
Holger Broman, August 19, 1999

Factorization

Why do we bother with the problem of how to factorize a matrix? Well, you have
seen glimpses of answers already. One glimpse is from the Gaussian elimination
scheme: when you solve a system of linear equations in a systematic way, a
general matrix is transformed into a triangular one. A second viewpoint of the
same problem is as follows. Given a full rank, square, matrix A, the solution to

Ax = b

is
x = A�1b:

However, A may be tough to invert, and a factorization

A = BC

can help if both B and C are simple to invert.

One general answer is thus: if you can split an unstructured matrix into factors
that do have special structures, this factorization may be utterly useful.

Factorization is so important that we have chosen to collect four of the most
interesting schemes in one 'chapter'. Here they are, all four:

� LU or LDU factorization.
Stems from Gaussian elimination and results in (for square matrices A)

A =LU = LDU 0

L =

2
6664

1

x
. . . 0

...
. . .

x � � � x 1

3
7775 U =

2
6664
x � � � � � � x

. . .

0
. . .

x

3
7775

D =diag(d1 � � �dN) U 0 =

2
6664

1 x � � � x
. . .

...

0
. . . x

1

3
7775

1

� QR factorization.
Stems from orthogonalization and results in

A = QR

QTQ = I; i.e. Q has orthonormal columns,

R =

2
6664
x � � � � � � x

. . .
...

0
. . .

...
x

3
7775

R is upper right triangular, and x stands for any possible non-zero entry.

� Eigenvalue decomposition.
Only for square matrices with a basis of eigenvectors:

A =G�1�G

G =(g1 � � �gN) ; gn is an eigenvector

� =diag (�1 � � ��N) ; �n is an eigenvalue

� Singular Value Decomposition, SVD for short.
The most general decomposition, need not square matrices A:

A = Q1 � QT2

Q1 orthogonal, square

Q2 orthogonal, square

� diagonal

2

LU factorization

One way of factorizing a (square) matrix A follows from solving a linear system
of equations by Gaussian elimination. Let us start by an example:�

x + 2y = 4
3x+ 4y = 10

�
1 2
3 4

� �
x
y

�
=

�
4
10

�
() �

x + 2y = 4
�2y = �2

�
1 2
0 �2

� �
x
y

�
=

�
4
�2

�

Now, search for a matrix L so that�
1 2
3 4

�
= L

�
1 2
0 �2

�
:

The answer is

L =

�
1 0
3 1

�
; so that

�
1 2
3 4

�
=

�
1 0
3 1

� �
1 2
0 �2

�
:

In general terms, a square matrix A can be factorized

A = LU;

where L is lower left triangular with unity on the main diagonal, and U is upper
right triangular if the Gaussian elimination scheme works.

Here is an example where it works:

A =

2
4 1 2 3

4 5 6
7 8 10

3
5!

2
4 1 2 3

0 �3 �6
0 �6 �11

3
5!

2
4 1 2 3

0 �3 �6
0 0 1

3
5 = U

Here is an example where it does not work:

A =

2
4 1 2 3

1 2 4
5 6 7

3
5!

2
4 1 2 3

0 0 1
0 �4 �8

3
5

Oops, no usable pivot element in the second row. This can easily be �xed by
considering a row-shifted matrix � system of equations. Note that the equation

3

Ax = b

() 2
4 row 1

row 2
row 3

3
5
2
4 x1
x2
x3

3
5 =

2
4 b1
b2
b3

3
5

() 2
4 row 1

row 3
row 2

3
5
2
4 x1
x3
x2

3
5 =

2
4 b1
b3
b2

3
5 ;

so that we can factorize

A0 =

2
4 1 2 3

5 6 7
1 2 4

3
5!

2
4 1 2 3

0 �4 �8
0 0 1

3
5 = U

Here is a second example where it does not work � or does it?

A =

2
4 1 2 3

4 5 6
7 8 9

3
5!

2
4 1 2 3

0 �3 �6
0 �6 �12

3
5!

