CHAPTER 2
INTEGRATION

Introduction

In this chapter Lebesgue integration in abstract positive measure spaces is
introduced. A series of famous theorems and lemmas will be proved.

2.1. Integration of Functions with Values in [0, o]

Recall that [0, 00] = [0,00[ U {oco}. A subinterval of [0, 0] is defined in the
natural way. We denote by Ry the o-algebra generated by all subintervals
of [0,00]. The class of all intervals of the type |o, 0], 0 < a < 00, (or of
the type [a,00], 0 < o < 00) generates the o-algebra R and we get the
following

Theorem 2.1.1. Let (X, M) be a measurable space and suppose f : X —
[0, 0] .

(a) The function f is (M, Roo)-measurable if f~'(]a,00]) € M for
every 0 < a < 00.

(b) The function f is (M, Ro)-measurable if f~'([a,00]) € M for
every 0 < a < o0.

Note that theset {f > a} € M for all real aif f is (M, Ry )-measurable.
If f,g : X — [0, 00] are (M, Ry )-measurable, then min(f, g), max(f, g),
and f + g are (M, Ry )-measurable, since, for each a € [0, oo,

min(f,g) > a< (f > aand g > «)

max(f,g) > a < (f > aor g > a)



and
{f+g>at={J{f>a-qgtn{g>q}).
q€Q
Given functions f, : X — [0,00], n = 1,2,..., f = sup,>; f, is defined

by the equation

flz) =sup{fu(z); n=1,2,...}.
Note that

ey 00]) = URZ £ (Jav, 00))
for every real o > 0 and, accordingly from this, the function sup,>; f, is

(M, Ry )-measurable if each f, is (M, R )-measurable. Moreover, f =
inf,,>1 f, is given by

flz) =inf {f.(z); n=1,2,...}.

Since
F7H(0,af) = Uiz, £1([0,a)

for every real v > 0 we conclude that the function f = inf,>; f,, is (M, R 00)-
measurable if each f, is (M, Ry )-measurable.
Below we write

fu 1 S

if f,,n=1,2,..., and f are functions from X into [0, co] such that f, < f.11
for each n and f,,(z) — f(z) for each z € X as n — oc.

An (M, Ry )-measurable function ¢ : X — [0,00] is called a simple
measurable function if ¢(X) is a finite subset of [0, 0o . If it is neccessary to
be more precise, we say that ¢ is a simple M-measurable function.

Theorem 2.1.2. Let f: X — [0,00] be (M, Ry o)-measurable. There exist
simple measurable functions ¢,, n € Ny, on X such that ¢, T f .

PROOF. Given n € N, set

1—1 1
2n 7 2n

Emzf‘l({ {), i€ N,



and
o

11— 1
i=1

It is obvious that p, < f and that p, < p, ;. Now set ¢, = min(n, p,)) and
we are done.

Let (X, M, 1) be a positive measure space and ¢ : X — [0, 00[ a simple
measurable function. If o, ..., a,, are the distinct values of the simple function
o, and if E; = o '({ay;}), 1 =1,...,n, then

Y= E?:laiXEi'
Furthermore, if A € M we define
v(A) = / pdp = Si_aip(E; N A) = EzzlaiNEi(A)-
A

Clearly, v is a positive measure since each term in the right side is a positive
measure as a function of A. Note that

/a@du:a/wduif0§a<oo
A A

and

/A odp = ap(A)

if a € ]0,00[ and p is a simple measurable function such that o = a on A.
If 7 is another simple measurable function and ¢ < 1),

/A edp < /A Ydp.

To see this, let 3, ..., 3, be the distinct values of ¢ and F; = ¢_1({Bj}),
Jj=1,...,p. Now, putting B;; = F; N I},

A

ANB;; ANB;;



<3, /A By = /A b
NB;j;

In a similar way one proves that

/A<90+¢)dMZ/A<PdM+/A¢dM-

From the above it follows that

/ OX adp = / Vi1 X pnadp
A A

= E?lai/ XE,ﬂAd:u = E?:ﬂiﬂ(Ei NA)
A

/ eXadp = / edp.
A A

If f: X —[0,00] isan (M, R )-measurable function and A € M, we
define

and

/ fdp = sup {/ wdp; 0 < ¢ < f, ¢ simple measurable}
A A

= sup {/ wdp; 0 < e < f, ¢ simple measurable and ¢ = 0 on AC} .
A

The left member in this equation is called the Lebesgue integral of f over A
with respect to the measure ;. Sometimes we also speek of the p-integral of f
over A. The two definitions of the p-integral of a simple measurable function
¢ : X — [0,00[ over A agree.

