Holger Broman, August 19, 1999

Projections

Rather than repeating the intuitive build-up as done in the section on reflections,
let us sit back and do a little “high-level reasoning”. What is the relation between
an original point, its mirror image, and its projection onto the same subspace as
that of the reflection? Yes, of course, and let us formalize. The vector to the
original point is x, to its mirror image X, and to its projection xp. Thus,

X+ X
2 ?

Xp =

as shown in the figure below.
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As projecting a point is a linear mapping, there must exist a projection matrix.
Denote it by P and the reflection matrix by M. The relation above then reads

Re-write .

As this relation holds true for all choices of x, we draw the conclusion that the
range space of P — 2(M + I) must be empty and that

1
We can use this relation to derive properties of P:
e )M symmetric = P symmetric
e [=M?=(02P—-1)>?=4P?> —4P+1 = P?>=P
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The second property we could have derived without doing any calculations: pro-
jecting an already projected point does not move it any further.

Now, we are again prepared to give a sensible definition:

Definition: A symmetric matrix P is an orthogonal
projection matrix iff P2 = P.

Note 1 Projection matrices are very important not only in Least Squares estimation
problems, but also in other areas of modern signal processing.

Note 2 The relation between reflections and projections has been stated, a relation
that makes it possible to construct one matrix from the other.

The eigenvalues of projection matrices are easily found:

I

Pg = )g

g = Pg = P2g = )\2g
Thus,

Ae{0,1}

IT
1
1
Thus,
1

How many of the eigenvalues of P equal 17 Well, the rank of P equals not only
this number, but also the dimension of the range space of P. The range space of
P is of course the space onto which P projects.

How do you construct the projection matrix given the space onto which to
project? The answer will be given taking the (imaginary) detour of solving
overdetermined systems of linear equations.



Given an overdetermined system of equations

Ax = b,
you will know from the next leaflet that the LS solution is given by

x = (ATA)"'A"Db,
where we assumed that AT A is non-singular. Thus, the equation
Ax = A(ATA) ' ATb

is guaranteed to have exactly one solution. How come, when the equation

Ax=Db

generally has no solution? The answer is that the vector A(ATA)"*ATb must
belong to the range space of A — remember the important interpretation of Ax
as a linear combination of the column vectors of A. Could it be that the matrix
A(ATA)~'AT is a projection matrix?

. lA(ATA)—lAT] - A(AT A)"1AT
. [A(ATA)—lAT] L A(AT A)=1 AT

Yes!

e A vector that falls in the range space of A can be written as a linear com-
bination of the columns of A, i.e. as Ay. What does the projection matrix
do to this vector?

A(ATA) AT Ay = Ay

Thus, P = A(ATA) "t AT projects onto the space spanned by the columns of A.
We have thus proved the following:

Theorem: Given vq,...,v,, that span an M-dimensional subspace of
RV, construct the matrix

Then the projection matrix

P = A(ATA) AT

projects onto the subspace.




Note 3 Now that we know how to construct projection matrices, we also know how
to construct reflection matrices:

M=2P -1

Note 4 In practice, you do not construct projection matrices from the formulas

A:(Vl VM)

P=A(ATA)" A",

it is numerically not a smart thing to do. In the leaflet on orthogonalization,
you will learn how. Let us mention how desirable it is to have the vectors
v,, mutually orthonormal, as AT A then equals the identity and

P=AAT,

so there is no need to invert any matrix.

Let us look at a matrix that is strongly related to the permutation matrix P de-
rived above, i.e. the matrix that projects onto the subspace spanned by vq, ..., vy;.
First, remember that P x is the projection of x onto that subspace. The “rest”

of x is
y=x—Px= (I - P)x.

Observe that y is perpendicular to the subspace onto which P projects:
Py=P(I—-P)x=(P-P)x=0,
so that y is perpendicular to vy,...,vy,.

Study
(I-P2=T-2P+P2=]-P,

so that I — P also is a projection matrix. This matrix projects onto the orthogonal
complement of the subspace spanned by vy, ..., vy and is denoted P*:

pt=1-pr

The notation P+ is read “P-perp”. P+ will play an important role in the procedure
to orthogonalize a given set of vectors.

Please run the m-file projections in Matlab.



% projections.m, 3D to 2D
% run this program several times, random data.
clear

% Generate the space on which to project
vi=randn(3,1); v2=randn(3,1); A=[vl v2];

% Construct the projection matrix and check for key properties
P=Axinv ((A’*A))*A’;
norm(P-P’,’fro’), norm(P*P-P,’fro’)

% Create an ON-basis for the plane and generate plane-plot
[q,r]1=qr(A,0);

step=0.2; width=3; index=1;

for 1=-width:step:width
pl=1xq(:,1)-width*q(:,2);
p2=1xq(:,1)+width*q(:,2);
p3=(1+step/2)*q(:,1)+width*q(:,2);
p4=(1+step/2)*q(:,1)-width*q(:,2);
planeplot(:,index)=pl;
planeplot(:,index+1)=p2;
planeplot(:,index+2)=p3;
planeplot(:,index+3)=p4;

index=index+4;

end

ax=[ -width width -width width -width width];

% Generate some random vectors and project them
M=50;

dum=randn(3,M) ;

dummer=P*dum;

% plot some examples

figure(1), clf, hold on, axis(ax), axis equal, view(3)

plot3([0 vi(1)], [0 vi(2)]1, [0 vi(3)], ’b?)

plot3([0 v2(1)]1, [0 v2(2)]1, [0 v2(3)], ’b’)

for 1=1:5

plot3(dum(1,1) ,dum(2,1) ,dum(3,1),’rp’)

plot3(dummer(1,1) ,dummer(2,1) ,dummer(3,1),’gp’)

plot3([dum(1,1) dummer(1,1)], [dum(2,1) dummer(2,1)],...
[dum(3,1) dummer(3,1)]1, ’y’)

end

plot3(planeplot(l,:), planeplot(2,:), planeplot(3,:), ’k’)

title(’Five points and their projections’)

% plot all projected points
figure(2), clf, hold on, axis(ax), axis equal, view(3)



plot3([0 vi(1)], [0 vi(2)], [0 vi(3)], ’b’)

plot3([0 v2(1)1, [0 v2(2)]1, [0 v2(3)], ’b?)

for 1=1:M

plot3(dummer(1,1) ,dummer(2,1),dummer(3,1),’gp’)

end

plot3(planeplot(1l,:), planeplot(2,:), planeplot(3,:), ’k’)
title(’Fifty projected points?’)