2
4 1 2 3

0 �3 �6
0 0 0

3
5 ;

oops, A is not full rank.

Note 1: The staircase pattern in the matrix above is called the echelon form of a
matrix. We �nd, however, that

2
4 1 0 0

4 1 0
7 2 1

3
5
2
4 1 2 3

0 �3 �6
0 0 0

3
5 =

2
4 1 2 3

4 5 6
7 8 9

3
5

The global conclusion is that all (full rank) square matrices can be LU factorized,
possibly after one or more row exchange operations. Row exchanges are accom-
plished by permutation matrices � se the lea�et named Permutation matrices.
This means that there exists a permutation matrix P so that

AP = LU

����� o O o �����

Sometimes you desire unity on the main diagonal of U as well. Then you perform
an LDU factorization so that

AP = LU = LDU 0;

where D is diagonal using the diagonal elements of U , and U 0 is upper right
triangular with unity on the main diagonal.

Note 2: detA = detD as detL = detU 0 = 1.

Please run the m-�le lufac in Matlab.

4

% lufac.m

% This file demonstrates LU-factorization, equivalently

% Gaussian elimination.

clear

N=4;

A=randn(4,4);

b=randn(4,1);

% solve Ax=b

x=A\b;

% now do it by explicit row operations

A1=A;

b1=b;

pivfac1=A1(2,1)/A1(1,1); % Pivot is A(1,1)

A1(2,:)=A1(2,:)-pivfac1*A1(1,:);

b1(2)=b1(2)-pivfac1*b1(1);

% norm(x-A1\b1,'fro') % check that we have the same solution

pivfac2=A1(3,1)/A1(1,1);

A1(3,:)=A1(3,:)-pivfac2*A1(1,:);

b1(3)=b1(3)-pivfac2*b1(1);

% norm(x-A1\b1,'fro') % check that we have the same solution

pivfac3=A1(4,1)/A1(1,1);

A1(4,:)=A1(4,:)-pivfac3*A1(1,:);

b1(4)=b1(4)-pivfac3*b1(1);

% norm(x-A1\b1,'fro') % check that we have the same solution

pivfac4=A1(3,2)/A1(2,2); % Pivot is A(2,2)

A1(3,:)=A1(3,:)-pivfac4*A1(2,:);

b1(3)=b1(3)-pivfac4*b1(2);

% norm(x-A1\b1,'fro') % check that we have the same solution

pivfac5=A1(4,2)/A1(2,2);

A1(4,:)=A1(4,:)-pivfac5*A1(2,:);

b1(4)=b1(4)-pivfac5*b1(2);

% norm(x-A1\b1,'fro') % check that we have the same solution

pivfac6=A1(4,3)/A1(3,3); % Pivot is A(3,3)

A1(4,:)=A1(4,:)-pivfac6*A1(3,:);

b1(4)=b1(4)-pivfac6*b1(3);

norm(x-A1\b1,'fro') % check that we have the same solution

% now A1 is U by construction, what is L? remember A=L*U

L=A*inv(A1);

% however, we can do it without inverting any matrix

L=eye(N);

L(2,1)=pivfac1;

L(3,1)=pivfac2;

L(4,1)=pivfac3;

5

L(3,2)=pivfac4;

L(4,2)=pivfac5;

L(4,3)=pivfac6;

L, A1, norm(A-L*A1,'fro')

pause

% Finally let's do the LDU

v=diag(A1);

D=diag(v);

U=diag(1./v)*A1; % The inversion is now scalar.

L, D, U, norm(A-L*D*U,'fro')

6

QR factorization

Recall the procedure of orthogonalizing a set of vectors fvmg
M

m=1
and produce

the orthonormal set of vectors fumg
M

m=1
that span the same subspace.

