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CHAPTER 2

INTEGRATION

Introduction

In this chapter Lebesgue integration in abstract positive measure spaces is
introduced. A series of famous theorems and lemmas will be proved.

2.1. Integration of Functions with Values in [0;1]

Recall that [0;1] = [0;1[ [ f1g : A subinterval of [0;1] is de�ned in the
natural way. We denote by R0;1 the �-algebra generated by all subintervals
of [0;1] : The class of all intervals of the type ]�;1] ; 0 � � < 1; (or of
the type [�;1] ; 0 � � < 1) generates the �-algebra R0;1 and we get the
following

Theorem 2.1.1. Let (X;M) be a measurable space and suppose f : X !
[0;1] :
(a) The function f is (M;R0;1)-measurable if f�1(]�;1]) 2 M for

every 0 � � <1:
(b) The function f is (M;R0;1)-measurable if f�1([�;1]) 2 M for

every 0 � � <1:

Note that the set ff > �g 2M for all real � if f is (M;R0;1)-measurable.
If f; g : X ! [0;1] are (M;R0;1)-measurable, thenmin(f; g); max(f; g),

and f + g are (M;R0;1)-measurable, since, for each � 2 [0;1[ ;

min(f; g) � �, (f � � and g � �)

max(f; g) � �, (f � � or g � �)
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and
ff + g > �g =

[
q2Q

(ff > �� qg \ fg > qg):

Given functions fn : X ! [0;1] ; n = 1; 2; :::; f = supn�1 fn is de�ned
by the equation

f(x) = sup ffn(x); n = 1; 2; :::g :

Note that
f�1(]�;1]) = [1n=1f�1n (]�;1])

for every real � � 0 and, accordingly from this, the function supn�1 fn is
(M;R0;1)-measurable if each fn is (M;R0;1)-measurable. Moreover, f =
infn�1 fn is given by

f(x) = inf ffn(x); n = 1; 2; :::g :

Since
f�1([0; �[) = [1n=1f�1n ([0; �[)

for every real � � 0 we conclude that the function f = infn�1 fn is (M;R0;1)-
measurable if each fn is (M;R0;1)-measurable.
Below we write

fn " f

if fn; n = 1; 2; :::; and f are functions from X into [0;1] such that fn � fn+1
for each n and fn(x)! f(x) for each x 2 X as n!1:
An (M;R0;1)-measurable function ' : X ! [0;1] is called a simple

measurable function if '(X) is a �nite subset of [0;1[ : If it is neccessary to
be more precise, we say that ' is a simpleM-measurable function.

Theorem 2.1.2. Let f : X ! [0;1] be (M;R0;1)-measurable. There exist
simple measurable functions 'n; n 2 N+; on X such that 'n " f :

PROOF. Given n 2 N+, set

Ein = f�1(

�
i� 1
2n

;
i

2n

�
); i 2 N+
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and

�n =
1X
i=1

i� 1
2n

�Ein +1�f�1(f1g):

It is obvious that �n � f and that �n � �n+1: Now set 'n = min(n; �n) and
we are done.

Let (X;M; �) be a positive measure space and ' : X ! [0;1[ a simple
measurable function: If �1; :::; �n are the distinct values of the simple function
', and if Ei = '�1(f�ig); i = 1; :::; n; then

' = �ni=1�i�Ei :

Furthermore, if A 2M we de�ne

�(A) =

Z
A

'd� = �nk=1�i�(Ei \ A) = �nk=1�i�Ei(A):

Clearly, � is a positive measure since each term in the right side is a positive
measure as a function of A. Note thatZ

A

�'d� = �

Z
A

'd� if 0 � � <1

and Z
A

%d� = a�(A)

if a 2 [0;1[ and % is a simple measurable function such that % = a on A:
If  is another simple measurable function and ' �  ;Z

A

'd� �
Z
A

 d�:

To see this, let �1; :::; �p be the distinct values of  and Fj =  �1(
�
�j
	
);

j = 1; :::; p: Now, putting Bij = Ei \ Fj;Z
A

'd� = �([ij(A \Bij))

= �ij�(A \Bij) = �ij
Z
A\Bij

'd� = �ij

Z
A\Bij

�id�
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� �ij
Z
A\Bij

�jd� =

Z
A

 d�:

In a similar way one proves thatZ
A

('+  )d� =

Z
A

'd�+

Z
A

 d�:

