
Holger Broman, August 19, 1999

Norm-preserving linear mappings from R
N to R

N

This section will give you an example of how to analyze a statement such as the
one given in the heading. Let us reduce the complexity of the task by taking one
concept at a time and �nally synthesize to make the whole obvious.

A mapping M is denoted, for instance

M : A 3 a
M

y b 2 B;

and illustrated by the Venn-diagram

BA M

a b
+ +

The de�ning feature of a mapping is the uniqueness described by

b = M(a) and c = M(a)

)

c = b

Note 1 A is a set containing elements such as a, and similarly for B and b. The set
A is called the domain of M , and B the range of M (Swedish: de�nitions-
mängd och värdeförråd). In the case of mappings from RN to RN , A = RN

and B � RN .

Note 2 The mapping is invertible i�

b = M(a1) and b = M(a2)

)

a1 = a2 8 a1; a2

We then denote the inverse mapping by a = M�1(b).

����� o O o �����

Engineers call linear mappings by a di�erent name; systems that obey the super-
position principle. The illustration below shows one example.
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One alternative engineering phrasing is to call it a linear system. In mathematical
terminology:

A mapping M is linear i�

� M(a1 + a2) = M(a1) +M(a2)

and

� M(c � a) = cM(a); c 2 R1(C1)

Note 3 It is required that the addition a1+a2 is de�ned and that the multiplication
of a by a real (complex) number is de�ned. This is of course the case for
mappings from RN to RN .

����� o O o �����

Now to the problem of de�ning RN . As you all know, R1 is de�ned by

R1 =

�
all real numbers

�
,

and

R2 =

�
all pairs of real numbers

�
,

We thus de�ne

R
N =

�
all N -tuples of real numbers

�
.

Note 4 We often denote elements of RN by bold characters, such as

x = (x1; x2; : : : ; xN); xn 2 R
1 8 n
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Note 5 There is an isomorphism between RN and N -dimensional vectors with real
scalars. In everyday speech we make extensive use of this isomorphism and
do not di�erentiate between RN and the set of N -dimensional vectors with
real scalars.

Note 6 A polynomial is a scalar product. De�ne the notations

a
T = (a0 a1 � � � aN�1);

and
x
T = (x0 x1 � � � xN�1):

Then

p(x)
4

= a
T
x =

N�1X
n=0

an x
n:

Thus, there is an isomorphism between RN and polynomials, as de�ned by
the coe�cient vector a.

����� o O o �����

What do we mean by a norm? An example is the area of a surface, another the
volume of a body in three dimensions, a third the weight of a body. We generalize
from these examples to require:

A norm of the elements x 2 C N is a mapping M to R+ .

M : C
N 3 x

M

y y 2 R+

It is required that

� M(x) � 0

� M(x) = 0 ) x = 0

� M(x1 + x2) �M(x1) +M(x2) � the triangle inequality

� M(cx) = jcjM(x); c 2 C 1

����� o O o �����

We now start to synthesize. Let us start by a mapping M from R
N to RN :

M : R
N 3 x

M

y y 2 RN
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What about a linear mapping? We require � among other things �

M(x1 + x2) = M(x1) +M(x2):

One obvious candidate is to let M be represented by a left multiplication by an
N by N matrix A with real-valued entries (and x1, x2 by N -dimensional vectors):

A(x1 + x2) = Ax1 + Ax2:

We note with delight that

Acx = cAx; c 2 R1(C 1);

so that this multiplication by a matrix indeed is a linear mapping. It is possible
to prove that it is the only form of the mapping looked for, but we abstain from
giving the proof. We summarize the result so far:

A linear mapping from RN to RN is equivalent to the multiplication of
an N -dimensional real-valued vector by an N by N real-valued matrix.

����� o O o �����

Now we are closing in on the goal. Let us de�ne the norm to use as the Euclidean
norm k x k of a vector x:

k x k2= x
T
x =

NX
n=1

x2
n

Note 7 You may use other norms � mappings from RN to R1 � but we stay with
the Euclidean norm, the length. Now, norm-preserving means that if

y = Ax;

then
k y k=k x k :

Let us do the math involved:

k y k2=k Ax k2= x
TATAx;

so that
x
TATAx = x

T
x:

Re-write
0 = x

TATAx� x
T
x = x

T (ATA� I)x:

For this to hold true for all x, it is required that

ATA = I:
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Note 8 The matrix A must be such that

A�1 = AT :

����� o O o �����

The �nal lap is now to come. What are the eigenvalues of A?

Ag = �g:

The fact that g may have complex-valued elements complicates matters some-
what, as does the fact that � may be complex-valued. To comply with the re-
quirement that a norm is non-negative, real valued, we must take the Hermitian
transpose, i.e. transpose and complex conjugate:

Ag = �g

)

g
HAH = g

H�� = ��gH :

As
AH = AT ;

remember real-valued entries, we �nd

g
HATAg = ��gH�g = j�j2gHg;

and �nally, as ATA = I,
g
H
g = j�j2gHg;

so that all eigenvalues of A must be on the unit circle.

����� o O o �����

We have reached the end of our journey:

A norm-preserving linear mapping from R
N to RN is a real-valued

matrix A such that
ATA = I:

All eigenvalues of A have unit magnitude.

Note 9 The converse statement is true: any N by N real-valued matrix A that
obeys ATA = I represents a norm-preserving linear mapping.
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Note 10 If you write
A = [a1 a2 � � �aN ] ;

then

I = ATA =

2
64
a
T

1

...
a
T

N

3
75 [a1 � � �aN ]

shows that the column vectors of A are orthonormal. Such a matrix A is
called an orthogonal matrix (and not an orthonormal matrix).

Note 11 In the complex-valued case, using Hermitian transposition (transpose and
complex conjugate), the equation

UH U = I

de�nes a unitary matrix.

Note 12 The mapping de�ned by an orthogonal (unitary) matrix also preserves
scalar products: Let

x1 = Ux; y1 = Uy;

then
x
H

1 y1 = x
H UH Uy = x

H
y:

Please run the m-�le normpres in Matlab.
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% normpres.m

% in the 2D-case, a norm-preserving matrix is either a rotation or a reflection.

clear

alpha=pi/3;

c=cos(alpha);

s=sin(alpha);

Rot=[c -s ; s c]

Ref=[c s ; s -c] % Does NOT reflect in the line of slope alpha

x=rand(2,1)-[0.5;0.5];

xrot=Rot*x;

xref=Ref*x;

radius=norm(x);

t=0:0.01:2*pi;

figure(1), clf, hold on, axis equal

plot([0 x(1)],[0 x(2)],'r',x(1),x(2),'rp')

plot([0 xrot(1)],[0 xrot(2)],'g',xrot(1),xrot(2),'gp')

plot([0 xref(1)],[0 xref(2)],'b',xref(1),xref(2),'bp')

plot(radius*cos(t),radius*sin(t),'k')

plot(radius*[-1 1],radius*[-tan(alpha/2) tan(alpha/2)],'b--') % line of reflection

plot([x(1) xref(1)],[x(2) xref(2)],'k-.')

% let us take the projection while we are at it

Proj=(Ref+eye(2))/2

xproj=Proj*x;

plot([0 xproj(1)],[0 xproj(2)],'y',xproj(1),xproj(2),'yp')

title('Original-red, rotation pi/3 -green, reflection in pi/6 -blue, projection-yel

% Please find the eigenvalues of Rot, Ref, and Proj.

% Figure out why the are what they are, it is no accident.

% You may find it instructive to vary alpha, then do not trust

% the title of the figure.

% Run this program several times, random data!
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