From now on in this section, an (M, R « )-measurable function f : X —
[0, o¢] is simply called measurable.

The following properties are immediate consequences of the definitions.
The functions and sets occurring in the equations are assumed to be mea-
surable.

(a)If f,g>0and f < gon A, then [, fdu < [, gdp.



b) [, fdp = [y xafdp.

(¢c) If f>0and « € [0,00], then [, afdu=a [, fdp.
d) [, fdp=0if f =0 and p(A) = co.

e) [, fdu="0if f =00 and p(A) = 0.

If f: X — [0,00] is measurable and 0 < a < 0o, then f > ax -1

ax{fZQ}and
/fdMZ/OéX{f>a}dN=a/ X{fza}dp.
X X X

This proves the so called Markov Inequality

1
_@)Sa/deﬂ

where we write u(f > «) instead of the more precise expression pu({f > a}).

a,00]) T

Example 2.1.1. Suppose f: X — [0, 00| is measurable and

/deﬂ< 00.

{f =00} =f"({o0}) € Z,.

To prove this we use the Markov Inequality and have

We claim that

u(f =o00) <pu(f>a) < /fdu



for each av € |0, 00[. Thus u(f = o0) = 0.

Example 2.1.2. Suppose f: X — [0, 00| is measurable and

| fdn=o

{f >0} = £71(0,00)) € Z,.
To see this, note that

We claim that

_ o 1/ 1
F100,00) = U] o)
Furthermore, for every fixed n € N, the Markov Inequality yields
1
u(f>—)§n/ fdu =0
n X

and we get {f > 0} € Z, since a countable union of null sets is a null set.

We now come to one of the most important results in the theory.

Theorem 2.1.3. (Lebesgue’s Monotone Convergence Theorem) Let
fo: X —[0,00] , n=1,2,3,...., be a sequence of measurable functions and
suppose that f, T f, that is 0 < f; < fo < ... and

fo(z) — f(x) as n — oo, for every x € X.

Then f is measurable and

/fnduﬁ/fduasnaoo.
X X

PROOF. The function f is measurable since f = sup,,>; fn-



The inequalities f,, < fo1 < f yield [y fodp < [ fasrdp < [y fdp and
we conclude that there exists an o € [0, 0o such that

/fnd,u—>aasn—>oo
X

and

aS/deu.

To prove the reverse inequality, let ¢ be any simple measurable function
such that 0 < ¢ < f,let 0 < # < 1 be a constant, and define, for fixed
n € Ny,

Ay ={z € X; fu(x) > 0p(2)}.
If v, ..., are the distinct values of ¢,

A, =U_ ({z e X; falz) > b0} N{p =ar})

and it follows that A,, is measurable. Clearly, A; C Ay C ... . Moreover, if
f(x) =0, then z € Ay and if f(z) > 0, then fp(z) < f(x) and x € A, for
all sufficiently large n. Thus U2 ; A, = X. Now

oz [ fuduz0 [ el
An An

ozZH/cpdu
X

since the map A — [, ¢du is a positive measure on M. By letting 6 T 1,

ozZ/sodM
X

o > /dep.

and we get

and, hence

The theorem follows.

Theorem 2.1.4. (a) Let f,g: X — [0,00] be measurable functions. Then

/X(f+g)du=/)(fdu+/xgdu-



(b) (Beppo Levi’s Theorem) If f; : X — [0,00] , k = 1,2,... are mea-

surable,
T
X X

PROOF. (a) Let (p,)22, and (1,,)52, be sequences of simple and measurable
functions such that 0 < ¢, T f and 0 <, T g. We proved above that

/X(sonwn)dﬂ:/xsond#+/x¢ndu

and, by letting n — oo, Part (a) follows from Lebesgue’s Monotone Conver-
gence Theorem.

(b) Part (a) and induction imply that

/ S fdp = S0 / fedu
X X

and the result follows from monotone convergence.

Theorem 2.1.5. Suppose w : X — [0,00] is a measurable function and

define
v(A) = / wdp, Ae M.
A

Then v is a positive measure and

/Afdy:/Afwdu, AeM

for every measurable function f: X — [0, 00].