As was shown, you could use a procedure named after Gram and Schmidt or
you could use projections. Well, regardless of which we can pose the following
problem. Stack the vectors in matrices

A = (v1 � � �vM) ;

and
Q = (u1 � � �uM) :

Now, �nd a relation, in matrix terms, between these two matrices. The trick
is to write the v-vectors as linear combinations of the u-vectors, or to use the
following argument. By the Gram-Schmidt construction, fvgk

1
and fugk

1
span the

same subspace. Thus, vk depends only on fumg
k

m=1
and uk only on fvmg

k

m=1
. It

follows

vk =
kX

m=1

rm um = (u1 � � �uk)

0
B@

r1
...
rk

1
CA =

=(u1 � � �uk uk+1 � � �uM)

0
BBBBBBB@

r1
...
rk
0
...
0

1
CCCCCCCA

=

=Q

0
BBB@

r1
...
rk
0

1
CCCA ;

where Q has orthonormal columns, and thus QTQ = I. Thus,

A = (v1 � � �vM) = Q

0
BBB@

r11 r12 � � � r1M
0 r22
...

. . .

0 rMM

1
CCCA = QR;

where R is square, upper right triangular. In conclusion:

Any matrix A with linearly independent columns can be factorized into
one matrix with orthonormal columns and an upper right triangular
matrix that is invertible.

7

Exercise: Argue for the fact that R is invertible.

Why bother with QR factorization? One reason is that it is the preferred way
to calculate the least squares solution of an overdetermined set of equations.
Remember the equation

Ax = b;

where the full rank matrix A is taller than wide. The least squares solution was
shown to be

xLS =
�
ATA

�
�1
AT b:

However, ATA could be tough to invert or a poor choice from a numerical point
of view due to the 'square' ATA. Therefore, make a QR factorization of A:

xLS =
�
RTQT QR

�
�1
RTQT b =

=
�
RTR

�
�1
RTQT b =

=R�1
�
RT
�
�1
RTQT b = R�1QT b:

This is much simpler and numerically sound as R is triangular.

Note 1: The QR factorization is not unique. Not only can you re-order the vec-
tors fvmg to produce di�erent A matrices. For one given A matrix, of
dimensions N �M , M � N as independent columns are required, you can
separate the two cases

i) dimQ = N �M; dimR = M �M ,

ii) dimQ = N �N; dimR = N �M .

The version above is case i).

����� o O o �����

QR factorization using Givens rotations � Remember the de�nition of the
rotation matrix, and note the following properties.

Q =

2
6666666666666666664

1
. . .

1
c �s

1
. . .

1
s c

1
. . .

1

3
7777777777777777775

 row m

 row n

8

� The multiplication QA leaves A unchanged in all but rows m and n.

� You can design Q to put a zero in one position at your choice in the product
QA, for instance

[QA]nm = s � amm + c anm;

choose the angle � to vary s = sin�; c = cos�. Equivalently, make the
vector (sin� cos�)T perpendicular to the vector (amm anm)

T .

Now, collect your vectors vm in a matrix A. Let us illustrate in a 4 � 3 case
(N = 4; M = 3).

A =

2
664
x x x
x x x
x x x
x x x

3
775

Take Q1 to produce

Q1A =

2
664
x x x
0 x x
x x x
x x x

3
775 (not all x:es are the same as before)

Take Q2 to produce

Q2Q1A =

2
664
x x x
0 x x
0 x x
x x x

3
775

and

Q3Q2Q1A =

2
664
x x x
0 x x
0 x x
0 x x

3
775

Now comes the trick, Q4 does not destroy the zeros in the �rst column:

Q4Q3Q2Q1A =

2
664

1
c �s
s c

1

3
775
2
664
x x x
0 x x
0 x x
0 x x

3
775 =

2
664
x x x
0 x x
0 0 x
0 x x

3
775

The example is �nished with Q6:

Q6Q5Q4Q3Q2Q1A =

2
664
x x x
0 x x
0 0 x
0 0 0

3
775

Let
QT = Q6Q5Q4Q3Q2Q1;

9

and note that �
QT
�
�1

=
�
QT
�T

= Q;

as the rotation matrices have that property. We arrive at the QR factorization

A = QR:

This is the preferred algorithm for numerical reasons. You should use some smart
algorithm when multiplying the rotation matrices.

