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Question 1

(the simplex method)

a)

b)

We first rewrite the problem on standard form. We introduce variables
and 7 and let 7 = 7 — 27. We also add slack variables s; and s,.

minimize z= 2x] -2z —x,
subject to —z{  —x] +2ry —s; =2
—:c+1+ +x]  Fa +sy =3
Ly Ly s T2, S1, S2 2 0.

In phase I the artificial variable a is added in the first constraint, s, is used
as the second basic variable in order to obtain a unit matrix as the first
basis. We obtain the phase I problem

minimize 2z = a
subject to —zf —xf 21, —s a =2
—:Bf +r; +x2 +355 =
rf,  x, e, s, Sy, a >0

The starting BFS is thus (a, s;)T. Calculating the vector of reduced costs
for the non-basic variables x7, 27, 79,5, yields (1,—1,—2,1)". Least re-
duced cost implies that x5 is the entering variable. The minimum ratio test
shows that a should leave the basis. We thus have a BF'S without artificial
variables, and may proceed with phase II.

We have the basic variables (z9,s2). The vector of reduced costs for the
non-basic variables x1, 1 and s is (3/2, —3/2, —1/2). We let x7 enter the
basis. The minimum ratio test implies that x, leaves the basis. We now
have z7 , so as basic variables. The vector of reduced costs for the non-basic
variables a7, x5 and s; is (0,3, —2)T. Thus s; enters the basis. Minimum
ratio implies that s, leaves basis. We now have z7,s; as basic variables.

The vector of reduced costs for the non-basic variables z7, 25 and s, is
(0,1,2)T.

Since the reduced costs are all non-negative, the current BFS is optimal.
Returning to the original variables, we obtain (x1,x2) = (—3,0) as the
optimal solution and —6 as the optimal value.

In the optimal BFS, the reduced cost corresponding to x7 is zero. There-
fore, we can let 2] enter the basis without changing the objective. We do
not obtain any leaving variable as minimum ratio implies that the prob-
lem is unbounded in that direction. This is simply the increasing z7{ and
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increasing x; by the same amount (which can be any positive number).
So the problem in standard form does not have a unique optimal solution,
but the problem formulated in the original variables does since all these
solutions correspond to (—3,0). Replacing one free variable with two pos-
itive variables always implies that each solution is non-unique in the sense
described above.

(3p) Question 2

(LP duality)

i)

ii)

iii)

We interpret the variables z;; as the flow from node ¢ to node j of the graph.
The first set of constraints guarantee that the flow going into a node equals
the flow leaving that node (i.e. flow balance) except at node 1 where s
units of flow enters and at node n where s unit of flow leaves. The second
set of constraints imply a limitof flow on all arcs and that flow can not be
negative. To summerize, we push s units of flow into the graph at node 1
and take out s units of flow at node n and we maximize s. This can be
interpreted as maximizing the flow through the graph from node 1 to node
n.

Let v; for i € {1,...,n} denote the dual variables corresponding to the
first set of constraints and w;; for (i,j) € A denote the dual variables
corresponding to the second set of constraints.. The dual then becomes:

maximize Z W;5Cij
(4,5)€A
subject to  w;; —v; +v; >0, (,7) € A,
V1 —Up = 17
wi; >0, (i,7) € A.

We are maximizing with positive costs on w;;, therefore we would want
to put them all to zero. Unfortunately, this is not feasible. First, the
constraints imply that if w;; = 0 then v; < v;. Second v; = v, + 1. But by
following a path from node 1 to node n throught the graph we obtain that
v1 < v, . Therefore, all paths that connect 1 with n need to contain an
arc (i, j) where w;; = 1 in order to break the chain of inequalities such that
v; = v, + 1 is possible. This will generate cost ¢;;. If we let ¢;; correspond
to the cost of including the arc (7, j) in a cut, the dual is to find the minimal
cost cut between nodes 1 and n.
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Question 3

(modeling)

a) Since P* is convex for k =1,..., K, we have that

conv(ﬁPk>: ﬁPk:{mER”’Akwgbk, k;zl,...,K}.
k=1

k=1
Hence, we can write the optimization problem as that to
e . T
minimize ¢ x,

subject to  Afx <bF, k=1,... K.