PROOF. Clearly, v(¢) = 0. Suppose (E)32; is a disjoint denumerable col-
lection of members of M and set £ = U2, Ej. Then

WU Ee) = [

wdp = / Xpwdp = / XX, wdp
E X X



where, by the Beppo Levi Theorem, the right member equals

S [ xpwdn =S, [ wdp = S (B,
X Ey

This proves that v is a positive measure.
Let A € M. To prove the last part in Theorem 2.1.5 we introduce the
class C of all measurable functions f : X — [0, 00| such that

/A fdv = /A Fwdy.

The indicator function of a measurable set belongs to C and from this we
conclude that every simple measurable function belongs to C. Furthermore,
if f,eC,neN,and f, T f, the Lebesgue Monotone Convergence Theorem
proves that f € C. Thus in view of Theorem 2.1.2 the class C contains every
measurable function f : X — [0, 00]. This completes the proof of Theorem
2.1.5.

The measure v in Theorem 2.1.5 is written
vV =wi

or
dv = wdp.

Let (a,)$2; be a sequence in [—o0, o] . First put 8, = inf {ag, a1, Qgro, ...}
and v = sup {4, Bs, B3, ..} = lim,,_, 5, We call 7y the lower limit of (a,,)3>
and write

~v = liminf .

n—oo

Note that
v = lim «a,

n—oo

if the limit exists. Now put 5, = sup {ag, agr1, Qgro, ...} and v = inf {B4, B, B3, ..} =
lim,, 0 3,,- We call v the upper limit of («,)°; and write

~v = lim sup «,.
Note that

v = lim o,
n—oo
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if the limit exists.
Given measurable functions f, : X — [0,00], n = 1,2, ..., the function
liminf, .. f, is measurable. In particular, if

fl@) = lim f, ()

exists for every x € X, then f is measurable.

Theorem 2.1.6. (Fatou’s Lemma) If f,: X — [0,00], n=1,2,..., are
measurable

/ liminf f,dp < liminf/ fndpt.
X oo JX

n—o0

PROOF. Introduce

9 = L I

The definition gives that g T liminf,,_, ., f, and, moreover,

/gkdué/fndu, n>k
X X

L%WSELﬁM-

The Fatou Lemma now follows by monotone convergence.

and

Below we often write

/thwdu@ﬂ

| rau

Example 2.1.3. Suppose ¢ € R and f : (R;R7) — ([0,00],Ro.0) is
measurable. We claim that

‘Afu+awmmw<4memm»

instead of
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First if f = x4, where A € R,

/R f(@+ a)dm(z) = /R Yoa(2)dm(z) = m(A — a) =

m(A):/Rf(m)dm(x).

Next it is clear that the relation we want to prove is true for simple mea-
surable functions and finally, we use the Lebesgue Dominated Convergence
Theorem to deduce the general case.

Exercises
1. Suppose f, : X — [0,00], n = 1,2,..., are measurable and
Epzpu(fo > 1) < oo.
Prove that

{limsupfn > 1} €z, .

n—oo

2. Set f, = n2X[0 1], € N, . Prove that

/ liminf f,dm =0 < oo = lim inf/ fndm
R R

n—oo n—oo

(the inequality in the Fatou Lemma may be strict).

3. Suppose f: (R,R™) — ([0,00], Ro.0) is measurable and set
g(w) = XL f(z + k), v € R.

Show that

gdm < oo if and only if {f > 0} € Z,,.
R
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4. Let (X, M,u) be a positive measure space and f : X — [0,00] an
(M, R )-measurable function such that

f(X)CN

and

/dep< 00.

For every t > 0, set

F(t) = u(f > 1) and G(1) = u(f > 1.