Note 2 This scheme results in a Q of dimensions N � N and an R of dimensions
N �M . Note, however, that we may partition Q and R as follows:

Q = [Q1 Q2]; R = [
R1

R2

] =

�
R1

0

�
;

so that

A = QR = [Q1 Q2]

�
R1

0

�
= Q1R1:

The Gram-Schmidt approach would have produced Q1; R1. The columns of Q1

span the subspace of the vectors vm, or equivalently, the range space of A. The
columns of Q2 span the null space of A. The factorization Q1R1 is called the
�economy size� QR factorization.

Note 3 This is also the preferred way to calculate projection matrices (possibly
unless M << N) as

P =A(ATA)�1AT = Q1R1

�
RT1Q

T

1Q1R1

�
�1
RT1Q

T

1 =

=Q1R1

�
RT1R1

�
�1
RT1Q

T

1 = Q1Q
T

1

����� o O o �����

Application example:

Given a data matrix X, �lled with complex-valued entries, that has 50 rows and
1000 columns, you want to calculate an estimate of the covariance matrix R̂:

R̂ � XXH

The numerically proper way to do it is to calculate R only in

XH = QR � dimR = 50� 50

and note
R̂ � XXH = (XH)HXH = (RHQH)(QR) = RHR:

As a bonus, you get a factorized covariance matrix, which is good from a numerical
point of view.

10

Note 4 A second application example is given in the lea�et on Least Squares.

Note 5 Another sound way to perform QR factorization is to use Householder re-
�ections. It is left as an exercise to �nd the scheme by 'inverse engineering'
of the code in the m-�le housholder.

Please run the m-�les ortho and householder in Matlab.

11

% ortho.m

% to study ways to create on-bases from any base.

clear

% generate 3 random vectors, the columns of A

A=rand(3,3);

v1=A(:,1); v2=A(:,2); v3=A(:,3);

% Let us first follow Gram and Schmidt

u1=v1/norm(v1);

u2=v2-(v2'*u1)*u1; u2=u2/norm(u2);

u3=v3-(v3'*u1)*u1-(v3'*u2)*u2; u3=u3/norm(u3);

Ugs=[u1 u2 u3];

% now, u1,u2,u3 make an orthonormal basis for the space

% equivalently, Ugs is an orthogonal matrix

% our second method is by means of projections

u1=v1;

P1=v1*inv(v1'*v1)*v1'; P1perp=eye(3)-P1; u2=P1perp*v2;

P2=[v1 v2]*inv([v1 v2]'*[v1 v2])*[v1 v2]'; P2perp=eye(3)-P2;

u3=P2perp*v3;

u1=u1/norm(u1); u2=u2/norm(u2); u3=u3/norm(u3);

Uproj=[u1 u2 u3];

% our third method is by Givens rotations

alpha1=-atan(A(2,1)/A(1,1));

c=cos(alpha1); s=sin(alpha1);

Rot1=[c -s 0 ; s c 0 ; 0 0 1]; A1=Rot1*A;

alpha2=-atan(A1(3,1)/A1(1,1));

c=cos(alpha2); s=sin(alpha2);

Rot2=[c 0 -s ; 0 1 0 ; s 0 c]; A2=Rot2*A1;

alpha3=-atan(A2(3,2)/A2(2,2));

c=cos(alpha3); s=sin(alpha3);

Rot3=[1 0 0 ; 0 c -s ; 0 s c]; A3=Rot3*A2;

Urot=Rot3*Rot2*Rot1;

% note that we now have a complete QR-factoriztion of A, A=Urot'*A3

% our fourth method is by householder reflections, see householder.m

% our fifth method is by the matlab command qr

[Uqr,R]=qr(A);

% now, A=Uqr*R

% Please, use the matlab command window to study the various matrices.

