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Question 1

(the simplex method)

a) We first rewrite the problem on standard form. We multiply the objective(2p)
by −1 to obtain a minimization problem and introduce the variables x+

2

and x−
2 such that x2 = x+

2 − x−
2 , and slack variables s1 and s2.

minimize z = −3x1 −x+

2 +x−
2

subject to 3x1 +2x+

2 −2x−
2 −s1 = 1

2x1 +x+

2 −x−
2 +s2 = 2

x1, x+

2 , x−
2 , s1, s2 ≥ 0.

In phase I the artificial variable a is added in the first constraint, s2 is used
as the second basic variable. We obtain the problem

minimize w = a
subject to 3x1 +2x+

2 −2x−
2 −s1 +a = 1

2x1 +x+

2 −x−
2 +s2 = 2

x1, x+

2 , x−
2 , s1, s2 a ≥ 0.

The starting BFS is thus (a, s2)
T. Calculating the vector of reduced costs

for the non-basic variables x1, x
+
2 , x−

2 and s1 yields (−3,−2, 2, 1)T. Thus x1

enters the basis. The minimum ratio test shows that a should leave the
basis. We thus have a BFS without artificial variables, and may proceed
with pha se II.

We have the basic variables (x1, s2). The vector of reduced costs for the
non-basic variables x+

2 , x−
2 and s1 is (1,−1,−1). We may choose either x−

2

or s1 to enter the basis. We take x−
2 . The minimum ratio test implies that s2

must leave the basis. We now have x1, x
−
2 as basic variables. The vector of

reduced costs for the non-basic variables x+
2 , s1, s2 is (0, 1, 3)T. The current

point is optimal. We thus have (x1, x
−
2 , x+

2 , s1, s2) = (3, 4, 0, 0, 0), or in the
original variables, (x1, x2) = (3,−4).

b) The reduced costs are not strictly positive; we can thus not conclude that(1p)
there is a unique optimal solution. We may introduce x+

2 into the basis; the
minimum ratio test can however not provide a variable that leaves the basis
(all entries are negative in B−1Nj). This is because we may let x+

2 = α,
x−

2 = 4 + α for all α ≥ 0 and obtain an optimal solution in the problem
written on standard form. All these solutions however correspond to the
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same solution (x1, x2) = (3,−4) in the original problem. The solution in
the original problem is unique (which can also be realized by checking that
it is the only KKT point).

Question 2

(optimality conditions)

a) Thanks to the linearity of the constraints, the problem satisfies the Abadie(2p)
constraint qualification and the Karush–Kuhn–Tucker conditions are nec-
essary for the local optimality of x∗. As the problem is convex the KKT
conditions are also sufficient for x∗ to be a global optimum.

Introducing the multiplier λ for the equality constraint and µj ≥ 0 for
the sign condition on xj , we obtain the Lagrange function L(x, µ, λ) :=
−bλ +

∑n
j=1(fj(xj) − [λ + µj]xj). Setting the partial derivatives of L with

respect to each xj to zero yields

f ′(x∗
j ) = λ∗ + µ∗

j , j = 1, . . . , n. (1)

Further, the complementarity conditions state that

µ∗
j · x∗

j = 0, j = 1, . . . , n.

Together with the dual feasibility conditions that µ∗
j ≥ 0 for all j and that

x∗ fulfills the primal feasibility conditions that x∗ ≥ 0n and
∑n

j=1 x∗
j = b,

we have stated all the KKT conditions.

b) Suppose that the triple (x∗, µ∗, λ∗) ∈ R
n × R × R

n is a Karush–Kuhn–(1p)
Tucker point. For a j with x∗

j > 0 we must therefore have from (1) that
f ′(x∗

j ) = λ∗. Suppose instead that x∗
j = 0. Then, since µ∗

j ≥ 0 must hold,
we obtain from (1) that f ′(x∗

j ) = λ∗ + µ∗
j ≥ λ∗, and we are done.

Question 3

(modeling)

a) Introduce the variable xij for the amount of money person i gives to person(1p)
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j. The model is to

minimize
n

∑

i=1

n
∑

j=1

xij ,

subject to di +
n

∑

j=1

xij −
n

∑

j=1

xji =
1

n

n
∑

j=1

dj, i = 1, . . . , n.

xij ≥ 0 i = 1, . . . , n, j = 1, . . . , n.

b) Introduce the variables yij, where(2p)

yij =

{

1 if person i gives any money to person j
0 otherwise.

Then the model is to

minimize
n

∑

i=1

n
∑

j=1

xij ,

subject to di +
n

∑

j=1

xij −
n

∑

j=1

xji =
1

n

n
∑

j=1

dj, i = 1, . . . , n,

n
∑

j=1

yij = 1, i = 1, . . . , n,

xij ≤ Myij , i = 1, . . . , n, j = 1, . . . , n,
xij ≥ 0, i = 1, . . . , n, j = 1, . . . , n,
yij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , n,

where M is some large number. M =
∑n

i=1 di is large enough.