Prove that
[ fin =32 P ) = 572,60,
X

2.2. Integration of Functions with Arbitrary Sign

As usual suppose (X, M, 1) is a positive measure space. In this section when
we speak of a measurable function f : X — R it is understood that f is an
(M, R)-measurable function, if not otherwise stated. If f,g : X — R are
measurable, the sum f + ¢ is measurable since

{f+g9>at={J{f>a-gn{g>q})

q€Q

for each real a. Besides the function —f and the difference f — g are mea-
surable. It follows that a function f : X — R is measurable if and only if

the functions f* = max(0, f) and f~ = max(0,—f) are measurable since
f=r—=r.
We write f € £Y(u) if f: X — R is measurable and
1<
b

and in this case we define

/X fdp = /X frdp - /X fdn



Note that

|/de,u|§/X|f|d#

since | f |= f* + f~. Moreover defining

[Efduz/Eﬁdu—/Efdu, all B € M

/Efduz/Xfodﬂ-

/fd,u:()ifu(E) =0.
E

it follows that
Note that

Sometimes we write

[E f()du(z)

| rau

If f,g € LY(u), setting h = f + g,

/Ihldué/ |f|du+/ gl du < o0
X X X

and it follows that h + g € £*(p). Moreover,

instead of

h—h™=f"—f"+g" —g"

and the equation
Rt +f +g =fT+g"+h

gives

/h*du—l—/fdujt/gdu:/f+du+/g+du+/ h™dpu.
b X X b X X
Thus

/hdu:/fdu+/gdu.

X X X

13
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Moreover,

/Xafduzoz/deu

for each real a. The case a > 0 follows from (c) in Section 2.1. The case
a = —1 is also simple since (—f)* = f~ and (—f)” = fT.

Theorem 2.2.1. (Lebesgue’s Dominated Convergence Theorem)
Suppose f,: X — R, n=1,2,..., are measurable and

f@) = lim f,(x)

exists for every x € X. Moreover, suppose there exists a function g € El(,u)
such that
| fu(z) < g(x), allz € X and n € N.

Then f € L' (u),
i [ |~ £ | du=0
n—oo X

and

lim [ fudy = / Fdy
X X

n—oo

Proof. Since | f |< g, the function f is real-valued and measurable since
fT and f~ are measurable. Note here that

fE(x) = lim fF(x),all v € X.

n—oo

We now apply the Fatous Lemma to the functions 29— | f,, — f |,n =
1,2, ..., and have

/ 2gdp < 1iminf/ (29— | fu— f Ddp
X n—oo X

=/ 2gdu—limsup/ | fo— f | dp.
X n—oo Jx
But [ + 29dy is finite and we get

lim [ | fo—f|du=0.
TL—)OOX
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Since

[ udn= [ san 1=l [ (5= gdni< [ 15t da

the last part in Theorem 2.2.1 follows from the first part. The theorem is
proved.

Example 2.2.1. Suppose f : ]a,b[ x X — R is a function such that f(¢,-) €

L(p) for each t € Ja, b] and, moreover, assume 2 exists and

at
| aa—];(t,x) |< g(x) for all (¢,z) € Ja,b] x X

where g € L£1(p). Set

F(t) = / ft,z)du(x) if t € ]a,b].
X
We claim that F' is differentiable and
F(0) = [ Zauta).
x Ot

To see this let ¢, € ]a, b] be fixed and choose a sequence (¢,,)°; in Ja, b] \
{t.} which converges to t.. Define

f(tmm) — f(th)

hn(z) = ifr e X.
t, —t,
Here each h,, is measurable and
lim h,(z) = aa—{(t*,x) for all x € X.

Furthermore, for each fixed n and « there is a 7, , € |t,, t.[ such that h,(z) =

%(TWE, x) and we conclude that | h,(x) |< g(z) for every z € X. Since

F(t,) — F(t.)
tyn — s

= [ ma@inta)

the claim above now follows from the Lebesgue Dominated Convergence The-
orem.
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Suppose S(x) is a statement, which depends on z € X. We will say that
S(x) holds almost (or p-almost) everywhere if there exists an N € Z, such
that S(x) holds at every point of X \ N. In this case we write ”S holds a.e.
” or 7S holds a.e. [u]”. Sometimes we prefer to write ”S(z) holds a.e.”
or "S(z) holds a.e. [u]”. If the underlying measure space is a probability
space, we often say ”almost surely” instead of almost everywhere. The term
"almost surely” is abbreviated a.s.

Suppose f : X — R, is an (M, R)-measurable functions and g : X — R.
If f =g ae. [u] there exists an N € Z, such that f(z) = g(x) for every
z € X \ N. We claim that ¢ is (M ™, R)-measurable. To see this let « € R
and use that

{g>a} =[{f>a}n(X\N)JU[{g >a} N N].

Now if we define
A={f>a}nN(X\N)

the set A € M and
AC{g>a} CTAUN.

Accordingly from this {g > a} € M~ and g is (M~, R)-measurable since «
is an arbitrary real number.