From the above it follows thatZ
A

'�Ad� =

Z
A

�ni=1�i�Ei\Ad�

= �ni=1�i

Z
A

�Ei\Ad� = �
n
i=1�i�(Ei \ A)

and Z
A

'�Ad� =

Z
A

'd�:

If f : X ! [0;1] is an (M;R0;1)-measurable function and A 2 M, we
de�ne Z

A

fd� = sup

�Z
A

'd�; 0 � ' � f; ' simple measurable
�

= sup

�Z
A

'd�; 0 � ' � f; ' simple measurable and ' = 0 on Ac
�
:

The left member in this equation is called the Lebesgue integral of f over A
with respect to the measure �: Sometimes we also speek of the �-integral of f
over A: The two de�nitions of the �-integral of a simple measurable function
' : X ! [0;1[ over A agree.
From now on in this section, an (M;R0;1)-measurable function f : X !

[0;1] is simply called measurable.
The following properties are immediate consequences of the de�nitions.

The functions and sets occurring in the equations are assumed to be mea-
surable.

(a) If f; g � 0 and f � g on A; then
R
A
fd� �

R
A
gd�:
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(b)
R
A
fd� =

R
X
�Afd�:

(c) If f � 0 and � 2 [0;1[, then
R
A
�fd� = �

R
A
fd�:

(d)
R
A
fd� = 0 if f = 0 and �(A) =1:

(e)
R
A
fd� = 0 if f =1 and �(A) = 0:

If f : X ! [0;1] is measurable and 0 < � <1; then f � ��f�1([�;1]) =
��ff��gand Z

X

fd� �
Z
X

��ff��gd� = �

Z
X

�ff��gd�:

This proves the so called Markov Inequality

�(f � �) � 1

�

Z
X

fd�

where we write �(f � �) instead of the more precise expression �(ff � �g):

Example 2.1.1. Suppose f : X ! [0;1] is measurable andZ
X

fd� <1:

We claim that
ff =1g = f�1(f1g) 2 Z�:

To prove this we use the Markov Inequality and have

�(f =1) � �(f � �) � 1

�

Z
X

fd�
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for each � 2 ]0;1[ : Thus �(f =1) = 0:

Example 2.1.2. Suppose f : X ! [0;1] is measurable andZ
X

fd� = 0:

We claim that
ff > 0g = f�1(]0;1]) 2 Z�:

To see this, note that

f�1(]0;1]) = [1n=1f�1(
�
1

n
;1
�
)

Furthermore, for every �xed n 2 N+; the Markov Inequality yields

�(f >
1

n
) � n

Z
X

fd� = 0

and we get ff > 0g 2 Z� since a countable union of null sets is a null set.

We now come to one of the most important results in the theory.

Theorem 2.1.3. (Lebesgue�s Monotone Convergence Theorem) Let
fn : X ! [0;1] , n = 1; 2; 3; ::::; be a sequence of measurable functions and
suppose that fn " f; that is 0 � f1 � f2 � ::: and

fn(x)! f(x) as n!1, for every x 2 X:

Then f is measurable andZ
X

fnd�!
Z
X

fd� as n!1:

PROOF. The function f is measurable since f = supn�1 fn:
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The inequalities fn � fn+1 � f yield
R
X
fnd� �

R
X
fn+1d� �

R
X
fd� and

we conclude that there exists an � 2 [0;1] such thatZ
X

fnd�! � as n!1

and

� �
Z
X

fd�:

To prove the reverse inequality, let ' be any simple measurable function
such that 0 � ' � f , let 0 < � < 1 be a constant, and de�ne, for �xed
n 2 N+;

An = fx 2 X; fn(x) � �'(x)g :
If �1; :::; �p are the distinct values of ';

An = [pk=1(fx 2 X; fn(x) � ��kg \ f' = �kg)

and it follows that An is measurable. Clearly, A1 � A2 � ::: . Moreover, if
f(x) = 0; then x 2 A1 and if f(x) > 0; then �'(x) < f(x) and x 2 An for
all su¢ ciently large n. Thus [1n=1An = X: Now

� �
Z
An

fnd� � �

Z
An

'd�

and we get

� � �

Z
X

'd�

since the map A!
R
A
'd� is a positive measure onM: By letting � " 1,

� �
Z
X

'd�

and, hence

� �
Z
X

fd�:

The theorem follows.

