Holger Broman, August 19, 1999

Application Example: Controllability and Observ-
ability

In control engineering you often represent a system under study in a state-space
form.
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Figure 1. A system in state-space form.

The following two equations describe the system:

{ x(t) = Fx(t — 1) + Bu(t — 1) + v(t — 1) (1)
y(t) = Hx(t) + e(t),

and the notation is

a K-dimensional input signal

the N-dimensional state vector of the system

an N-dimensional disturbance vector, “system noise”
the system matrix, N x N

an N x K matrix

an L-dimensional output signal

an [-dimensional disturbance, “measurement noise”
the observation matrix, N x L

o< e H e

Now, controllability concerns the following question®:

Given a system at rest, x(0) = 0, and in the absence of noise, v(t) = 0 V ¢, can
you force x(t) to an arbitrary position in RV by a proper choice of the input
sequence u(0),...,u(t —1)?

I Actually, the problem formulated should be called reachability or controllability from the
origin. Most often it is simply called controllability.



Let us see what happens:

x(1) =B u(0)
x(2) =Fx(1) + Bu(1l) = F Bu(0) + Bu(l)

MbZW*BumH~~+Buu—U:
=[F'B F'7B - B [u"(0) u"(1) - u"(t = 1))

As you are free to choose the input sequence freely, the question of controllability
boils down to the question concerning the range-space of the matrix

C, = [Ft*IB F'7?B ... B] .
We make the following observations:
Rank(Ct) S Rank(CH_l) S N

as Cy has N rows, and going from ¢ to ¢ + 1 gives you more columns so that
the rank is non-decreasing. There is no need to study instances ¢ > N, due
to the Cayley-Hamilton theorem, which states that any matrix satisfies its own
characteristic function. Here is the proof:

Let A be an eigenvalue of F'. Then
det(F—XI)=0

—
fNAY + ...+ fo =0 for some set f,, n=0,..., N

Multiply by the corresponding eigenvector from the right, and replace Ag by F'g.
Proceed until no \’s remain.

(fnFN+ ...+ fol)g=0,

and we conclude
INEFN 4+ ... 4+ fol =0,

which proves the theorem.
Now, returning to the original problem, we see that going beyond ¢ = N will

not increase the rank of C}, as you add columns that are linearly dependent on
already existing ones. We have now proven the following:

The system described by equation (1) is controllable if and only if the

controllability matrix C' = [FN_lB FN=2B ... FB B] has full rank.

Note 1: This is by no means trivial, as in most applications dimu < dim x.
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Observability concerns the following. Given a system without noise, v(t)

and e(t) = 0, and with no input, u = 0, is there any initial position x(0)
such that the system is 'silent’, i.e. y(¢) =0,t=0,1,

.... Here we go:
y(0) =H x(0)
y(1) =H x(1) = HF x(0)

y(t) =H x(t) = HF"x(0)

Put in vector form:

y(0) H
y(:l) _ HF %(0) = 0, x(0)
y (1) HF!

Just as in the preceding case, it suffices to study ¢ = N — 1 — remember the

Cayley-Hamilton theorem. The vector on the left hand side is identically zero iff
x(0) is in the null space of the observability matrix:

The system described by equation (1) is observable if and only if the
H

observability matrix O = has full rank.

HF;Nfl

Note 2: A system is observable iff there are no silent states.

Note 3: For an observable system, the initial state can be calculated from the
observations y(0),y(1),....

n O



Application Example: MUSIC

The following example is a version of an algorithm, MUSIC, with reference to
problems in communication. The acronym MUSIC stands for MUItiple SIgnal
Classification. This is the scenario: we have a scalar signal, y(¢), which is the
sum of L complex sinusoids in additive noise,

L
y(t) = bpelt +e(t).
/=1

The task at hand is to estimate the frequencies w, from the observations y(t).
We start by stacking some observations in a vector:

y(t)
y(t—1)
y(t) = . = use the model of y(t) =
i y(t — M)
o o[ met ] [ e ]
efj“)l 67_7-“114 .
= +
[ e/ e-IMer | | 01, 6.]“““5 ] | e(t _ M) |

We note with pleasure that the matrix involved is vandermonde, and thus has
full rank for w, distinct. Introduce the notations

a(w) = [1 e ... gmiMe]T
and .
Sy = bg egwgt,
so that
S1
y(t) — [a(uh) a(wL)] : 4+ noise = As + noise.
SL

Now, we make some observations:

e The steering vector a(w) is a curve in CY*!.

e For M > L —1, {a(w)},_, span an L-dimensional subspace of CM*1, the
signal subspace.

e The set {w},_, is the solution to the intersection of a(w) and the signal
subspace. The set is unique as the vandermonde matrix has full rank equal
to L.



I
Note 1: The signal Zbg e’“t" is a rank L signal.
=1

In conclusion, it seems to be a good idea to estimate the signal subspace. One
way to do this is to estimate the correlation matrix

N
A 1 "
=5 oy o)

As this is a course on linear algebra, we disregard the influence of the noise.