% For instance, try Urot, Urot'*Urot, eig(Urot), eig(Urot).*conj(eig(Urot)), etc

12

% Householder.m

% orthogonalization by means of reflections. The problem is to find the

% proper subspace in which to mirror.

clear

N=5;

A=randn(N,3);

% the first subspace is a line

v1=A(:,1);

h1=zeros(N,1);

h1(1)=sign(v1(1)); % The desired mirror image is norm(v1)*h1

s1=v1/norm(v1)+h1; % The angle of this vector is midway between v1 and desired imag

s1=s1/norm(s1);

S1=2*s1*s1'-eye(N); % S=2P-I, P is s1*s1' as s1 is normalized so that s1'*s1=1

u1=S1*v1; % u1 is the desired vector with zeros in all positions but the first

A1=S1*A;

% To produce zeros in a second vector without

% destroying what is already done, we need to mirror

% in a plane that contains a unity vector along the first coordinate

v2=A1(:,2);

h2=zeros(N,1);

h2(2)=sign(v2(2)); % Desired image if v2(1) were zero

temp=v2; temp(1)=0; % To produce "v2(1)=0"

s1=temp/norm(temp)+h2; s1=s1/norm(s1);

s2=zeros(N,1); s2(1)=1;

S2=2*[s1 s2]*[s1 s2]'-eye(N); % As s1 and s2 are orthonormal by construction

u2=S2*v2;

A2=S2*A1;

% In the next step, we must mirror in a 3D space containing the first two coordinat

v3=A2(:,3);

h3=zeros(N,1);

h3(3)=sign(v3(3));

temp=v3; temp(1)=0; temp(2)=0;

s1=temp/norm(temp)+h3; s1=s1/norm(s1);

s2=zeros(N,1); s2(1)=1;

s3=zeros(N,1); s3(2)=1;

S3=2*[s1 s2 s3]*[s1 s2 s3]'-eye(N);

u3=S3*v3;

A3=S3*A2;

% By now, the principle is clear.

13

U=S3*S2*S1; % U is an orthogonal matrix by construction, A3=U*A

% It follows that A=U'*A3 is a qr-factorization of A

norm(A-U'*A3,'fro'), A3

14

Eigenvalue decomposition

Let us assume that the square matrix A has a basis of linearly independent eigen-
vectors gn; n = 1; 2; : : : ; N . It was shown in the lea�et on �Matrices, Geometry
and Mappings � eigenvalues, eigenvectors and diagonalization� that the matrix
can be written

A = G � G�1;

where
G = (g1; : : : ; gN)

and
� = diag(�1; : : : ; �N):

This decomposition obviously represents a factorization of A, and we can ask
what it is good for. Here are two answers:

Answer 1: If you are asked to compute A100, here is how to do it:

A100 =
�
G�G�1

�100
= G�G�1 � � �G�G�1 =

=G�100G�1;

and �100 is a piece of cake.

����� o O o �����

As you know, eigenvectors can always be chosen to have unit length, so that G has
length one columns. Are there any cases where G also has orthogonal columns?
Yes indeed, as shown in �Matrices, Geometry and Mapplings � eigenvalues, eigen-
vectors and diagonalization�, for Hermitian matrices A, i.e. for matrices such that

AH = (AT)� = A;

the eigendecomposition takes the particularly simple form

A = G�GH;

where G is a unitary matrix (GGH = I).

Answer 2: In some signal processing applications, it is of interest to �nd a low-
rank approximation of a positive de�nite (de�nition in the lea�et on Quadratic
forms) Hermitian matrix A. What do we mean by that? Assume that the eigen-
values are collected in order so that �1 � �2 � � � � � �N . Now, let us collect the
�rst r eigenvalues in �1, the rest in �2. Thus

A =G�G�1 = G(�1 + �2)G
�1 =

=G�1G
�1 +G�2G

�1 � G�1G
�1;

which will give the best rank r approximation of A in the least squares sense. If
you want to speed up computations, you may partition G as well:

G�G�1 = [G1G2] �1 [G1G2]
H = G1 �1G

H

1 :

15

Singular Value Decomposition � SVD

We note with disappointment that so far we lack a general method to factorize an
arbitrary matrix. There is one such method, the SVD. One intuitive way to argue
for such a method starts from the fact that all Hermitian matrices (AH = A) have
a very nice eigenvalue decomposition