Next suppose f, : X — R, n € N, is a sequence of (M, R)-measurable
functions and f : X — R a function. Recall if

lim f,(z) = f(x), allz € X

n—oo

then f is (M, R)-measurable since
{f > a} =Ugien, N>k {fn > oz+l_1}, all @ € R.
If we only assume that
lim f,(x) = f(2), . 4]

then f need not be (M, R)-measurable but f is (M~, R)-measurable. To
see this suppose N € Z, and

lim f,(z) = f(z), allz € X \ N.

n—oo
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Then
T}LI{:O XX\N(Qf)fn(af) = XX\N(x)f(x)

and it follows that the function xx\n/f is (M, R)-measurable. Since f =
Xx\wf a.e. [y it follows that f is (M™,R)-measurable. The next example
shows that f need not be (M, R)-measurable.

Example 2.2.2. Let X ={0,1,2}, M = {¢,{0},{1,2}, X}, and pu(A) =
xa(0), A € M. Set f, = X(12;, » € Ny, and f(x) =z, v € X. Then each
fn is (M, R)-measurable and

lim fo(z) = f(z) ae. [y

{rext im fu@ =@} = 0.1}

and N = {1,2} is a p-null set. The function f is not (M, R)-measurable.

Suppose f,g € L'(1). The functions f and g are equal almost everywhere
with respect to p if and only if {f # g} € Z,. This is easily seen to be an
equivalence relation and the set of all equivalence classes is denoted by L (1).
Moreover, if f = g a.e. [p], then

/ fdp = / gdp

X X

/fcm:/ fdu+/ fduz/ fduz/ gdu
X {f=g} {f#g} {f=g} {f=g}

and, in a similar way,
fot= o
{f= 9}

Below we consider the elements of L' () as members of £!(1) and two mem-
bers of L'(u) are identified if they are equal a.e. [u]. From this convention

since
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it is straight-forward to define f + g and af for all f,g € L'(u) and o € R.
Moreover, we get

dy = d dyu if Lt
/X(f+g)u /Xfwr/xgulf,ge (1)

and
/ozfd,u:oz/ fduif f € L'(p) and o € R..
X X

Next we give two theorems where exceptional null sets enter. The first
one is a mild variant of Theorem 2.2.1 and needs no proof.

Theorem 2.2.2.  Suppose (X, M, ) is a positive complete measure space
and let f, : X — R, n € N, be measurable functions such that

sup | fu(2) [< g(2) ace. [y]

neN_L

where g € L*(u). Moreover, suppose f: X — R is a function and

f(z) = lim f,(z) a.e. [p].

Then, f € L'(p),
lim ’ fo—= 1 | dp =0

n—oo
and

lim fnd,u:/ fdu.

Theorem 2.2.3. Suppose (X, M, 1) is a positive measure space.

(@) If f: (X, M™) — (]0,00],Roc0) is measurable there exists a measur-
able function g : (X M) — ([0,00], Ro.0) such that f =g a.e. [p].

(b) If f: (X, M7) — (R, R) is measurable there exists a measurable
function g : (X, ) (R,R) such that f = g a.e. [u].

PROOF. Since f = f*— f~ it is enough to prove Part (a). There exist simple
M~ -measurable functions ¢, , n € N, such that 0 < ¢, T f. For each fixed
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n suppose Qy, ..., A, , are the distinct values of ¢,, and choose for each fixed
i=1,..k,aset Ay C o ({asn}) such that A;, € M and o, (qin) \ Ain

Y, = E?&%’nXAm-
Clearly 1, (z) 1 f(z) if # € E =g N3, (U™ Az) and (X \ E) = 0. We
now define g(z) = f(z), if x € E, and g(x) =0 if x € X \ E. The theorem
is proved.

Exercises

1. Suppose f and g are real-valued measurable functions. Prove that f? and
fg are measurable functions.

2. Suppose f € L'(u). Prove that

lim | fldu=0.

(Here [/, means fy;..)

3. Suppose f € L'(u). Prove that to each e > 0 there exists a § > 0 such

that
/|f|du<s
E

whenever p(E) < 6.

4. Let (fn)52, be a sequence of (M, R)-measurable functions. Prove that
the set of all x € R such that the sequence (f,(x))22, converges to a real
limit belongs to M.