Theorem 2.1.4. (a) Let f; g : X ! [0;1] be measurable functions. ThenZ
X

(f + g)d� =

Z
X

fd�+

Z
X

gd�:
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(b) (Beppo Levi�s Theorem) If fk : X ! [0;1] , k = 1; 2; ::: are mea-
surable, Z

X

�1k=1fkd� = �
1
k=1

Z
X

fkd�

PROOF. (a) Let ('n)
1
n=1 and ( n)

1
n=1 be sequences of simple and measurable

functions such that 0 � 'n " f and 0 �  n " g: We proved above thatZ
X

('n +  n)d� =

Z
X

'nd�+

Z
X

 nd�

and, by letting n!1; Part (a) follows from Lebesgue�s Monotone Conver-
gence Theorem.

(b) Part (a) and induction imply thatZ
X

�nk=1fkd� = �
n
k=1

Z
X

fkd�

and the result follows from monotone convergence.

Theorem 2.1.5. Suppose w : X ! [0;1] is a measurable function and
de�ne

�(A) =

Z
A

wd�; A 2M:

Then � is a positive measure andZ
A

fd� =

Z
A

fwd�; A 2M

for every measurable function f : X ! [0;1] :

PROOF. Clearly, �(�) = 0. Suppose (Ek)1k=1 is a disjoint denumerable col-
lection of members ofM and set E = [1k=1Ek: Then

�([1k=1Ek) =
Z
E

wd� =

Z
X

�Ewd� =

Z
X

�1k=1�Ekwd�
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where, by the Beppo Levi Theorem, the right member equals

�1k=1

Z
X

�Ekwd� = �
1
k=1

Z
Ek

wd� = �1k=1�(Ek):

This proves that � is a positive measure.
Let A 2 M. To prove the last part in Theorem 2.1.5 we introduce the

class C of all measurable functions f : X ! [0;1] such thatZ
A

fd� =

Z
A

fwd�:

The indicator function of a measurable set belongs to C and from this we
conclude that every simple measurable function belongs to C: Furthermore,
if fn 2 C; n 2 N; and fn " f ; the Lebesgue Monotone Convergence Theorem
proves that f 2 C: Thus in view of Theorem 2.1.2 the class C contains every
measurable function f : X ! [0;1] : This completes the proof of Theorem
2.1.5.

The measure � in Theorem 2.1.5 is written

� = w�

or
d� = wd�:

Let (�n)1n=1 be a sequence in [�1;1] : First put �k = inf f�k; �k+1; �k+2; :::g
and 
 = sup f�1; �2; �3; ::g = limn!1 �n:We call 
 the lower limit of (�n)

1
n=1

and write

 = lim inf

n!1
�n:

Note that

 = lim

n!1
�n

if the limit exists. Now put �k = sup f�k; �k+1; �k+2; :::g and 
 = inf f�1; �2; �3; ::g =
limn!1 �n: We call 
 the upper limit of (�n)

1
n=1 and write


 = lim sup
n!1

�n:

Note that

 = lim

n!1
�n
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if the limit exists.
Given measurable functions fn : X ! [0;1] ; n = 1; 2; :::; the function

lim infn!1 fn is measurable. In particular, if

f(x) = lim
n!1

fn(x)

exists for every x 2 X; then f is measurable.

Theorem 2.1.6. (Fatou�s Lemma) If fn : X ! [0;1] ; n = 1; 2; :::; are
measurable Z

X

lim inf
n!1

fnd� � lim inf
n!1

Z
X

fnd�:

PROOF. Introduce
gk = inf

n�k
fn:

The de�nition gives that gk " lim infn!1 fn and, moreover,Z
X

gkd� �
Z
X

fnd�; n � k

and Z
X

gkd� � inf
n�k

Z
X

fnd�:

The Fatou Lemma now follows by monotone convergence.

Below we often write Z
E

f(x)d�(x)

instead of Z
E

fd�:

Example 2.1.3. Suppose a 2 R and f : (R;R�) ! ([0;1] ;R0;1) is
measurable. We claim thatZ

R

f(x+ a)dm(x) =

Z
R

f(x)dm(x):
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First if f = �A; where A 2 R�,Z
R

f(x+ a)dm(x) =

Z
R

�A�a(x)dm(x) = m(A� a) =

m(A) =

Z
R

f(x)dm(x):

Next it is clear that the relation we want to prove is true for simple mea-
surable functions and �nally, we use the Lebesgue Dominated Convergence
Theorem to deduce the general case.