Question 4(3p)

(the Frank-Wolfe method)

Iteration 1: x0 = (0, 0)T is feasible and f(x0) = 0, so we get: [LBD, UBD] =
(−∞, 0]. ∇f(x0) = (−3,−6)T and the solution to the LP miny ∇f(x0)

Ty is
obtained at y0 = (2, 2)T. Since f is convex, g(y) := f(x0) +∇f(x0)

T(y −x0) ≤
f(y) for all y ∈ R

2. The LP problem is a relaxation of the original problem,
hence an optimal objective value gives a lower bound. The optimal objective value
of the LP is f(x0) + ∇f(x0)

T(y0 − x0) = 0 + (−3,−6)T(2, 2) = −18. Hence,
[LBD, UBD] = [−18, 0]. The search direction is p0 = y0 − x0 = (2, 2)T. Line
search: φ(α) := f(x0 + αp0) = f((2α, 2α)T) = 12α2 − 18α. φ′(α) = 24α − 18 =
0 ⇒ α = 3/4 < 1. Hence, x1 = (3/2, 3/2)T.

Iteration 2: f(x1) = −27/4, so [LBD, UBD] = [−18,−27/4]. ∇f(x1) =
(3/2,−3/2)T and the solution to the LP miny ∇f(x1)

Ty is obtained at y1 =
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(1, 2)T. f(x1) +∇f(x1)
T(y1 −x1) = −33/4, so [LBD, UBD] = [−33/4,−27/4].

The search direction is p1 = y1 − x1 = (−1/2, 1/2)T. Line search, φ(α) :=
f(x1 + αp1) = f((3/2 − α/2, 3/2 + α/2)T) = α2/4 − (6/4)α − 27/4. φ′(α) =
2α/4 − 3/4 = 0 ⇒ α = 3 > 1. Hence, take α = 1 and x2 = (1, 2)T.

x2 = (1, 2)T is a KKT point. The objective function is convex (all eigenvalues to
the Hessian are non-negative) and the feasible set is a polyhedron, so the problem
is convex. The KKT conditions are sufficient for optimality for convex problems,
so x2 = (1, 2)T is an optimal solution with f(x2) = −8.

Question 5

(Lagrangian duality)

a) The problem can be stated as that to minimize f(x) := 1

2
(x2

1 + x2
2) subject(1p)

to the constraints that x1 + x2 ≥ 4 and xj ≤ 4, j = 1, 2.

b) Introducing the Lagrange multiplier µ ≥ 0 for the constraint x1 + x2 ≥ 4,(1p)
the Lagrangian subproblem has the form

minimize
xj≤4, j=1,2

4µ +
1

2
x2

1 − µx1 +
1

2
x2

2 − µx2.

The problem separates over each variable, and the solutions are symmetric:
for 0 ≤ µ ≤ 4, xj = µ for j = 1, 2, while for µ > 4, xj = 4 for j = 1, 2. The
explicit Lagrangian dual function hence is to maximize the function q over
µ ≥ 0, where q(µ) = 4µ − µ2 for 0 ≤ µ ≤ 4, and q(µ) = 16 − 4µ for µ ≥ 4.
Its derivative hence is q′(µ) = 4 − 2µ for 0 ≤ µ ≤ 4, and q′(µ) = −4 for
µ ≥ 4. The Lagrangian dual function clearly is concave over µ ≥ 0.

c) The solution to the Lagrangian dual problem is µ∗ = 2. Utilizing the(1p)
result in b) we may derive that x∗ = (2, 2)T. Strong duality holds, that is,
f(x∗) = q(µ∗).

Question 6(3p)

(optimality conditions)

See Theorem 10.10.
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Question 7

(short questions)

a) X can be defined as an open set! Define f(x) = x and X = {0 < x < 1},(1p)
the problem does not have an optimal solution.

b) The feasible set is convex (it is the line segment between (-1,0) and (1,0)).(1p)
Th us KKT is sufficient (first question: yes). The set does not have an
interior point, thus slater does not hold. LICQ does no t hold either. The
objective f(x, y) := x + y would result in an optimal solution at (-1,0), wh
ich is not a KKT point, hence KKT is not necessary (second question: no).

c) We will use the notation ||a|| =
√

∑n
i=1 a2

i . Assume that ||x − a||2 ≤ b. We(1p)
have that ||a − c|| = ||a − x + x − c|| ≤ ||a − x|| + ||x − c||, where the last
inequality is the triangle inequality. Hence ||x− c|| ≥ ||a− c|| − ||a− x|| ≥
q ln d +

√
b −

√
b = ln d. Therefore exp(||x − c||) ≥ d. This means that if

we satisfy the first constr aint, then the other constraint is automatically
satisfied (hence it is redundant). Since the first c onstraint is a convex
function, the set is convex.


