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Matrices, geometry, and mappings

Eigenvalues, eigenvectors and diagonalization

For a square matrix A, of dimension N �N , the equation

y = Ax

denotes a mapping from R
N to RN . In general, the vectors x and y are of course

not collinear. The interesting question arises: do there exist vectors g such that,
when mapped by A, they keep the original direction (or possibly reverse the
direction)? Formulated di�erently, has the equation

Ag = �g

any solution for � scalar and g 2 RN ? The answer is yes, and that both � and
the elements of g in general are complex-valued, even if the elements of A are
real-valued. Let us investigate the solutions by re-writing the equation:

(A� �I)g = 0

Thus, g must be in the null-space of A��I. It also follows that the determinant
of A � �I must be zero. As the determinant is an Nth degree polynomial in �,
it follows that A has exactly N eigenvalues. For eigenvectors, things are more
complicated. If g is an eigenvector, then so is cg, c scalar. Now, if we disregard
this e�ect, then can we say that A has exactly N eigenvectors? The answer is no;
there exist matrices that have less than N eigenvectors, but none having more
than N .
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We will proceed by demonstrating how certain matrices can be diagonalized. We
will consider matrices such that their eigenvectors form a basis of RN . Thus

Agi = �igi; i = 1; : : : ; N

and
NX
i=1

cigi = 0; only for ci = 0 8 i:

It follows that

A [g1 � � �gN ] = [g1 � � �gN ]

2
64
�1 0

. . .

0 �N

3
75 :

The proof is obtained by noting
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� A [g1 � � �gN ] = [Ag1 � � �AgN ]

� [g1 � � �gN ]

2
64
�1 0

. . .

0 �N

3
75 = [�1g1 � � ��NgN ]

Introduce the notations
G = [g1 � � �gN ]

and

� =

2
64
�1 0

. . .

0 �N

3
75 :

Now, G is invertible as its columns are linearly independent. Thus

AG = G� () G�1AG = �:

Finally, here is a theorem that gives a su�cient condition for a matrix to have a
basis of eigenvectors:

If the N eigenvalues of A are distinct, then A has a basis of eigenvectors.

The proof is by contradiction. Assume therefore that only M (< N) eigenvectors
are linearly independent. Use a permutation to assure that theM �rst are linearly
independent. Then

gN =
MX
m=1

cm gm; not all cm zero

As a consequence,

A gN =
MX
m=1

cm A gm;

which implies

�N gN =
MX
m=1

cm �m gm:

In addition,

�N gN =
MX
m=1

cm �N gm:

Subtract these two equations:

0 =
MX
m=1

cm(�m � �N)gm:
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As �m 6= �N 8 m, and the set fgmg
M
1

is linearly independent, we have reached
the desired contradiction as the only way we can satisfy the equation above is
cm = 0 8 m.

Finally, a note on the eigenvalues of a matrix, and powers of that matrix. If � is
an eigenvalue of A, i.e.

Ag = �g;

then �K is an eigenvalue of AK , as

AKg = AK�1Ag = AK�1�g = �AK�1g = : : : = �Kg:

Conversely, we can only make the obviously weaker statement. If � is an eigen-
value of AK, then an eigenvalue of A is to be found in the set

�
�1=K

	
.
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Let us study symmetric matrices from an eigenvalue and eigenvector point of
view. Let us also free ourselves from the requirement of real-valued entries in
the matrix. The Hermitian transpose of a matrix is the transpose and complex
conjugate of the matrix

AH =
�
AT
�
�

:

By de�nition, a Hermitian matrix ful�lls

A = AH :

A real-valued symmetric matrix is Hermitian.

For vectors with complex-valued entries, we extend the de�nitions of scalar prod-
uct and norm:

The scalar product between x and y, both in C
N , is xHy =

NX
n=1

x�n yn

The length (norm) of a complex vector is k x k=
�
x
H
x
�1=2

Here follow two important propositions:

Hermitian matrices have real-valued eigenvalues.
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Proof: Let
A g = � g; g 6= 0:

Then
g
H A g = � gH g = � k g k2

and �
g
H A g

�H
= g

H AH g = g
H A g;

which shows that the left hand side, gH A g = � k g k2, is real-valued, as it is a
scalar that equals its complex conjugate.

Eigenvectors of Hermitian matrices that belong to di�erent eigenvalues
are orthogonal.

Proof: A g1 = �1 g1; A g2 = �2 g2

�1 g
H
1
g2 =(�1 g1)

H
g2 = (A g1)

H
g2 =

=gH
1
AH g2 = g

H
1
A g2 = g

H
1
�2 g2 = �2 g

H
1
g2;

so we have

�1
�
g
H
1
g2

�
= �2

�
g
H
1
g2

�
; �1 6= �2

=)

g
H
1
g2 = 0

Note: It is true that all Hermitian matrices have a full set of orthogonal eigen-
vectors, even for eigenvalues that have multiple occurrence. The proof is given
in the appendix.