Exercises

1. Suppose fn : X ! [0;1] ; n = 1; 2; :::; are measurable and

�1k=1�(fn > 1) <1:

Prove that �
lim sup
n!1

fn > 1

�
2 Z� .

2. Set fn = n2�[0; 1n ]
; n 2 N+: Prove thatZ

R

lim inf
n!1

fndm = 0 <1 = lim inf
n!1

Z
R

fndm

(the inequality in the Fatou Lemma may be strict).

3. Suppose f : (R;R�)! ([0;1] ;R0;1) is measurable and set

g(x) = �1k=1f(x+ k); x 2 R:

Show that Z
R

gdm <1 if and only if ff > 0g 2 Zm:
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4. Let (X;M; �) be a positive measure space and f : X ! [0;1] an
(M;R0;1)-measurable function such that

f(X) � N

and Z
X

fd� <1:

For every t � 0, set

F (t) = �(f > t) and G(t) = �(f � t):

Prove that Z
X

fd� = �1n=0F (n) = �
1
n=1G(n):

2.2. Integration of Functions with Arbitrary Sign

As usual suppose (X;M; �) is a positive measure space. In this section when
we speak of a measurable function f : X ! R it is understood that f is an
(M;R)-measurable function, if not otherwise stated. If f; g : X ! R are
measurable, the sum f + g is measurable since

ff + g > �g =
[
q2Q

(ff > �� qg \ fg > qg)

for each real �: Besides the function �f and the di¤erence f � g are mea-
surable. It follows that a function f : X ! R is measurable if and only if
the functions f+ = max(0; f) and f� = max(0;�f) are measurable since
f = f+ � f�:
We write f 2 L1(�) if f : X ! R is measurable andZ

X

j f j d� <1

and in this case we de�neZ
X

fd� =

Z
X

f+d��
Z
X

f�d�:
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Note that

j
Z
X

fd� j�
Z
X

j f j d�

since j f j= f+ + f�: Moreover de�ningZ
E

fd� =

Z
E

f+d��
Z
E

f�d�; all E 2M

it follows that Z
E

fd� =

Z
X

�Efd�:

Note that Z
E

fd� = 0 if �(E) = 0:

Sometimes we write Z
E

f(x)d�(x)

instead of Z
E

fd�:

If f; g 2 L1(�); setting h = f + g;Z
X

j h j d� �
Z
X

j f j d�+
Z
X

j g j d� <1

and it follows that h+ g 2 L1(�): Moreover,

h+ � h� = f+ � f� + g+ � g�

and the equation
h+ + f� + g� = f+ + g+ + h�

givesZ
X

h+d�+

Z
X

f�d�+

Z
X

g�d� =

Z
X

f+d�+

Z
X

g+d�+

Z
X

h�d�:

Thus Z
X

hd� =

Z
X

fd�+

Z
X

gd�:
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Moreover, Z
X

�fd� = �

Z
X

fd�

for each real �: The case � � 0 follows from (c) in Section 2.1. The case
� = �1 is also simple since (�f)+ = f� and (�f)� = f+:

Theorem 2.2.1. (Lebesgue�s Dominated Convergence Theorem)
Suppose fn : X ! R; n = 1; 2; :::; are measurable and

f(x) = lim
n!1

fn(x)

exists for every x 2 X: Moreover, suppose there exists a function g 2 L1(�)
such that

j fn(x) j� g(x); all x 2 X and n 2 N+:

Then f 2 L1(�),
lim
n!1

Z
X

j fn � f j d� = 0

and

lim
n!1

Z
X

fnd� =

Z
X

fd�

Proof. Since j f j� g, the function f is real-valued and measurable since
f+ and f� are measurable. Note here that

f�(x) = lim
n!1

f�n (x); all x 2 X:

We now apply the Fatous Lemma to the functions 2g� j fn � f j; n =
1; 2; :::; and have Z

X

2gd� � lim inf
n!1

Z
X

(2g� j fn � f j)d�

=

Z
X

2gd�� lim sup
n!1

Z
X

j fn � f j d�:

But
R
X
2gd� is �nite and we get

lim
n!1

Z
X

j fn � f j d� = 0:
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Since

j
Z
X

fnd��
Z
X

fd� j=j
Z
X

(f � fn)d� j�
Z
X

j f � fn j d�

the last part in Theorem 2.2.1 follows from the �rst part. The theorem is
proved.