A = U �UH ;

where U is a unitary matrix with the eigenvectors of A as columns. So, let us
start with an arbitrary matrix B. Then both BHB and BBH are Hermitian with
non-negative eigenvalues only. Thus, there exist eigenvalue decompositions

BHB = U1 �1 U
H

1 ;

and
BBH = U2 �2 U

H

2 :

In fact, BH B and BBH share their positive eigenvalues. To see this, assume
that BH Bx = �x for some � > 0 and x 6= 0. Then BBH Bx = �Bx, and thus
Bx is an eigenvector of BBH with eigenvalue �.

Equivalently, we can write
�1 = UH1 BHB U1;

and similarly for �2.

Now expand

�1 = UH1 BH U2 U
H

2 B U1 =
�
UH2 BU1

�H �
UH2 BU1

�
and

�2 = UH2 B U1 U
H

1 BH U2 =
�
UH2 B U1

� �
UH2 BU1

�H
:

These manipulations will focus our interest on the matrix

UH2 B U1;

and we ask ourselves what kind of matrix that will produce diagonal matrices �1

and �2 when used according to the formulas

XH X = diag

XXH = diag:

The answer is � intuitively � that X is diagonal though not square! We have
arrived at the formulation of the SVD.

Any matrix A can be factorized as A = U1 �U
H

2 , where U1 and U2

are unitary, U1 holds the eigenvectors of AA
H , U2 those of A

H A. The
matrix � is diagonal, and holds the singular values of A, which equal
the positive square root of the shared non-zero eigenvalues of AAH and
AH A.

16

Note 1: dimA =M �N

=)

dimU1 = M �M; dim� = M �N; dimU2 = N �N

There are two more possibilities for choosing the dimensions. If M 6= N ,
there is one version called �economy size�. Which?

Note 2: rank A = rank �

Note 3: The �rst r = rank A columns of U1 span the range space of A. The last
N � r columns of U2 span the null space of A.

We abstain from giving a proof of the SVD, but will give an example of its use.
The example will focus on the solution to the equation

Ax = b;

and will give us the opportunity to (re)introduce a concept: the pseudo-inverse
of a matrix.

As you all know, the solution to Ax = b exists in the following two cases:

� A is square, full rank. Solution:

x = A�1 b

� A is taller than wide, full rank. Least squares solution, formulated in terms
of the projection matrix that projects onto the range space of A:

Ax = PA b;

As PA = A(AT A)�1AT , we �nd

x = (AT A)�1AT b:

Now, we may ask ourselves: is there always some kind of solution to Ax = b?
For instance

x+ y = 2

or �
x + y + z = 2
x + y + z = 4

The answer is yes, there always exists some kind of solution. We speak of mini-
mum norm solutions, for example

x+ y = 2

17

has the minimum norm solution x = y = 1. It is obtained as the solution to

argmin
�
x2 + y2

�
subject to the restriction

x + y = 2:

We also speak about minimum norm least squares solutions. For example

x+ y + z = 2
x+ y + z = 4

has the minimum norm, least squares solution x = y = z = 1. One way to argue
is

u = 2
u = 4

has the least squares solution u = 3,

x+ y + z = 3

has the minimum norm solution x = y = z = 1. Now:

Using the concept of the pseudo-inverse denoted A+, of a matrix A, all
systems of equations Ax = b have the pseudo-solution x = A+ b.
For the full rank cases � square A, least squares solution when A is taller
than wide � this solution coincides with the known solutions. Also, it is
a minimum norm solution for cases of more unknowns than independent
equations.