5. Let (X, M, R) be a positive measure space such that p(A) = 0 or oo for
every A € M. Show that f € L'(u) if and only if f(z) =0 a.e. [y].
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6. Let (X, M,u) be a positive measure space and suppose f and g are
non-negative measurable functions such that

/fdu:/gdu, all A e M.
A A

(a) Prove that f = g a.e. [u] if p is o-finite.
(b) Prove that the conclusion in Part (a) may fail if x is not o-finite.

7. Let (X, M, i) be a finite positive measure space and suppose the functions
fn: X — R, n=1,2,..., are measurable. Show that there is a sequence
()22, of positive real numbers such that

lim o, f, =0 ae. [y].

n—oo

8. Let (X, M, 1) be a positive measure space and let f,, : X - R,n=1,2, ...
be a sequence in L'(;) which converges to f a.e. [u] as n — oo. Suppose
f € LY(pn) and

i [ o ldu= [ 1 F 1 d

Show that
lim | fo—f|du=0.
n—oo X

9. Let (X, M, u) be a finite positive measure space and suppose f € L'(u)
is a bounded function such that

/X Py = /X Fdy = /X zn

Prove that f = x4 for an appropriate A € M.

10. Let (X, M, ) be a finite positive measure space and f : X — R a
measurable function. Prove that f € L'(u) if and only if

Sl f = k) < oo
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11. Suppose f € L'(m). Prove that the series %2°

> _of(x + k) converges for
m-almost all x.

12. a) Suppose f : R —[0,00[ is Lebesgue measurable and [, fdm < oo.
Prove that
lim am(f > «) = 0.

a— 00

b) Find a Lebesgue measurable function f : R — [0, 00[ such that f ¢
LY*(m), m(f > 0) < oo, and

lim am(f > «) = 0.

a—00

2.3 Comparison of Riemann and Lebesgue Integrals

In this section we will show that the Lebesgue integral is a natural general-
ization of the Riemann integral. For short, the discussion is restricted to a
closed and bounded interval.

Let [a,b] be a closed and bounded interval and suppose f : [a,b] — R is
a bounded function. For any partition

Ata=xg<m1<..<T,=0

of [a, b] define
Saf=EL( sup f)(z;i — zi1)

@i —1,24]

and
saf =35 ( inf f)(z — i)

Joi—1,24]

The function f is Riemann integrable if

inf SAf =supsaf
A A

and the Riemann integral f; f(x)dx is, by definition, equal to this common
value.
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Below an ((R7)[az, R)-measurable function is simply called Lebesgue
measurable. Furthermore, we write m instead of 1[4

Theorem 2.3.1. A bounded function f : [a,b] — R is Riemann integrable
if and only if the set of discontinuity points of f is a Lebesque null set.
Moreover, if the set of discontinuity points of f is a Lebesgue null set, then
f is Lebesque measurable and

/abf(x)dx = Lb] fdm.

PROOF. A partition A’ : @ = 2 < 2} < ... < 2/, = b is a refinement of a
partition A : a = z9 < 21 < ... < x,, = b if each x;, is equal to some z; and in
this case we write A < A’. The definitions give SAf > Sa/f and saf < sarf
if A < A’. We define, mesh(A) = max<j<,(z; — x;_1).

First suppose f is Riemann integrable. For each partition A let

GA = f(a>X{a} + E?:l( sup f)X}xi,l,xi}

Joi—1,24)
and

agn = f(a)X{a} + Z?:l( inf ]f)X]:L‘Z,hJ:Z]

lwi—1,x;
and note that
/ GAdm = SAf
[a,b]

and

/ gadm = saf.
[a,D]

Suppose Ay, k= 1,2, ..., is a sequence of partitions such that A, < Ay,

b
SAkfl/ f(z)dz

and

b
saf 1 / f(x)dz
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as k — o0o0. Let G = limy_,oo Ga, and g = limy_ ga,. Then G and g are
(Ria), R)-measurable, g < f < G, and by dominated convergence

b
/ de:/ gdm:/ f(z)dz.
[a,b] [a,b] a

/ (G = g)dm =0

[a,b]

But then

so that G = ¢ a.e. [m] and therefore G = f a.e. [m]. In particular, f is

Lebesgue measurable and
b
/ f(z)de = / fdm.
a [a,b]

N ={z; g(x) < f(x) or f(x) < G(2)}.