As(n)s™(n) A" =

WE

A1

R=—

N
n=1

—A AT — AR, AT

==

> s(n)s™(n)

Hooray, we may guess that the range-space of R equals the range-space of A,
equals the signal subspace?.

Note 2: When noise is present, assume that it is white and small. Then take
the L largest eigenvalues of R (R Hermitian implies real-valued non-negative
eigenvalues). The corresponding eigenvectors span the estimate of the signal
subspace.

Let S be the matrix of dimensions (M + 1) x L that has orthonormal columns

that span the signal subspace. As the norm of a(w) equals M + 1, independent

of w, the desired solution is found by finding the L maxima to the following:
max |a" (w) 5‘2

To produce nice plots, you can construct the MUSIC pseudo-spectrum

1

_ |af(w) SP
L la(w)]”

P(w) =

Please run the m-file musicapp in Matlab

2To really understand this you should take a course in signal processing.



% musicapp.m
% a simple application of the MUSIC algorithm
clear

N=200;

sigma=1;

t=(1:N)’;

s=sin(5*2*pi/N*t)+sin(23*2*pi/N*t); % a rank 4 signal
data=s+sigma*randn(N,1);

%» estimate the autocorrelation matrix
M=19;

R=zeros (M+1,M+1) ;

for n=1:N-M
R=R+data(n:n+M)*data(n:n+M)’;

end

R=R/(N-M) ;

% calculate the rangespace of R

[U S V]l=svd(R);

Neig=4; 7 the 4 first left eigenvectors
Ssub=U(:,1:Neig); % span the signal subspace.

% calculate the pseudospectrum

m=1;

steer=0:M;

for angle=-pi:pi/100:pi

aflip=exp(-j*anglexsteer); 7 the transposed steering vector for argument angle
dum=(norm(aflip*Ssub))~2/(M+1); % norm(aflip) ~2=M+1

P(m)=1/(1-dum); % this screws up if you remove the noise

m=m+1;

end

% plot the data and the pseudospectrum.
figure(1), clf, hold on

plot(data)

title(’Two sinusoids in white noise’)
figure(2), clf, hold on

plot ([-pi:pi/100:pil,P)

title(’MUSIC pseudospectrum’)

% There are a lot of experiments to be carried out.

% Vary N

%» Vary sigma - too much noise and you may miss the signal subspace.
% Vary Neig, we do not always know the rank of the signal subspace
% Vary M, it affects resolution



Application Example: ESPRIT

Refer back to the example presenting MUSIC to find the relevant model for the

data
y(t) = As(t) + e(?),

where the steering matrix A is

6ijw1 6iju)L

Please note the vandermonde structure. Now, partition A in two different ways:

e[ [)

last row Ay

It follows
AQ - Al (I)

where . .
diag(®) = (e 771, ...,e 7).

So, to estimate the frequencies, find ®.

Unfortunately, we do not have A. We can estimate, however, the signal subspace
from the data, and construct the matrix S that spans the same subspace as does
A, as demonstrated in the derivation of the MUSIC algorithm. This means that
there exists a square full rank transformation matrix that relates A and S:

S=AT.

Now partition S as we did with A. Then

S;=A,T

52 A2 )
and

A2 — Al (I)
implies

So T '=8,T""d,

which in turn leads to
52 :SlTil(bT:Sl\I/



As U and @ are related by a similarity transform, they have the same eigenvalues,
and we find the frequencies by finding the eigenvalues of ¥. In practice, you need

to solve
SQ — Sl \IJ

in a least squares sense. In Matlab code, it is really simple:
U = S51\S,
will do it.

Please run the m-file espritapp in Matlab.



% espritapp.m
%» a simple application of the ESPRIT algorithm
clear

N=200;

sigma=1;

t=(1:N)’;

s=sin(5*2*pi/N*t)+sin(23*2*pi/N*t); % a rank 4 signal
data=s+sigma*randn(N,1);

%» estimate the autocorrelation matrix
M=19;

R=zeros (M+1,M+1) ;

for n=1:N-M
R=R+data(n:n+M)*data(n:n+M)’;

end

R=R/(N-M) ;

% calculate the rangespace of R, and the signal subspace
[U S V]l=svd(R);

Neig=4; 7 the 4 first left eigenvectors
Ssub=U(:,1:Neig); % span the signal subspace.

% now for the ESPRIT version
S1=Ssub(1:M,:);
S2=Ssub(2:M+1,:);
poles=eig(S1\S2);

% plot the poles

figure(1), clf, axis equal, hold on

plot (real(poles),imag(poles),’rp’)

t=0:1000;

£=2%pi/1000%t;

plot(cos(t),sin(t),’b’,[-1.2 1.2], [0 0],’k’,[0 0],[-1.2 1.2],°k?)
title(’Detected frequencies’)

% Check the angles, should be 5 (23) /200 *2 *pi

% There are a lot of experiments to be carried out.

% Vary N

%» Vary sigma - too much noise and you may miss the signal subspace.
% Vary Neig, we do not always know the rank of the signal subspace
% Vary M



