
the Hessian are non-negative) and the feasible set is a polyhedron, so the problem
is convex. The KKT conditions are sufficient for optimality for convex problems,
so o = (1,2)" is an optimal solution with f(zs) = —8.

Question 5

(Lagrangian duality)

a) The problem can be stated as that to minimize f(x) := 3 (z1 + 23) subject
to the constraints that o1 + 29 >4 and z; <4, 7 =1,2.

b) Introducing the Lagrange multiplier p > 0 for the constraint x; + xo > 4,
the Lagrangian subproblem has the form

L L, L o
isfigs 4+ 5ot =g+ 508 =

The problem separates over each variable, and the solutions are symmetric:
for 0 < p <4, xz; = pfor j =1,2, while for p >4, x; =4 for j =1,2. The
explicit Lagrangian dual function hence is to maximize the function ¢ over
p >0, where q(p) = 4pu — p? for 0 < p < 4, and q(p) = 16 — 4 for p > 4.
Its derivative hence is ¢/(u) = 4 — 2p for 0 < p < 4, and ¢'(u) = —4 for
1 > 4. The Lagrangian dual function clearly is concave over pu > 0.

c) The solution to the Lagrangian dual problem is p* = 2. Utilizing the
result in b) we may derive that =* = (2,2)T. Strong duality holds, that is,

f(@) = q(p).

Question 6
(optimality conditions)

See Theorem 10.10.
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Question 7

(short questions)

a)

b)

X can be defined as an open set! Define f(z) = z and X = {0 < z < 1},
the problem does not have an optimal solution.

The feasible set is convex (it is the line segment between (-1,0) and (1,0)).
Th us KKT is sufficient (first question: yes). The set does not have an
interior point, thus slater does not hold. LICQ does no t hold either. The
objective f(z,y) := x + y would result in an optimal solution at (-1,0), wh
ich is not a KKT point, hence KKT is not necessary (second question: no).
We will use the notation |[|a|| = />, a?. Assume that ||z — a|[* < b. We
have that ||a — ¢|| = ||a — 2 + 2 — ¢|| < ||a — z|| + ||z — ¢]||, where the last
inequality is the triangle inequality. Hence ||z —¢|| > ||a —¢|| — |la — z|| >
gInd + b — /b = Ind. Therefore exp(||z — ¢||) > d. This means that if
we satisfy the first constr aint, then the other constraint is automatically
satisfied (hence it is redundant). Since the first ¢ onstraint is a convex
function, the set is convex.




