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Question 1

(the simplex method)

a) We first rewrite the problem on standard form. We introduce variables x+
1(2p)

and x−

1 and let x1 = x+
1 − x−

1 . We also add slack variables s1 and s2.

minimize z = 2x+
1 −2x+

1 −x2

subject to −x+
1 −x+

1 +2x2 −s1 = 2
−x+

1 +x−

1 +x2 +s2 = 3
x+

1 , x−

1 , x2, s1, s2 ≥ 0.

In phase I the artificial variable a is added in the first constraint, s2 is used
as the second basic variable in order to obtain a unit matrix as the first
basis. We obtain the phase I problem

minimize z = a
subject to −x+

1 −x+
1 +2x2 −s1 a = 2

−x+
1 +x−

1 +x2 +s2 = 3
x+

1 , x−

1 , x2, s1, s2, a ≥ 0.

The starting BFS is thus (a, s2)
T. Calculating the vector of reduced costs

for the non-basic variables x+
1 , x−

1 , x2, s1 yields (1,−1,−2, 1)T. Least re-
duced cost implies that x2 is the entering variable. The minimum ratio test
shows that a should leave the basis. We thus have a BFS without artificial
variables, and may proceed with phase II.

We have the basic variables (x2, s2). The vector of reduced costs for the
non-basic variables x+

1 , x−

1 and s1 is (3/2,−3/2,−1/2). We let x−

1 enter the
basis. The minimum ratio test implies that x2 leaves the basis. We now
have x−

1 , s2 as basic variables. The vector of reduced costs for the non-basic
variables x+

1 , x2 and s1 is (0, 3,−2)T. Thus s1 enters the basis. Minimum
ratio implies that s2 leaves basis. We now have x−

1 , s1 as basic variables.
The vector of reduced costs for the non-basic variables x+

1 , x2 and s2 is
(0, 1, 2)T.

Since the reduced costs are all non-negative, the current BFS is optimal.
Returning to the original variables, we obtain (x1, x2) = (−3, 0) as the
optimal solution and −6 as the optimal value.

b) In the optimal BFS, the reduced cost corresponding to x+
1 is zero. There-(1p)

fore, we can let x+
1 enter the basis without changing the objective. We do

not obtain any leaving variable as minimum ratio implies that the prob-
lem is unbounded in that direction. This is simply the increasing x+

1 and
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increasing x−

1 by the same amount (which can be any positive number).
So the problem in standard form does not have a unique optimal solution,
but the problem formulated in the original variables does since all these
solutions correspond to (−3, 0). Replacing one free variable with two pos-
itive variables always implies that each solution is non-unique in the sense
described above.

Question 2(3p)

(LP duality)

i) We interpret the variables xij as the flow from node i to node j of the graph.
The first set of constraints guarantee that the flow going into a node equals
the flow leaving that node (i.e. flow balance) except at node 1 where s
units of flow enters and at node n where s unit of flow leaves. The second
set of constraints imply a limitof flow on all arcs and that flow can not be
negative. To summerize, we push s units of flow into the graph at node 1
and take out s units of flow at node n and we maximize s. This can be
interpreted as maximizing the flow through the graph from node 1 to node
n.

ii) Let vi for i ∈ {1, . . . , n} denote the dual variables corresponding to the
first set of constraints and wij for (i, j) ∈ A denote the dual variables
corresponding to the second set of constraints.. The dual then becomes:

maximize
∑

(i,j)∈A

wijcij

subject to wij − vi + vj ≥ 0, (i, j) ∈ A,
v1 − vn = 1,

wij ≥ 0, (i, j) ∈ A.

iii) We are maximizing with positive costs on wij , therefore we would want
to put them all to zero. Unfortunately, this is not feasible. First, the
constraints imply that if wij = 0 then vi ≤ vj . Second v1 = vn + 1. But by
following a path from node 1 to node n throught the graph we obtain that
v1 ≤ vn . Therefore, all paths that connect 1 with n need to contain an
arc (i, j) where wij = 1 in order to break the chain of inequalities such that
v1 = vn + 1 is possible. This will generate cost cij . If we let cij correspond
to the cost of including the arc (i, j) in a cut, the dual is to find the minimal
cost cut between nodes 1 and n.
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Question 3

(modeling)

a) Since P k is convex for k = 1, . . . , K, we have that(1p)

conv
( K
⋂

k=1

P k

)

=
K
⋂

k=1

P k =
{

x ∈ R
n
∣

∣

∣Ak
x ≤ b

k, k = 1, . . . , K
}

.

