
Holger Broman, August 19, 1999

Application Example: Controllability and Observ-
ability

In control engineering you often represent a system under study in a state-space
form.
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Figure 1. A system in state-space form.

The following two equations describe the system:�
x(t) = Fx(t� 1) +Bu(t� 1) + v(t� 1)
y(t) = Hx(t) + e(t);

(1)

and the notation is

u a K-dimensional input signal
x the N -dimensional state vector of the system
v an N -dimensional disturbance vector, �system noise�
F the system matrix, N �N

B an N �K matrix
y an L-dimensional output signal
e an L-dimensional disturbance, �measurement noise�
H the observation matrix, N � L

����� o O o �����

Now, controllability concerns the following question1:

Given a system at rest, x(0) = 0, and in the absence of noise, v(t) = 0 8 t, can
you force x(t) to an arbitrary position in RN by a proper choice of the input
sequence u(0); : : : ;u(t� 1)?

1Actually, the problem formulated should be called reachability or controllability from the

origin. Most often it is simply called controllability.
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Let us see what happens:

x(1) =B u(0)

x(2) =F x(1) +B u(1) = F B u(0) +B u(1)

...

x(t) =F t�1B u(0) + � � �+B u(t� 1) =

=
�
F t�1B F t�2B � � � B

� �
u
T (0) uT (1) � � � uT (t� 1)

�T
As you are free to choose the input sequence freely, the question of controllability
boils down to the question concerning the range-space of the matrix

Ct =
�
F t�1B F t�2B � � � B

�
:

We make the following observations:

Rank(Ct) � Rank(Ct+1) � N

as Ct has N rows, and going from t to t + 1 gives you more columns so that
the rank is non-decreasing. There is no need to study instances t > N , due
to the Cayley-Hamilton theorem, which states that any matrix satis�es its own
characteristic function. Here is the proof:

Let � be an eigenvalue of F . Then

det(F � � I) = 0

()

fN�
N + : : : + f0 = 0 for some set fn; n = 0; : : : ; N

Multiply by the corresponding eigenvector from the right, and replace � g by F g.
Proceed until no �'s remain.�

fN F
N + : : : + f0 I

�
g = 0;

and we conclude
fN F

N + : : : + f0 I = 0;

which proves the theorem.

Now, returning to the original problem, we see that going beyond t = N will
not increase the rank of Ct, as you add columns that are linearly dependent on
already existing ones. We have now proven the following:

The system described by equation (1) is controllable if and only if the
controllability matrix C =

�
FN�1B FN�2B � � � FB B

�
has full rank.

Note 1: This is by no means trivial, as in most applications dimu < dimx.
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Observability concerns the following. Given a system without noise, v(t) � 0
and e(t) � 0, and with no input, u � 0, is there any initial position x(0) = s

such that the system is 'silent', i.e. y(t) = 0, t = 0; 1; : : : . Here we go:

y(0) =H x(0)

y(1) =H x(1) = HF x(0)

...

y(t) =H x(t) = HF t
x(0)

Put in vector form: 2
6664
y(0)
y(1)
...

y(t)

3
7775 =

2
6664

H

HF
...

HF t

3
7775x(0) = Ot x(0)

Just as in the preceding case, it su�ces to study t = N � 1 � remember the
Cayley-Hamilton theorem. The vector on the left hand side is identically zero i�
x(0) is in the null space of the observability matrix:

The system described by equation (1) is observable if and only if the

observability matrix O =

2
6664

H

HF
...

HFN�1

3
7775 has full rank.

Note 2: A system is observable i� there are no silent states.

Note 3: For an observable system, the initial state can be calculated from the
observations y(0);y(1); : : : .
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Application Example: MUSIC

The following example is a version of an algorithm, MUSIC, with reference to
problems in communication. The acronym MUSIC stands for MUltiple SIgnal
Classi�cation. This is the scenario: we have a scalar signal, y(t), which is the
sum of L complex sinusoids in additive noise,

y(t) =
LX
`=1

b` e
j!`t + e(t):

The task at hand is to estimate the frequencies !` from the observations y(t).
We start by stacking some observations in a vector:

y(t) =

2
6664

y(t)
y(t� 1)

...
y(t�M)

3
7775 = use the model of y(t) =

=

2
666664

1 1
e�j!1 e�j!L

... � � �
...

...
...

e�jM!1 e�jM!L

3
777775

2
6666664

b1 e
j!1t

...

...

...
bL e

j!Lt

3
7777775
+

2
6666664

e(t)
...
...
...

e(t�M)

3
7777775

We note with pleasure that the matrix involved is vandermonde, and thus has
full rank for !` distinct. Introduce the notations

a(!) =
�
1 e�j! � � � e�jM!

�H
;

and
s` = b` e

j!`t;

so that

y(t) =

�
a(!1) � � � a(!L)

�264
s1
...
sL

3
75 + noise = A s+ noise:

Now, we make some observations:

� The steering vector a(!) is a curve in CM+1 .

� For M � L � 1, fa(!`)g
L

`=1 span an L-dimensional subspace of CM+1 , the
signal subspace.

� The set f!`g
L

`=1 is the solution to the intersection of a(!) and the signal
subspace. The set is unique as the vandermonde matrix has full rank equal
to L.
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Note 1: The signal
LX
`=1

b` e
j!`t is a rank L signal.

