Holger Broman, August 19, 1999

Matrices, geometry, and mappings
Eigenvalues, eigenvectors and diagonalization

For a square matrix A, of dimension N x N, the equation
y = Ax

denotes a mapping from RY to RY. In general, the vectors x and y are of course
not collinear. The interesting question arises: do there exist vectors g such that,
when mapped by A, they keep the original direction (or possibly reverse the
direction)? Formulated differently, has the equation

Ag = \g

any solution for \ scalar and g € RV? The answer is yes, and that both \ and
the elements of g in general are complex-valued, even if the elements of A are
real-valued. Let us investigate the solutions by re-writing the equation:

(A—Xg=0

Thus, g must be in the null-space of A — AI. It also follows that the determinant
of A — Al must be zero. As the determinant is an Nth degree polynomial in A,
it follows that A has exactly N eigenvalues. For eigenvectors, things are more
complicated. If g is an eigenvector, then so is cg, ¢ scalar. Now, if we disregard
this effect, then can we say that A has exactly N eigenvectors? The answer is no;
there exist matrices that have less than N eigenvectors, but none having more
than V.

We will proceed by demonstrating how certain matrices can be diagonalized. We
will consider matrices such that their eigenvectors form a basis of RY. Thus

and

N
Zcigi =0, only for ¢; =0V 1.
i=1

It follows that

Algi---gn] =[g1 - 8n]

The proof is obtained by noting



o g -gn| = [Migi - Anvgn]

G=[gi--gn]
and
A 0
A= .
0 AN

Now, G is invertible as its columns are linearly independent. Thus
AG =GN < G 'AG =A.

Finally, here is a theorem that gives a sufficient condition for a matrix to have a
basis of eigenvectors:

If the N eigenvalues of A are distinct, then A has a basis of eigenvectors.

The proof is by contradiction. Assume therefore that only M (< N) eigenvectors
are linearly independent. Use a permutation to assure that the M first are linearly
independent. Then

M

gN = Z Cm &m, not all ¢, zero
m=1
As a consequence,
M
A gn = Z Cm A gm,
m=1
which implies
M
)\N gNn = Z Cm )\m gm-
m=1
In addition,
M
)\N gNn = Z Cm, )\N gm-
m=1

Subtract these two equations:



As A\, # Ay V m, and the set {gm}i\/[ is linearly independent, we have reached
the desired contradiction as the only way we can satisfy the equation above is
Cm =0V m.

Finally, a note on the eigenvalues of a matrix, and powers of that matrix. If A is
an eigenvalue of A, i.e.
Ag = Ag,

then A\ is an eigenvalue of AX as
Afg = AR Ag = AK"\g = AK"1g = ... = \Ng.

Conversely, we can only make the obviously weaker statement. If A is an eigen-
value of AX, then an eigenvalue of A is to be found in the set {A/X}.

Let us study symmetric matrices from an eigenvalue and eigenvector point of
view. Let us also free ourselves from the requirement of real-valued entries in
the matrix. The Hermitian transpose of a matrix is the transpose and complex
conjugate of the matrix

AT = (AT)".
By definition, a Hermitian matrix fulfills
A= A",

A real-valued symmetric matrix is Hermitian.

For vectors with complex-valued entries, we extend the definitions of scalar prod-
uct and norm:

N
The scalar product between x and y, both in CV, is x"y = Zx;; Yn

n=1

1/2

The length (norm) of a complex vector is || x ||= (x" x)

Here follow two important propositions:

Hermitian matrices have real-valued eigenvalues. I




Proof: Let
Ag=\g, g#N0.
Then
g Ag=2gg=X gl
and
(8" Ag)" =g A" g =g" Ag,
which shows that the left hand side, g Ag = \ || g ||?, is real-valued, as it is a
scalar that equals its complex conjugate.

Eigenvectors of Hermitian matrices that belong to different eigenvalues

are orthogonal.

Proof: Agi=XMigi, Ag =g
Melg=0Mg) g=(4g)"g=
=g’ Ag, =gl Ago =gl \» g = X\ g g,

so we have

A1 (gf{ g2) = A (gf{ g2) ;AL FE N

glig,=0

Note: It is true that all Hermitian matrices have a full set of orthogonal eigen-
vectors, even for eigenvalues that have multiple occurrence. The proof is given
in the appendix.