We proved above that m(N) = 0. Let M be the union of all those points which
belong to some partition Ay. Clearly, m(M) = 0 since M is denumerable.
We claim that f is continuous off N U M. If f is not continuous at a point
c ¢ N UM, there is an ¢ > 0 and a sequence (¢,)32; converging to ¢ such
that

Set

| flen) — fle) |> € all n.

Since ¢ ¢ M, ¢ is an interior point to exactly one interval of each partition
Ay and we get

Ga,(c) —ga,lc) > €

and in the limit
G(c) —glc) > e.

But then ¢ € N which is a contradiction.

Conversely, suppose the set of discontinuity points of f is a Lebesgue null
set and let (Ag)72, is an arbitrary sequence of partitions of [a, b] such that
Ag < Ajyq and mesh(Ag) — 0 as k — oo. By assumption,

lim Ga, (1) = lim ga, () = f(x)

k—o0
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at each point = of continuity of f. Therefore f is Lebesgue measurable and
dominated convergence yields

lim Ga,dm = fdm

k=00 J1a.b) [a,b]
and

lim ga,dm = fdm.

k=00 Jia.) [a,b]

Thus f is Riemann integrable and

/abf(x)dx = Lb] fdm.

In the following we sometimes write

/Af(x)dx (AeR)

instead of

/Afdm (AeR).

In a similar way we often prefer to write

/Af(x)dx (AcR)

instead of

/Afdmn (AeR).

Furthermore, ff fdm means f[a | fdm. Here, however, a warning is moti-

vated. It is simple to find a real-valued function f on [0, co[, which is bounded
on each bounded subinterval of [0, 00[, such that the generalized Riemann

integral
/ f(z)dz
0

b
lim /0 f(z)dx

b—oo

is convergent, that is
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exists and the limit is a real number, while the Riemann integral

| 1@

is divergent (take e.g. f(z) = ®2%). In this case the function f does not
belong to £ with respect to Lebesgue measure on [0, oo| since

b
/ |f|dm:1im/|f(:p)|dx:oo.
[0,00] b—oo Jo

Exercises

1. Let f, : [0,1] — [0,1], n € N, be a sequence of Riemann integrable
functions such that

lim f,(z) exists = f(x) all x € [0,1].

n—oo

Show by giving an example that f need not be Riemann integrable.
2. Suppose f,(z) =n?| x| e » € R, n € N,. Compute lim, . f, and
lim;, oo [ fndm.

3. Compute the following limits and justify the calculations:

a)

lim sin(e”) dz.
n—oo [o 1 —+ anQ
b)
. " T,
lim [ (14 —) " coszdu.
n—oo Jq n

n

lim [ (1+ E)”e’zxdx.

n—oo [ n

o0

lim (1+ E)" exp(—(1+ %)n)dx

n—oo 0

3
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n—oo Jq n
f)
" 1
lim [ (1-— E)" i cos xdx
n—oo /g n’ n+w
g) N
lim (1+ E)”26_’”30[:15.
n—oo 0 n

4. Let (r,)>, be an enumeration of Q and define
fx) = 552,27 p(x — 1)

where p(z) = 272 if 0 <z < 1 and p(z) = 0 if 2 < 0 or 2 > 1. Show that

a)
/_: f(x)dx = 2.

b)
b
/ f(z)dx = oo if a < b.
c)
f<ooas. [m].
d)
sup f(z) =+o0ifa <b.
a<z<b
5. Suppose
© . In(1+x)
o tx
f(t)—/o e dx, t > 0.

a) Show that [° f(t)dt < co.
b) Show that f is infinitely many times differentiable.

2.4. Expectation
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Suppose (2, F, P) is a probability space and £ : (2, F) — (5,S) a random
variable. Recall that the probability law u of £ is given by the image measure

Pe. By definition,
/deuz/xB(ﬁ)dP
S Q

for every B € S, and, hence

/Ssodu—/QsO(é)dP

for each simple S-measurable function ¢ on S (we sometimes write f o g =
f(g)). By monotone convergence, we get

/S fp = /Q Fe)ap

for every measurable f : S — [0,00]. Thus if f : S — R is measurable,
f € LY(p) if and only if f(£) € L'(P) and in this case

/S fu = /Q F(€)ap

In the special case when ¢ is real-valued and & € L'(P),

/ adp(x / ¢dPp.

The integral in the right-hand side is called the expectation of ¢ and is
denoted by E [£].