Example 2.2.1. Suppose f : ]a; b[�X ! R is a function such that f(t; �) 2
L1(�) for each t 2 ]a; b[ and, moreover, assume @f

@t
exists and

j @f
@t
(t; x) j� g(x) for all (t; x) 2 ]a; b[�X

where g 2 L1(�). Set

F (t) =

Z
X

f(t; x)d�(x) if t 2 ]a; b[ :

We claim that F is di¤erentiable and

F 0(t) =

Z
X

@f

@t
(t; x)d�(x):

To see this let t� 2 ]a; b[ be �xed and choose a sequence (tn)1n=1 in ]a; b[ n
ft�g which converges to t�: De�ne

hn(x) =
f(tn; x)� f(t�; x)

tn � t�
if x 2 X:

Here each hn is measurable and

lim
n!1

hn(x) =
@f

@t
(t�; x) for all x 2 X:

Furthermore, for each �xed n and x there is a �n;x 2 ]tn; t�[ such that hn(x) =
@f
@t
(�n;x; x) and we conclude that j hn(x) j� g(x) for every x 2 X: Since

F (tn)� F (t�)

tn � t�
=

Z
X

hn(x)d�(x)

the claim above now follows from the Lebesgue Dominated Convergence The-
orem.
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Suppose S(x) is a statement, which depends on x 2 X: We will say that
S(x) holds almost (or �-almost) everywhere if there exists an N 2 Z� such
that S(x) holds at every point of X nN: In this case we write �S holds a.e.
� or �S holds a.e. [�]�. Sometimes we prefer to write �S(x) holds a.e.�
or �S(x) holds a.e. [�]�: If the underlying measure space is a probability
space, we often say �almost surely�instead of almost everywhere. The term
�almost surely�is abbreviated a.s.
Suppose f : X ! R; is an (M;R)-measurable functions and g : X ! R:

If f = g a.e. [�] there exists an N 2 Z� such that f(x) = g(x) for every
x 2 X n N: We claim that g is (M�;R)-measurable. To see this let � 2 R
and use that

fg > �g = [ff > �g \ (X nN)] [ [fg > �g \N ] :

Now if we de�ne
A = ff > �g \ (X nN)

the set A 2M and
A � fg > �g � A [N:

Accordingly from this fg > �g 2 M� and g is (M�;R)-measurable since �
is an arbitrary real number.
Next suppose fn : X ! R; n 2 N+; is a sequence of (M;R)-measurable

functions and f : X ! R a function. Recall if

lim
n!1

fn(x) = f(x); all x 2 X

then f is (M;R)-measurable since

ff > �g = [k;l2N+ \n�k
�
fn > � + l�1

	
; all � 2 R:

If we only assume that

lim
n!1

fn(x) = f(x); a.e. [�]

then f need not be (M;R)-measurable but f is (M�;R)-measurable. To
see this suppose N 2 Z� and

lim
n!1

fn(x) = f(x); all x 2 X nN:
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Then
lim
n!1

�XnN(x)fn(x) = �XnN(x)f(x)

and it follows that the function �XnNf is (M;R)-measurable. Since f =
�XnNf a.e. [�] it follows that f is (M�;R)-measurable. The next example
shows that f need not be (M;R)-measurable.

Example 2.2.2. Let X = f0; 1; 2g ;M = f�; f0g ; f1; 2g ; Xg ; and �(A) =
�A(0); A 2 M: Set fn = �f1;2g; n 2 N+; and f(x) = x; x 2 X: Then each
fn is (M;R)-measurable and

lim
n!1

fn(x) = f(x) a.e. [�]

since n
x 2 X; lim

n!1
fn(x) = f(x)

o
= f0; 1g

and N = f1; 2g is a �-null set. The function f is not (M;R)-measurable.