Note: It may be suggested that you have a look at the notes on “Norm-preserving
linear mappings from RY to RY” before you proceed here.

Now, for Hermitian matrices we have
G'AG = A =diag(\,...,\y)

where the columns of G constitute an orthonormal basis. For real-valued matrices

A, we thus find

gl

GT G = : (g1...88) =1

g



which greatly simplifies matters as G~ is simple to compute: G~! = GT
For complex-valued matrices we find
G"G=...=1,
so that the diagonalization in both cases can be written
G" AG = A.

Eigenvalues and eigenvectors are useful. One use is in the calculation of the
principal axes and moments of inertia of a rigid body. Another is when solving
differential equations by transform methods.

Please run the m-files eigl and eig2 (after the Appendix).



Appendix: The spectral theorem'

Theorem: Let A be N x N, Hermitian. Then, there exists a unitary matrix
U (see norm-preserving linear mappings) and a real-valued diagonal matrix A so
that

U"AU = A.

The columns of U are eigenvectors of A, the diagonal of A holds the eigenvalues
of A.

The proof is by 'downwards’ induction, and uses the following lemma.

Lemma: Let A be Hermitian and g an eigenvector, i.e. Ag = A g for some \.
Then, if v is orthogonal to g, then A v is orthogonal to g.

Proof of lemma:

(Av)ig=vi AT g=vT Ag=vTAg=0

Proof of the spectral theorem:
Any matrix has at least one eigenvector, as
Ag=)g

has at least one solution. This follows from the fact that det(A — A1) =0 is an
Nth degree polynomial in .

Let g be a normalized eigenvector and construct a unitary matrix U; by letting
g be its first column, and expand the rest of the columns any way you like (there
is always an ON-base in CV). Then

UtAU, =UM AU, =

"
_| 8 _
= [ rest ] Alg rest] =

Of course, A, is Hermitian, N — 1 x N — 1:

! Adapted from Jéran Bergh



)\{10...0 A 0O - 0

0 0 "
= = (U A,)" =UA"U, =
Al Ay (U A0) ! '
0 0
A 0 - 0
= 0
. A2
0
Now, apply the same argument to As:
A O - 0
-1 0
0
Combine
T A, O e 07
10 0 10 0 0 A 0 0
0 ) 0 .
. _1 Ul_ A U1 . = . 0
0 0 . . A3
L 0 0 1

Repeat in total N times, and note that a product of unitary matrices is unitary:
U'TAU=A

The proof is completed.



% eigl.m
% eigenvalues and vectors
clear

% A random matrix

sprintf (’A random matrix’)
A=randn(2,2);

[V,D] = eig(A); D, V
pause

% symmetric implies real-valued eigenvalues
sprintf (’A symmetric matrix’)

B=A+A’;

[V,D] = eig(B); D, V

pause

% ’square’ implies non-negative definite
sprintf (’A non-negative definite matrix’)
C=AxA’;

[v,D] = eig(C); D, V

pause

% eigenvalues to AxA

sprintf (’Error in eigenvalues of squared matrix minus squared eigenvalues’)
norm(sort(eig(A) .*eig(A))-sort(eig(A*A)),’fro’) J, sort seems to work here
pause

% A pathological matrix
sprintf (’A matrix that does not have a full set of eigenvectors’)
[V,D]=eig([3 1;0 3]); D, V



% eig2.m

/» Symmetric matrices, eigenvectors and ON-bases.
clear

% Generate a random, square matrix
N=100;
A=randn(N,N) ;

% Make it symmetric
A=A+A?;

[V,Dl=eig(A);

sprintf (’The eigenvectors are orthonormal’)
norm(V*V’-eye(N),’fro’)
pause

sprintf (’The inverse of the eigenvector matrix equals the transpose’)
norm(V’-inv(V),’fro?)
pause

sprintf (’The matrix is diagonalized by the eigenvector matrix’)
norm(D-V’xAxV,’fro’)
pause

sprintf (’The eigenvalues are real-valued’)
norm(real(D)-D,’fro’)



