
Holger Broman, August 19, 1999

Projections

Rather than repeating the intuitive build-up as done in the section on re�ections,
let us sit back and do a little �high-level reasoning�. What is the relation between
an original point, its mirror image, and its projection onto the same subspace as
that of the re�ection? Yes, of course, and let us formalize. The vector to the
original point is x, to its mirror image xM and to its projection xP . Thus,

xP =
x + xM

2
;

as shown in the �gure below.
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As projecting a point is a linear mapping, there must exist a projection matrix.
Denote it by P and the re�ection matrix by M . The relation above then reads

xP = Px =
1

2
(x+Mx) =

1

2
(M + I)x:

Re-write �
P �

1

2
(M + I)

�
x = 0:

As this relation holds true for all choices of x, we draw the conclusion that the
range space of P � 1

2
(M + I) must be empty and that

P =
1

2
(M + I):

We can use this relation to derive properties of P :

� M symmetric ) P symmetric

� I = M2 = (2P � I)2 = 4P 2 � 4P + I ) P 2 = P
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The second property we could have derived without doing any calculations: pro-
jecting an already projected point does not move it any further.

Now, we are again prepared to give a sensible de�nition:

De�nition: A symmetric matrix P is an orthogonal
projection matrix i� P 2 = P .

Note 1 Projection matrices are very important not only in Least Squares estimation
problems, but also in other areas of modern signal processing.

Note 2 The relation between re�ections and projections has been stated, a relation
that makes it possible to construct one matrix from the other.
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The eigenvalues of projection matrices are easily found:

I
Pg

�
= �g

�g = Pg = P 2g = �2g

Thus,
� 2 f0; 1g

II

0 = det (P � �P I) = det

�
1

2
(M + I)� �P I

�
=

= det

�
1

2
(M + I � 2�P I)

�
� det

�
M � (2�P � 1)I

�

Thus,

�M = 2�P � 1; �P =
�M + 1

2
How many of the eigenvalues of P equal 1? Well, the rank of P equals not only
this number, but also the dimension of the range space of P . The range space of
P is of course the space onto which P projects.
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How do you construct the projection matrix given the space onto which to
project? The answer will be given taking the (imaginary) detour of solving
overdetermined systems of linear equations.
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Given an overdetermined system of equations

Ax = b;

you will know from the next lea�et that the LS solution is given by

x = (ATA)�1ATb;

where we assumed that ATA is non-singular. Thus, the equation

Ax = A(ATA)�1ATb

is guaranteed to have exactly one solution. How come, when the equation

Ax = b

generally has no solution? The answer is that the vector A(ATA)�1ATb must
belong to the range space of A � remember the important interpretation of Ax
as a linear combination of the column vectors of A. Could it be that the matrix
A(ATA)�1AT is a projection matrix?

�

�
A(ATA)�1AT

�T
= : : : = A(ATA)�1AT

�

�
A(ATA)�1AT

�2
= : : : = A(ATA)�1AT

Yes!

� A vector that falls in the range space of A can be written as a linear com-
bination of the columns of A, i.e. as Ay. What does the projection matrix
do to this vector?

A(ATA)�1ATAy = Ay

Thus, P = A(ATA)�1AT projects onto the space spanned by the columns of A.
We have thus proved the following:

Theorem: Given v1; : : : ;vM that span an M -dimensional subspace of
R
N , construct the matrix

A = (v1; : : : ;vM):

Then the projection matrix

P = A(ATA)�1AT

projects onto the subspace.
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Note 3 Now that we know how to construct projection matrices, we also know how
to construct re�ection matrices:

M = 2P � I

Note 4 In practice, you do not construct projection matrices from the formulas

A =(v1 � � � vM)

P =A
�
AT A

��1
AT ;

it is numerically not a smart thing to do. In the lea�et on orthogonalization,
you will learn how. Let us mention how desirable it is to have the vectors
vm mutually orthonormal, as AT A then equals the identity and

P = AAT ;

so there is no need to invert any matrix.

����� o O o �����

Let us look at a matrix that is strongly related to the permutation matrix P de-
rived above, i.e. the matrix that projects onto the subspace spanned by v1; : : : ;vM .
First, remember that P x is the projection of x onto that subspace. The �rest�
of x is

y = x� P x = (I � P )x:

Observe that y is perpendicular to the subspace onto which P projects:

P y = P (I � P )x =
�
P � P 2

�
x = 0;

so that y is perpendicular to v1; : : : ;vM .

Study
(I � P )2 = I � 2P + P 2 = I � P;

so that I�P also is a projection matrix. This matrix projects onto the orthogonal
complement of the subspace spanned by v1; : : : ;vM and is denoted P?:

P? = I � P

The notation P? is read �P-perp�. P? will play an important role in the procedure
to orthogonalize a given set of vectors.

Please run the m-�le projections in Matlab.
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% projections.m, 3D to 2D

% run this program several times, random data.

clear

% Generate the space on which to project

v1=randn(3,1); v2=randn(3,1); A=[v1 v2];

% Construct the projection matrix and check for key properties

P=A*inv((A'*A))*A';

norm(P-P','fro'), norm(P*P-P,'fro')

% Create an ON-basis for the plane and generate plane-plot

[q,r]=qr(A,0);

step=0.2; width=3; index=1;

for l=-width:step:width

p1=l*q(:,1)-width*q(:,2);

p2=l*q(:,1)+width*q(:,2);

p3=(l+step/2)*q(:,1)+width*q(:,2);

p4=(l+step/2)*q(:,1)-width*q(:,2);

planeplot(:,index)=p1;

planeplot(:,index+1)=p2;

planeplot(:,index+2)=p3;

planeplot(:,index+3)=p4;

index=index+4;

end

ax=[ -width width -width width -width width];

% Generate some random vectors and project them

M=50;

dum=randn(3,M);

dummer=P*dum;

% plot some examples

figure(1), clf, hold on, axis(ax), axis equal, view(3)

plot3([0 v1(1)], [0 v1(2)], [0 v1(3)], 'b')

plot3([0 v2(1)], [0 v2(2)], [0 v2(3)], 'b')

for l=1:5

plot3(dum(1,l),dum(2,l),dum(3,l),'rp')

plot3(dummer(1,l),dummer(2,l),dummer(3,l),'gp')

plot3([dum(1,l) dummer(1,l)], [dum(2,l) dummer(2,l)],...

[dum(3,l) dummer(3,l)], 'y')

end

plot3(planeplot(1,:), planeplot(2,:), planeplot(3,:), 'k')

title('Five points and their projections')

% plot all projected points

figure(2), clf, hold on, axis(ax), axis equal, view(3)
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plot3([0 v1(1)], [0 v1(2)], [0 v1(3)], 'b')

plot3([0 v2(1)], [0 v2(2)], [0 v2(3)], 'b')

for l=1:M

plot3(dummer(1,l),dummer(2,l),dummer(3,l),'gp')

end

plot3(planeplot(1,:), planeplot(2,:), planeplot(3,:), 'k')

title('Fifty projected points')
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