Suppose f; g 2 L1(�): The functions f and g are equal almost everywhere
with respect to � if and only if ff 6= gg 2 Z�: This is easily seen to be an
equivalence relation and the set of all equivalence classes is denoted by L1(�):
Moreover, if f = g a.e. [�] ; thenZ

X

fd� =

Z
X

gd�

since Z
X

fd� =

Z
ff=gg

fd�+

Z
ff 6=gg

fd� =

Z
ff=gg

fd� =

Z
ff=gg

gd�

and, in a similar way, Z
X

gd� =

Z
ff=gg

gd�:

Below we consider the elements of L1(�) as members of L1(�) and two mem-
bers of L1(�) are identi�ed if they are equal a.e. [�] : From this convention
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it is straight-forward to de�ne f + g and �f for all f; g 2 L1(�) and � 2 R:
Moreover, we getZ

X

(f + g)d� =

Z
X

fd�+

Z
X

gd� if f; g 2 L1(�)

and Z
X

�fd� = �

Z
X

fd� if f 2 L1(�) and � 2 R:

Next we give two theorems where exceptional null sets enter. The �rst
one is a mild variant of Theorem 2.2.1 and needs no proof.

Theorem 2.2.2. Suppose (X;M; �) is a positive complete measure space
and let fn : X ! R; n 2 N+; be measurable functions such that

sup
n2N+

j fn(x) j� g(x) a.e. [�]

where g 2 L1(�): Moreover, suppose f : X ! R is a function and

f(x) = lim
n!1

fn(x) a.e. [�] :

Then, f 2 L1(�),
lim
n!1

Z
X

j fn � f j d� = 0

and

lim
n!1

Z
X

fnd� =

Z
X

fd�:

Theorem 2.2.3. Suppose (X;M; �) is a positive measure space.
(a) If f : (X;M�)! ([0;1] ;R0;1) is measurable there exists a measur-

able function g : (X;M)! ([0;1] ;R0;1) such that f = g a.e. [�] :
(b) If f : (X;M�) ! (R;R) is measurable there exists a measurable

function g : (X;M)! (R;R) such that f = g a.e. [�] :

PROOF. Since f = f+�f� it is enough to prove Part (a): There exist simple
M�-measurable functions 'n ; n 2 N+; such that 0 � 'n " f: For each �xed
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n suppose �1n; :::; �knn are the distinct values of 'n and choose for each �xed
i = 1; :::; kn a set Ain � '�1n (f�ing) such that Ain 2 M and '�1n (�in) n Ain
2 Z��. Set

 n = �
kn
i=1�in�Ain :

Clearly  n(x) " f(x) if x 2 E =def \1n=1([kni=1Ain) and �(X n E) = 0: We
now de�ne g(x) = f(x); if x 2 E; and g(x) = 0 if x 2 X n E: The theorem
is proved.

Exercises

1. Suppose f and g are real-valued measurable functions. Prove that f 2 and
fg are measurable functions.

2. Suppose f 2 L1(�): Prove that

lim
�!1

Z
jf j��

j f j d� = 0:

(Here
R
jf j�� means

R
fjf j��g.)

3. Suppose f 2 L1(�): Prove that to each " > 0 there exists a � > 0 such
that Z

E

j f j d� < "

whenever �(E) < �:

4. Let (fn)1n=1 be a sequence of (M;R)-measurable functions. Prove that
the set of all x 2 R such that the sequence (fn(x))1n=1 converges to a real
limit belongs toM:

5. Let (X;M;R) be a positive measure space such that �(A) = 0 or 1 for
every A 2M: Show that f 2 L1(�) if and only if f(x) = 0 a.e. [�] :
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6. Let (X;M; �) be a positive measure space and suppose f and g are
non-negative measurable functions such thatZ

A

fd� =

Z
A

gd�; all A 2M:

(a) Prove that f = g a.e. [�] if � is �-�nite.
(b) Prove that the conclusion in Part (a) may fail if � is not �-�nite.