Maybe we should discuss the construction of the pseudo-inverse of a given matrix
A. Let us start with a diagonal matrix. The system of equations�

x = 2
2y = 3

can be written �
1 0
0 2

� �
x
y

�
=

�
2
3

�
with solution �

x
y

�
=

�
1 0
0 1=2

� �
2
3

�
;

so that the pseudo-inverse and the inverse (here same thing) can be obtained by
inverting the diagonal entries. What about8<

:
x+ 0y + 0z = 2
0x+ 2y + 0z = 3
0x+ 0y + 0z = 4

;

18

corresponding to 2
4 1 0 0

0 2 0
0 0 0

3
5
2
4 x
y
z

3
5 =

2
4 2

3
4

3
5 :

Now, this seems stupid, but we can still argue for a minimum norm, least squares
solution. The �rst two equations can be solved exactly � x = 2; y = 3=2 � and
the third can never be solved, the squared error is independent of the choice of
z. So, the minimum norm helps us to choose z = 0. Thus,2

4 x
y
z

3
5 =

2
4 1 0 0

0 1=2 0
0 0 0

3
5
2
4 2

3
4

3
5 =

2
4 2

3=2
0

3
5

Again, the pseudo-inverse is obtained by inverting the non-zero diagonal entries.
This argument can be carried on to the conclusion:

The pseudo-inverse of any diagonal matrix of dimensionsM�N is given
by the N �M diagonal matrix that has entries which are the inverse of
the non-zero elements of the original. The rest of the diagonal entries
are zero.

Now, it is a simple thing to derive the pseudo-inverse of any matrix using the
SVD:

A = U1 �U
H

2

()

UH1 AU2 = �

()

�+ =
�
UH1 AU2

�+
= U+

2 A+
�
UH1
�+

= UH2 A+ U1

()

A+ = U2 �
+ UH1

Note 4: (A+)+ = A++ = A

Note 5: A+A = U2�
+ UH1 U1 �U

H

2 = U2�
+�UH2 =

= U2

�
I O
O O

�
UH2 =

�
I O
O O

�

19

Case 1: []

� �
= [] = I

Case 2:

" #
[] =

" #
=

�
I O
O O

�

Note 6: The same goes for AA+.

����� o O o �����

As an application example, consider image compression. A black and white image
is of course nothing but a matrix, the pixels corresponding to the entries of the
matrix. Call the image A, and perform an SVD:

A = U1� UH2 :

Now assume that the image has a lot of structure and some added noise. This
means that � has some large singular values, from the structured image, and
many small singular values, from the noise. Collect the large singular values in
�1. Then

A = U1� UH2 = U1 (�1 + �2)U
H

2 � U1�1 U
H

2

gives the best least squares approximation for a given rank (number of non-zero
entries in �1). Now, you only have to store/transmit the �economy size� version
of the SVD. Let A be M �N , rank �1 = r << M;N . Then you can shorten U1

to M � r, �1 is diagonal r � r, and U
H

2 is shortened to r �N .

Please run the m-�le svdgames in Matlab.

20

% svdgames.m

% some applications of the SVD and the pseudoinverse

clear

% The first application is simple

A=randn(4,2);

b=randn(4,1);

x=A\b; % Least squares solution to the overdetermined system

[U,S,V]=svd(A); % A=U*S*V', U,V unitary, S diagonal

Spinv=(S*diag(1./diag(S)./diag(S)))'; % The pseudoinverse to a diagonal matrix

Apinv=V*Spinv*U'; % Apinv is the LEFT inverse of A

norm(x-Apinv*b,'fro') % we get the same answer

pause

% Now, let us see a stupid example

A=[1 1 1 ; 1 1 1];

b=[2 ; 4];

x=A\b % Not liked by matlab, also wrong solution

[U,S,V]=svd(A);

Spinv=S'/S(1,1)/S(1,1); % invert the non-zero singular values

Apinv=V*Spinv*U';

x=Apinv*b % Produces the minimum norm, least

% squares solution to the stupid example

% namely x1=x2=x3=1

pause

% Now, let us see some noise reduction

N=70;

vec=1:N;

A=vec'*vec; % A has rank 1

noise=5*randn(N,N);

data=A+noise;

[U,S,V]=svd(data);

Strunc=zeros(N,N);

Strunc(1,1)=S(1,1); % As A has rank 1 we only keep the largest singular value

Aapprox=U*Strunc*V';

norm(A-data,'fro')

norm(A-Aapprox,'fro') % An improvement

21