In conclusion, it seems to be a good idea to estimate the signal subspace. One
way to do this is to estimate the correlation matrix

R̂ =
1

N

NX
n=1

y(n)yH(n):

As this is a course on linear algebra, we disregard the in�uence of the noise.

R̂ =
1

N

NX
n=1

A s(n) sH(n)AH =

=A

"
1

N

NX
1

s(n) sH(n)

#
AH = A R̂sA

H :

Hooray, we may guess that the range-space of R̂ equals the range-space of A,
equals the signal subspace2.

Note 2: When noise is present, assume that it is white and small. Then take
the L largest eigenvalues of R̂ (R̂ Hermitian implies real-valued non-negative
eigenvalues). The corresponding eigenvectors span the estimate of the signal
subspace.

Let S be the matrix of dimensions (M + 1) � L that has orthonormal columns
that span the signal subspace. As the norm of a(!) equals M + 1, independent
of !, the desired solution is found by �nding the L maxima to the following:

max
!

��aH(!) S��2
To produce nice plots, you can construct the MUSIC pseudo-spectrum

P (!) =
1

1� jaH(!) Sj2

ja(!)j2

Please run the m-�le musicapp in Matlab

2To really understand this you should take a course in signal processing.
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% musicapp.m

% a simple application of the MUSIC algorithm

clear

N=200;

sigma=1;

t=(1:N)';

s=sin(5*2*pi/N*t)+sin(23*2*pi/N*t); % a rank 4 signal

data=s+sigma*randn(N,1);

% estimate the autocorrelation matrix

M=19;

R=zeros(M+1,M+1);

for n=1:N-M

R=R+data(n:n+M)*data(n:n+M)';

end

R=R/(N-M);

% calculate the rangespace of R

[U S V]=svd(R);

Neig=4; % the 4 first left eigenvectors

Ssub=U(:,1:Neig); % span the signal subspace.

% calculate the pseudospectrum

m=1;

steer=0:M;

for angle=-pi:pi/100:pi

aflip=exp(-j*angle*steer); % the transposed steering vector for argument angle

dum=(norm(aflip*Ssub))^2/(M+1); % norm(aflip)^2=M+1

P(m)=1/(1-dum); % this screws up if you remove the noise

m=m+1;

end

% plot the data and the pseudospectrum.

figure(1), clf, hold on

plot(data)

title('Two sinusoids in white noise')

figure(2), clf, hold on

plot([-pi:pi/100:pi],P)

title('MUSIC pseudospectrum')

% There are a lot of experiments to be carried out.

% Vary N

% Vary sigma - too much noise and you may miss the signal subspace.

% Vary Neig, we do not always know the rank of the signal subspace

% Vary M, it affects resolution
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Application Example: ESPRIT

Refer back to the example presenting MUSIC to �nd the relevant model for the
data

y(t) = A s(t) + e(t);

where the steering matrix A is

A(!) = [a(!1) � � � a(!L)] =

=

2
666664

1 1
e�j!1 e�j!L

...
...

...
...

e�jM!1 e�jM!L

3
777775 :

Please note the vandermonde structure. Now, partition A in two di�erent ways:

A =

�
A1

last row

�
=

�
�rst row
A2

�
:

It follows
A2 = A1�;

where
diag(�) =

�
e�j!1; : : : ; e�j!L

�
:

So, to estimate the frequencies, �nd �.

Unfortunately, we do not have A. We can estimate, however, the signal subspace
from the data, and construct the matrix S that spans the same subspace as does
A, as demonstrated in the derivation of the MUSIC algorithm. This means that
there exists a square full rank transformation matrix that relates A and S:

S = AT:

Now partition S as we did with A. Then

S1 = A1 T

S2 = A2 T;

and
A2 = A1�

implies
S2 T

�1 = S1 T
�1�;

which in turn leads to
S2 = S1 T

�1�T = S1	:

7



As 	 and � are related by a similarity transform, they have the same eigenvalues,
and we �nd the frequencies by �nding the eigenvalues of 	. In practice, you need
to solve

S2 = S1	

in a least squares sense. In Matlab code, it is really simple:

	 = S1nS2

will do it.

Please run the m-�le espritapp in Matlab.
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% espritapp.m

% a simple application of the ESPRIT algorithm

clear

N=200;

sigma=1;

t=(1:N)';

s=sin(5*2*pi/N*t)+sin(23*2*pi/N*t); % a rank 4 signal

data=s+sigma*randn(N,1);

% estimate the autocorrelation matrix

M=19;

R=zeros(M+1,M+1);

for n=1:N-M

R=R+data(n:n+M)*data(n:n+M)';

end

R=R/(N-M);

% calculate the rangespace of R, and the signal subspace

[U S V]=svd(R);

Neig=4; % the 4 first left eigenvectors

Ssub=U(:,1:Neig); % span the signal subspace.

% now for the ESPRIT version

S1=Ssub(1:M,:);

S2=Ssub(2:M+1,:);

poles=eig(S1\S2);

% plot the poles

figure(1), clf, axis equal, hold on

plot(real(poles),imag(poles),'rp')

t=0:1000;

t=2*pi/1000*t;

plot(cos(t),sin(t),'b',[-1.2 1.2], [0 0],'k',[0 0],[-1.2 1.2],'k')

title('Detected frequencies')

% Check the angles, should be 5 (23) /200 *2 *pi

% There are a lot of experiments to be carried out.

% Vary N

% Vary sigma - too much noise and you may miss the signal subspace.

% Vary Neig, we do not always know the rank of the signal subspace

% Vary M
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