7. Let (X;M; �) be a �nite positive measure space and suppose the functions
fn : X ! R; n = 1; 2; :::; are measurable. Show that there is a sequence
(�n)

1
n=1 of positive real numbers such that

lim
n!1

�nfn = 0 a.e. [�] :

8. Let (X;M; �) be a positive measure space and let fn : X ! R; n = 1; 2; :::;
be a sequence in L1(�) which converges to f a.e. [�] as n ! 1: Suppose
f 2 L1(�) and

lim
n!1

Z
X

j fn j d� =
Z
X

j f j d�:

Show that

lim
n!1

Z
X

j fn � f j d� = 0:

9. Let (X;M; �) be a �nite positive measure space and suppose f 2 L1(�)
is a bounded function such thatZ

X

f 2d� =

Z
X

f 3d� =

Z
X

f 4d�:

Prove that f = �A for an appropriate A 2M:

10. Let (X;M; �) be a �nite positive measure space and f : X ! R a
measurable function. Prove that f 2 L1(�) if and only if

�1k=1�(j f j� k) <1:
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11. Suppose f 2 L1(m): Prove that the series �1k=�1f(x + k) converges for
m-almost all x:

12. a) Suppose f : R! [0;1[ is Lebesgue measurable and
R
R
fdm < 1:

Prove that
lim
�!1

�m(f � �) = 0:

b) Find a Lebesgue measurable function f : R! [0;1[ such that f =2
L1(m); m(f > 0) <1; and

lim
�!1

�m(f � �) = 0:

2.3 Comparison of Riemann and Lebesgue Integrals

In this section we will show that the Lebesgue integral is a natural general-
ization of the Riemann integral. For short, the discussion is restricted to a
closed and bounded interval.
Let [a; b] be a closed and bounded interval and suppose f : [a; b] ! R is

a bounded function. For any partition

� : a = x0 < x1 < ::: < xn = b

of [a; b] de�ne
S�f = �

n
i=1( sup

]xi�1;xi]
f)(xi � xi�1)

and
s�f = �

n
k=1( inf

]xi�1;xi]
f)(xi � xi�1):

The function f is Riemann integrable if

inf
�
S�f = sup

�
s�f

and the Riemann integral
R b
a
f(x)dx is, by de�nition, equal to this common

value.
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Below an ((R�)[a;b];R)-measurable function is simply called Lebesgue
measurable. Furthermore, we write m instead of mj[a;b]:

Theorem 2.3.1. A bounded function f : [a; b] ! R is Riemann integrable
if and only if the set of discontinuity points of f is a Lebesgue null set.
Moreover, if the set of discontinuity points of f is a Lebesgue null set, then
f is Lebesgue measurable andZ b

a

f(x)dx =

Z
[a;b]

fdm:

PROOF. A partition �0 : a = x00 < x01 < ::: < x0n0 = b is a re�nement of a
partition � : a = x0 < x1 < ::: < xn = b if each xk is equal to some x0l and in
this case we write � � �0: The de�nitions give S�f � S�0f and s�f � s�0f
if � � �0: We de�ne, mesh(�) = max1�i�n(xi � xi�1):
First suppose f is Riemann integrable. For each partition � let

G� = f(a)�fag + �
n
i=1( sup

]xi�1;xi]
f)�]xi�1;xi]

and
g� = f(a)�fag + �

n
i=1( inf

]xi�1;xi]
f)�]xi�1;xi]

and note that Z
[a;b]

G�dm = S�f

and Z
[a;b]

g�dm = s�f:

Suppose �k; k = 1; 2; :::; is a sequence of partitions such that �k � �k+1,

S�kf #
Z b

a

f(x)dx

and

s�kf "
Z b

a

f(x)dx
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as k ! 1: Let G = limk!1G�k and g = limk!1 g�k : Then G and g are
(R[a;b];R)-measurable, g � f � G; and by dominated convergenceZ

[a;b]

Gdm =

Z
[a;b]

gdm =

Z b

a

f(x)dx:

But then Z
[a;b]

(G� g)dm = 0

so that G = g a.e. [m] and therefore G = f a.e. [m] : In particular, f is
Lebesgue measurable and Z b

a

f(x)dx =

Z
[a;b]

fdm:

Set
N = fx; g(x) < f(x) or f(x) < G(x)g :

We proved above thatm(N) = 0: LetM be the union of all those points which
belong to some partition �k: Clearly, m(M) = 0 since M is denumerable.
We claim that f is continuous o¤ N [M: If f is not continuous at a point
c =2 N [M , there is an " > 0 and a sequence (cn)1n=1 converging to c such
that

j f(cn)� f(c) j� " all n:

Since c =2 M , c is an interior point to exactly one interval of each partition
�k and we get

G�k(c)� g�k(c) � "

and in the limit
G(c)� g(c) � ":

But then c 2 N which is a contradiction.
Conversely, suppose the set of discontinuity points of f is a Lebesgue null

set and let (�k)
1
k=1 is an arbitrary sequence of partitions of [a; b] such that

