
Holger Broman, August 19, 1999

Rotations

Applications of rotations are extensive in computer graphics. The car designer

who wants to look at a new design from di�erent angles, the chemist interested

in the 3D structure of molecules are both applying rotations. We will start by

considering rotations in a plane:

x2

β
x

x1

xβ

Let us make use of the results obtained in �Norm-preserving linear mappings

from R
N to R

N �. First, convince yourself that rotation is a linear mapping.

The preservation of the norm is obvious. Thus, there exists a rotation matrix,

dependent on the rotation angle, �. Let us call this matrix R�, and we know that

RT
�R� = I;

as it preserves the norm. Some further consideration tells us that the inverse of

R� must be the matrix R
��, as this latter matrix will take us back:

R
��R�x = x

We thus know

R�1� = RT
� = R

��;

and that R� most reasonably will contain cos(�) and sin(�) as elements.

Let us set up two special cases:

x2

β

x1
β

1

1

1

Obviously, �
cos �
sin�

�
= R�

�
1
0

�

and �
� sin�
cos �

�
= R�

�
0
1

�

We �nd

R� =

�
cos � � sin �
sin� cos �

�

Exercise 1: Check

R�1� = RT
� = R

��

Exercise 2: Use

R� �R
 = R�+

to derive some trigonometric formulas.

Note 1 The rotation in a plane in N dimensions is performed by the matrix

R =

2
6666666666666666664

1
. . .

1
cos � � sin �

1
. . .

1
sin� cos �

1
. . .

1

3
7777777777777777775

;

zeroes in unmarked positions. Please convince yourself that the proposition

in Note 1 is true.

Note 2 When you want to rotate �in several dimensions�, you cascade rotation

matrices as above.

Note 3 These matrices are named Givens rotations.

Please run the m-�le rotations in Matlab.

2

% rotations.m

% run this program several times, random data

%

% The idea is as follows. You can rotate a point around an arbitrary axis

% by moving the axis of rotation and the point to the vertical direction, say,

% rotate around the 'z-axis', and then move the package back to where it came from.

clear

% Generate an axis of rotation, and a point to rotate.

rotax=rand(3,1);

point=rand(3,1);

% move the axis to the vertical in two steps, rotate around the y-axis to the y-z p

% then around the x-axis to coincide with the z-axis. These are two Givens rotation

gamma=atan(rotax(1)/rotax(3));

cg=cos(gamma); sg=sin(gamma);

roty=[cg 0 -sg ; 0 1 0 ; sg 0 cg];

rotax1=roty*rotax;

point1=roty*point;

beta=atan(rotax1(2)/rotax1(3));

cb=cos(beta); sb=sin(beta);

rotx=[1 0 0 ; 0 cb -sb ; 0 sb cb];

rotax2=rotx*rotax1;

point2=rotx*point1;

% check that rotax2 is parallell with the z-axis.

% now, rotate around the 'z-axis'

alpha=2*pi/1000;

ca=cos(alpha); sa=sin(alpha);

rotz=[ca -sa 0 ; sa ca 0 ; 0 0 1];

dum(:,1)=point2;

for l=2:1000

dum(:,l)=rotz*dum(:,l-1);

end

% plot the circle of rotation

figure(1), clf, axis equal, hold on, view(3)

plot3(dum(1,:), dum(2,:), dum(3,:), 'r')

plot3(point2(1), point2(2), point2(3), 'rp')

plot3([0 0],[0 0],[0 1],'k')

% now go back to the original axis of rotation. Note, ' equals inverse.

dum1=rotx'*dum;

dum2=roty'*dum1; % done!

plot3(dum2(1,:), dum2(2,:), dum2(3,:), 'b')

plot3([0 rotax(1)],[0 rotax(2)],[0 rotax(3)],'y')

plot3(point(1), point(2), point(3), 'bp')

3

title(' original rotation - yellow/blue')

% In summary, you rotate around the desired axis of rotation by myltiplying the

% vector to the point to be rotated by the matrix

% rottot=roty'*rotx'*rotz*rotx*roty

% with alpha in rotz equal to the desired angle of rotation.

4