Hence, we can write the optimization problem as that to

minimize c
T
x,

subject to Ak
x ≤ b

k, k = 1, . . . , K.

b) Any point in conv
(

⋃K
k=1 P k

)

can be represented as a convex combination(2p)

of points in the individual polyhedra P 1, . . . , P K, i.e.,

x =
K
∑

k=1

λkx
k, with

K
∑

k=1

λk = 1, λk ≥ 0,

where x
k ∈ P k, k = 1, . . . , K. Hence, we can formulate the optimization

problem as that to

minimize c
T
x,

subject to x =
K
∑

k=1

λkx
k,

Ak
x

k ≤ b
k, k = 1, . . . , K,

K
∑

k=1

λk = 1,

λk ≥ 0, k = 1, . . . , K,

where x, x1, . . . , xK and λ1, . . . , λK are the variables in the optimization
model.

(This model can actually be extended to a linear model by the variable
substitution x̄

k = λkx
k.)
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Question 4

(exterior-penalty methods)

a) By applying the KKT conditions on the problem, we obtain the unique(1p)
solution x

∗ = (1/2, 1/2)T and λ∗ = −1.

b) Applying the exterior quadratic penalty method, we get the unconstrained(1p)
problem

min
x∈R2

(

f(x) + νh(x)2
)

= min
x∈R2

(

x2
1 + x2

2 + ν(x1 + x2 − 1)2
)

.

Setting the gradient to zero we obtain

2x1 + 2νx1 + 2νx2 − 2ν = 0,

2x2 + 2νx1 + 2νx2 − 2ν = 0,

with solution xν = ν
1+2ν

(1, 1)T, for ν > 0. Letting ν → ∞ we see that the

sequence xν converges to (1/2, 1/2)T which is the unique optimal solution.

c) We note that the solution xν fulfills ∇f(xν) + [2νh(xν)]∇h(xν) = 0. So a(1p)
Lagrange multiplier estimate comes from λν := 2νh(xν). Insertion from b)
yields λν = −2ν

1+2ν
which tends to λ∗ = −1 when ν → ∞.

Question 5

(linear programming: existence of optimal solutions)

a) This is the first part of Theorem 8.10.(2p)

b) This is the second part of Theorem 8.10.(1p)

Question 6

(basic facts in optimization)

a) False. Any infeasible linear program will result in a phase I problem having(1p)
a positive optimal value.
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b) False. If f is strictly concave, and if at some x ∈ R
n, the Hessian matrix(1p)

∇2f(x) happens to be negative definite, then a search direction is well-
defined, but it defines an ascent direction.

c) False. Consider the linear program to minimize x2 subject to the constraints(1p)
0 ≤ xj ≤ 4, j = 1, 2, and the additional constraint that x1 + x2 ≤ 2. This
problem has the optimal solution set X∗ = {x ∈ R

2 | x1 ∈ [0, 2]; x2 = 0 }.
At the optimal solution x

∗ = (1, 0)T, x1 + x2 < 2 holds. Believing that
this means that the constraint x1 + x2 ≤ 2 therefore is redundant results,
however, in a grave mistake, as the new problem, having the constraints
0 ≤ xj ≤ 4, j = 1, 2, has the optimal set X∗

new = {x ∈ R
2 | x1 ∈ [0, 4]; x2 =

0 }.

Question 7

(Lagrangian duality)

a) At x
∗ = (3, 2)T, the constraints g1(x) := x1 + x2 ≤ 5 and g2(x) := x1 −(1p)

3 ≤ 0 are active. Introducing Lagrange multipliers for them, we study the
equation

∇f(x∗) + µ1∇g1(x
∗) + µ1∇g1(x

∗) = 02

at x
∗ = (3, 2)T, that is,

(

−2
−1

)

+ µ1

(

1
1

)

+ µ2

(

1
0

)

=

(

0
0

)

.

Hence, µ1 = µ2 = 1.

As the KKT conditions are satisfied and the problem stated is convex,
x
∗ = (3, 2)T is indeed a globally optimal solution.

b) With the Lagrangian L(x, µ) := f(x)+µ(x1+x2−5), we obtain the explicit(2p)
Lagrangian dual function as follows:

First, the subproblem solution is that

x1 =















3, if µ ∈ [0, 2],

5 − µ, if µ ∈ [2, 5],

0, if µ ∈ [2,∞),

x2 =







3 − µ, if µ ∈ [0, 3],

0, if µ ∈ [3,∞).
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Hence,

q(µ) =



























−1
2
µ2 + µ + 2, if µ ∈ [0, 2],

−µ2 + 3µ, if µ ∈ [2, 3],

−1
2
µ2 + 9

2
, if µ ∈ [3, 5],

−5µ + 17, if µ ∈ [5,∞),

which is to be maximized over non-negative values of µ.

Second, the derivative of q is

q′(µ) =



























−µ + 1, if µ ∈ [0, 2],

−2µ + 3, if µ ∈ [2, 3],

−µ, if µ ∈ [3, 5],

−5, if µ ∈ [5,∞),

whence the optimal solution is found where q′ changes sign, namely at
µ∗ = 1.

This multiplier value is indeed the same as the one found as µ1 in a). The
corresponding primal solution then is x(µ∗) = (3, 2)T. Further, q(µ∗) = 5/2
equals the value of f(x∗), whence strong duality is fulfilled.