�k � �k+1 and mesh(�k)! 0 as k !1: By assumption,

lim
k!1

G�k (x) = lim
k!1

g�k (x) = f(x)
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at each point x of continuity of f . Therefore f is Lebesgue measurable and
dominated convergence yields

lim
k!1

Z
[a;b]

G�kdm =

Z
[a;b]

fdm

and

lim
k!1

Z
[a;b]

g�kdm =

Z
[a;b]

fdm:

Thus f is Riemann integrable andZ b

a

f(x)dx =

Z
[a;b]

fdm:

In the following we sometimes writeZ
A

f(x)dx (A 2 R�)

instead of Z
A

fdm (A 2 R�):

In a similar way we often prefer to writeZ
A

f(x)dx (A 2 R�
n )

instead of Z
A

fdmn (A 2 R�
n ):

Furthermore,
R b
a
fdm means

R
[a;b]

fdm: Here, however, a warning is moti-
vated. It is simple to �nd a real-valued function f on [0;1[, which is bounded
on each bounded subinterval of [0;1[ ; such that the generalized Riemann
integral Z 1

0

f(x)dx

is convergent, that is

lim
b!1

Z b

0

f(x)dx
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exists and the limit is a real number, while the Riemann integralZ 1

0

j f(x) j dx

is divergent (take e.g. f(x) = sinx
x
): In this case the function f does not

belong to L1 with respect to Lebesgue measure on [0;1[ sinceZ
[0;1[

j f j dm = lim
b!1

Z b

0

j f(x) j dx =1:

Exercises

1. Let fn : [0; 1] ! [0; 1], n 2 N; be a sequence of Riemann integrable
functions such that

lim
n!1

fn(x) exists = f(x) all x 2 [0; 1] :

Show by giving an example that f need not be Riemann integrable.

2. Suppose fn(x) = n2 j x j e�njxj; x 2 R; n 2 N+: Compute limn!1 fn and
limn!1

R
R
fndm.

3. Compute the following limits and justify the calculations:
a)

lim
n!1

Z 1

0

sin(ex)

1 + nx2
dx:

b)

lim
n!1

Z n

0

(1 +
x

n
)�n cosxdx:

c)

lim
n!1

Z n

0

(1 +
x

n
)ne�2xdx:

d)

lim
n!1

Z 1

0

(1 +
x

n
)n exp(�(1 + x

n
)n)dx:
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e)

lim
n!1

Z n

0

(1� x

n
)�ne

x
2 dx:

f)

lim
n!1

Z n

0

(1� x

n
)n
1 + nx

n+ x
cosxdx

g)

lim
n!1

Z 1

0

(1 +
x

n
)n

2

e�nxdx:

4. Let (rn)1n=1 be an enumeration of Q and de�ne

f(x) = �1n=12
�n'(x� rn)

where '(x) = x�
1
2 if 0 < x < 1 and '(x) = 0 if x � 0 or x � 1: Show that

a) Z 1

�1
f(x)dx = 2:

b) Z b

a

f 2(x)dx =1 if a < b:

c)
f <1 a.s. [m] :

d)
sup
a<x<b

f(x) = +1 if a < b:

5. Suppose

f(t) =

Z 1

0

e�tx
ln(1 + x)

1 + x
dx; t > 0:

a) Show that
R1
0
f(t)dt <1:

b) Show that f is in�nitely many times di¤erentiable.

2.4. Expectation
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Suppose (
;F ; P ) is a probability space and � : (
;F) ! (S;S) a random
variable. Recall that the probability law � of � is given by the image measure
P�: By de�nition, Z

S

�Bd� =

Z



�B(�)dP

for every B 2 S; and, henceZ
S

'd� =

Z



'(�)dP

for each simple S-measurable function ' on S (we sometimes write f � g =
f(g)): By monotone convergence, we getZ

S

fd� =

Z



f(�)dP

for every measurable f : S ! [0;1] : Thus if f : S ! R is measurable,
f 2 L1(�) if and only if f(�) 2 L1(P ) and in this caseZ

S

fd� =

Z



f(�)dP:

In the special case when � is real-valued and � 2 L1(P );Z
R

xd�(x) =

Z



�dP:

The integral in the right-hand side is called the expectation of � and is
denoted by E [�] :


