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Least Squares from a Linear Algebra Point of View

Problem Formulation

Suppose that we have collected measurements of a signal y(n) for n = 0; � � �N � 1. Collect

the measurements in a vector Y:

Y =

2
64

y(0)
...

y(N � 1)

3
75 : (1)

Furthermore, assume that we model the vector Y as

Y = S(�) +E; (2)

where E denotes a noise vector, and S(�) denotes our model signal vector. Herein, consider

the case of a linear relationship: S(�) = A�, where A is a known N �n matrix, and � is an

unknown n� 1 vector, N � n. The problem treated in these notes is that of estimating �,

given the measurement of Y, and the knowledge of A.

Example 1 Suppose that the signal y(n) looks like the signal in Figure 1. Almost as if there

is a straight line going through the measurements? Thus, a reasonable model is

y(n) = kn+m+ e(n); n = 0; � � � ; N � 1: (3)

Then we can formulate a matrix description as2
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Figure 1: An example of a signal y(n).

Exercise 1 In various applications, polynomial interpolation (curve �tting!) is common.

That is, model the measured signal as

y(n) = b0 + b1n+ � � � bpn
p + e(n); n = 0; � � � ; N � 1: (5)

Let � = [b0 b1 � � � bp]
T . Specify the matrix A in the matrix description Y = A� +E.

1



The Least Squares (LS) Solution

To be able to really understand the LS solution, we have to refresh some linear algebra

theory. For our present case, perhaps the most important term is the range space of a
matrix, denoted R(�). The de�nition of the range space of an m� n matrix A is:

R(A) = fy : y = Ax; 8 x 2 R
ng (6)

Try to think of this as follows: a) The matrix A is a linear mapping that takes the vector x

from a point in the n-dimensional space, to a point in the m-dimensional space, b) Compute

y = Ax for all possible vectors x, and remember the corresponding y's. c) The range space

of A is de�ned as the part of the m-dimensional space that is �lled by the computed y's.

Too abstract? Try the following exercise:

Exercise 2 Draw the range space of

1. A =

�
1
0

�
.

2. A =

�
0
1

�
.

3. A =

�
1 0
0 1

�
.

4. A =

�
1 1
1 1

�
.

5. A =

�
1 0
0 0

�
.

Let us return to our original problem. Then we note that the model signal S(�) is constrained
to lie in the range space of A: S(�) 2 R(A), see Figure 2. Due to measurement noise

A�1

A�2

A�3

R(A)

Figure 2: Illustration of R(A).

and model imperfections, the vector Y will typically not lie in R(A), see Figure 3. As a
consequence, there will typically NOT exist an exact solution to the equation Y = A�.

Accepting the fact that there generally (at least when N > n, i.e an overdetermined system

of equations) is no solution to Y = A�, it is natural to look for approximative solutions.

One popular way to do this is to apply the LS principle:

Find �̂ such that the Euclidean distance between Y and S(�) = A� is minimized!
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Figure 3: Illustration of Y 62 R(A).

Exercise 3 Let Y = [1 1]T , and A = [1 0]T , see Figure 4. How would you select � such

that the length of E = Y �A� is minimized? We are now getting close to the LS solution.

�
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�
�
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�
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�
�

Figure 4: Illustration of Example

De�ne the LS solution of � as the value of � that minimizes kY �A�k2 and denote it with

�̂.

Exercise 4 Assuming that A is full rank (ATA invertible), show that

kY �A�k2 =
�
� � (ATA)�1ATY

�T
ATA

�
� � (ATA)�1ATY

�
+ YTY �YTA(ATA)�1ATY: (7)

Hint: kxk2 = xTx.

Note, only the �rst term of (7) depends on � and this term is clearly greater than or equal

to zero. Thus, kY �A�k2 is minimized if we let

�̂ = (ATA)�1ATY (8)
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which is the desired solution. At the same time we get a measure of how large the error is;

the norm of the error vector is

kY �A�̂k2 = YTY �YTA(ATA)�1ATY: (9)

Note, in the calculations above it is assumed that ATA is invertible, which is a necessary

assumption for the above to be valid.

Remark 1 In the literature, the matrix Ay = (ATA)�1AT is called the �pseudo-inverse�1

of A. Note, if A is square and invertible, the pseudo-inverse and the usual inverse coincide:

(ATA)�1AT = A�1A�TAT = A�1: (10)

Remark 2 In Matlab, the LS solution is computed as

>> TH=A\Y;

Remark 3 Consider the error vector

E = Y �A�̂ =
�
I�A(ATA)�1AT

�
Y: (11)

This error vector is orthogonal to A:

ATE = AT
�
I�A(ATA)�1AT

�
Y = ATY �ATY = 0; (12)

which may be interpreted as an example of the principle of orthogonality. Finally, compare

this orthogonality relation with your answer to exercise !

Remark 4 In these notes we derived the LS solution as the minimizing argument of the

criterion in Exercise . Another way to arrive at the presented LS solution, is to use the

concept of projection matrices. This kind of matrices is discussed in accompanying notes on

linear algebra.

Please run the m-�le polyreg in Matlab.

1The pseudo-inverse is de�ned also when A is not full rank (AT
A not invertible).
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% polyreg.m

% to investigate the least squares approach the polynomial regressions.

clear

% generate a coefficient vector, generaty noisy data

degree=3;

sigma=0.2;

coeff=rand(1,degree+1);

x=-1:0.02:1;

truedata=coeff*[(x.^3)' (x.^2)' (x.^1)' (x.^0)']';

data=truedata+sigma*randn(1,length(truedata));

% estimate the coefficients in the least squares sense

coeffest=polyfit(x,data,degree);

% plot the result

figure(1)

clf

plot(x,truedata,'r', x,data,'g', x, coeffest*[(x.^3)' (x.^2)' (x.^1)' (x.^0)']','b')

hold on

title(' red-true, blue-estimate ')

hold off

% Maybe you will note, particularly if you increase the noise, that polynomial

% fitting is not a very stable method. You can do better if you choose other

% basis functions than x^0, x^1, x^2, ... . Try to obtain a set of orthogonal

% basis functions, such as Legendre polynomials if you insist on using powers.

% A choise noted for its stability is sines and cosines, a k a the Fourier transform.
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