Note: It may be suggested that you have a look at the notes on �Norm-preserving
linear mappings from RN to RN � before you proceed here.
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Now, for Hermitian matrices we have

G�1AG = � = diag (�1; : : : ; �N)

where the columns of G constitute an orthonormal basis. For real-valued matrices
A, we thus �nd

GT G =

0
B@

g
T
1

...
g
T
N

1
CA (g1 : : :gN) = I
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which greatly simpli�es matters as G�1 is simple to compute: G�1 = GT

For complex-valued matrices we �nd

GH G = : : : = I;

so that the diagonalization in both cases can be written

GH AG = �:

Eigenvalues and eigenvectors are useful. One use is in the calculation of the
principal axes and moments of inertia of a rigid body. Another is when solving
di�erential equations by transform methods.

Please run the m-�les eig1 and eig2 (after the Appendix).
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Appendix: The spectral theorem1

Theorem: Let A be N � N , Hermitian. Then, there exists a unitary matrix
U (see norm-preserving linear mappings) and a real-valued diagonal matrix � so
that

U�1 AU = �:

The columns of U are eigenvectors of A, the diagonal of � holds the eigenvalues
of A.

The proof is by 'downwards' induction, and uses the following lemma.

Lemma: Let A be Hermitian and g an eigenvector, i.e. A g = � g for some �.
Then, if v is orthogonal to g, then Av is orthogonal to g.

Proof of lemma:

(Av)Hg = v
H AH g = v

H A g = v
H � g = 0

Proof of the spectral theorem:

Any matrix has at least one eigenvector, as

A g = � g

has at least one solution. This follows from the fact that det(A� � I) = 0 is an
Nth degree polynomial in �.

Let g be a normalized eigenvector and construct a unitary matrix U1 by letting
g be its �rst column, and expand the rest of the columns any way you like (there
is always an ON-base in C

N ). Then

U�1

1
AU1 =UH

1
AU1 =

=

�
g
H

rest

�
A [g rest] =

2
6664
�1 0 � � � 0
0
... A2

0

3
7775 :

Of course, A2 is Hermitian, N � 1�N � 1:

1Adapted from Jöran Bergh
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2
6664
�H
1

0 � � � 0
0
... AH

2

0

3
7775 =

2
6664
�1 0 � � � 0
0
... A2

0

3
7775 =

�
UH
1
AU1

�H
= UH

1
AH U1 =

=UH
1
A U1 =

2
6664
�1 0 � � � 0
0
... A2

0

3
7775

Now, apply the same argument to A2:

U�1

2
A2 U2 =

2
6664
�2 0 � � � 0
0
... A3

0

3
7775

Combine

2
6664

1 0 � � � 0
0
... U�1

2

0

3
7775U�1

1
A U1

2
6664

1 0 � � � 0
0
... U2

0

3
7775 =

2
666664

�1 0 � � � � � � 0
0 �2 0 � � � 0
... 0
...

... A3

0 0

3
777775

Repeat in total N times, and note that a product of unitary matrices is unitary:

U�1A U = �

The proof is completed.
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% eig1.m

% eigenvalues and vectors

clear

% A random matrix

sprintf('A random matrix')

A=randn(2,2);

[V,D] = eig(A); D, V

pause

% symmetric implies real-valued eigenvalues

sprintf('A symmetric matrix')

B=A+A';

[V,D] = eig(B); D, V

pause

% 'square' implies non-negative definite

sprintf('A non-negative definite matrix')

C=A*A';

[V,D] = eig(C); D, V

pause

% eigenvalues to A*A

sprintf('Error in eigenvalues of squared matrix minus squared eigenvalues')

norm(sort(eig(A).*eig(A))-sort(eig(A*A)),'fro') % sort seems to work here

pause

% A pathological matrix

sprintf('A matrix that does not have a full set of eigenvectors')

[V,D]=eig([3 1;0 3]); D, V
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% eig2.m

% Symmetric matrices, eigenvectors and ON-bases.

clear

% Generate a random, square matrix

N=100;

A=randn(N,N);

% Make it symmetric

A=A+A';

[V,D]=eig(A);

sprintf('The eigenvectors are orthonormal')

norm(V*V'-eye(N),'fro')

pause

sprintf('The inverse of the eigenvector matrix equals the transpose')

norm(V'-inv(V),'fro')

pause

sprintf('The matrix is diagonalized by the eigenvector matrix')

norm(D-V'*A*V,'fro')

pause

sprintf('The eigenvalues are real-valued')

norm(real(D)-D,'fro')
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