°

Any point in corw(LJkK:1 P"“’) can be represented as a convex combination

of points in the individual polyhedra P!,... P¥ ie.,
K K
x=> Nax', with Y A=1, A >0,
k=1 k=1

where ¥ € P¥ k= 1,..., K. Hence, we can formulate the optimization
problem as that to

minimize cTa:,
K
subject to xr = Z Aeh,
k=1
Ak <bt, k=1,... K,
K
d A =1,
k=1
M >0, kE=1,... K,

where x, ', ..., 2 and \,..., \x are the variables in the optimization
model.

(This model can actually be extended to a linear model by the variable
substitution 2% = \,z*.)
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Question 4

(exterior-penalty methods)

a)

b)

By applying the KKT conditions on the problem, we obtain the unique
solution z* = (1/2,1/2)T and \* = —1.

Applying the exterior quadratic penalty method, we get the unconstrained
problem

- 2 _ (2 2 2
Iniy (f(a:)+uh(a:) ) = miy (xl + a5+ v(ry + 29— 1) )

Setting the gradient to zero we obtain

2x1 + 2vxy + 2vey — 20 =0,
229 + 2vx1 + 2vT9 — 20 =0,

with solution x, = 75, (1, )T, for v > 0. Letting v — oo we see that the

sequence x, converges to (1/2,1/2)T which is the unique optimal solution.

We note that the solution x, fulfills V f(x,) + [2vh(z,)]Vh(z,) = 0. So a
Lagrange multiplier estimate comes from )\, := 2vh(x,). Insertion from b)

. _ 2w . x _
yields A, = 775, which tends to A* = —1 when v — oo.

Question 5

(linear programming: existence of optimal solutions)

a)
b)

This is the first part of Theorem 8.10.

This is the second part of Theorem 8.10.

Question 6

(basic facts in optimization)

a)

False. Any infeasible linear program will result in a phase I problem having
a positive optimal value.



EXAM SOLUTION
TMA947/MAN280 — OPTIMIZATION, BASIC COURSE 5

(Ip)  b) False. If f is strictly concave, and if at some & € R"™, the Hessian matrix
V2 f(x) happens to be negative definite, then a search direction is well-
defined, but it defines an ascent direction.

(1p) c) False. Consider the linear program to minimize x5 subject to the constraints
0<z; <4, j=1,2, and the additional constraint that x; + x5 < 2. This
problem has the optimal solution set X* = {x € R* | z; € [0,2];22 = 0}.
At the optimal solution =* = (1,0)T, z; + x5 < 2 holds. Believing that
this means that the constraint x; 4+ z9 < 2 therefore is redundant results,
however, in a grave mistake, as the new problem, having the constraints
0 <x; <4,j=1,2, has the optimal set X', ={x € R* | z; € [0,4]; 25 =
0}.

Question 7

(Lagrangian duality)

(1p) a) At * = (3,2)", the constraints g,(x) := v + 22 < 5 and go(x) := 71 —
3 < 0 are active. Introducing Lagrange multipliers for them, we study the
equation

V(@) + mVa (x*) + Vg (z*) = 0°
at * = (3,2)7, that is,

(3] e () orefo) = o)

As the KKT conditions are satisfied and the problem stated is convex,
x* = (3,2)T is indeed a globally optimal solution.

Hence, py = puo = 1.

(2p) b) With the Lagrangian L(x, u) := f(x)+pu(x1+2x9—5), we obtain the explicit
Lagrangian dual function as follows:

First, the subproblem solution is that

3, if p € [0,2],
ry = (b—u, ifpe(25],

0, if 1 € [2,00),

3—p, ifpelo,3],
Ty =

0, if p € [3,00).
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Hence,
—L2+p+2, ifpelo2,
—p* + 3, if € [2,3],
q(n) L s o .
—3H° =+ 5 if o € [3,5),
—5u+ 17, if 1 € [5, 00),

which is to be maximized over non-negative values of p.

Second, the derivative of ¢ is

1, ifpelo,2],
ou+3, ifpe23],
d() = el
—Hs if IS [37 5]7
-5, if € [5,00),

whence the optimal solution is found where ¢’ changes sign, namely at
pwr=1.
This multiplier value is indeed the same as the one found as 1 in a). The

corresponding primal solution then is x(u*) = (3,2)*. Further, ¢(u*) = 5/2
equals the value of f(x*), whence strong duality is fulfilled.




