
1

CHAPTER 3

Further Construction Methods of Measures

Introduction

In the �rst section of this chapter we collect some basic results on metric
spaces, which every mathematician must know about. Section 3.2 gives a
version of the Riesz Representation Theorem, which leads to another and
perhaps simpler approach to Lebesgue measure than the Carathéodory The-
orem. A reader can skip Section 3.2 without losing the continuity in this
paper. The chapter also treats so called product measures and Stieltjes in-
tegrals.

3.1. Metric Spaces

The construction of our most important measures requires topological con-
cepts. For our purpose it will be enough to restrict ourselves to so called
metric spaces.
A metric d on a set X is a mapping d : X �X ! [0;1[ such that

(a) d(x; y) = 0 if and only if x = y
(b) d(x; y) = d(y; x) (symmetry)
(c) d(x; y) � d(x; z) + d(z; y) (triangle inequality).

Here recall, if A1; :::; An are sets,

A1 � :::� An = f(x1; :::; xn); xi 2 Ai for all i = 1; :::; ng

A set X equipped with a metric d is called a metric space. Sometimes we
write X = (X; d) to emphasize the metric d: If E is a subset of the metric
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space (X; d); the function djE�E(x; y) = d(x; y); if x; y 2 E; is a metric on
E: Thus (E; djE�E) is a metric space.
The function '(t) = min(1; t); t � 0; satis�es the inequality

'(s+ t) � '(s) + '(t):

Therefore, if d is a metric on X, min(1; d) is a metric on X: The metric
min(1; d) is a bounded metric.
The set R equipped with the metric d1(x; y) =j x� y j is a metric space.

More generally, Rn equipped with the metric

dn(x; y) = dn((x1; :::; xn); (y1; :::; yn)) = max
1�k�n

j xk � yk j

is a metric space. If not otherwise stated, it will always be assumed that Rn

is equipped with this metric.
Let C [0; T ] denote the vector space of all real-valued continuous functions

on the interval [0; T ] ; where T > 0: Then

d1(x; y) = max
0�t�T

j x(t)� y(t) j

is a metric on C [0; T ] :
If (Xk; ek); k = 1; :::; n, are metric spaces,

d(x; y) = max
1�k�n

ek(xk; yk); x = (x1; :::; xn) ; y = (y1; :::; yn)

is a metric on X1 � ::: � Xn: The metric d is called the product metric on
X1 � :::�Xn:
If X = (X; d) is a metric space and x 2 X and r > 0; the open ball with

centre at x and radius r is the set B(x; r) = fy 2 X; d(y; x) < rg : If E � X
and E is contained in an appropriate open ball in X it is said to be bounded.
The diameter of E is, by de�nition,

diam E = sup
x;y2E

d(x; y)

and it follows that E is bounded if and only if diam E <1. A subset of X
which is a union of open balls in X is called open. In particular, an open
ball is an open set. The empty set is open since the union of an empty family
of sets is empty. An arbitrary union of open sets is open. The class of all
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open subsets of X is called the topology of X: The metrics d and min(1; d)
determine the same topology. A subset E of X is said to be closed if its
complement Ec relative to X is open. An intersection of closed subsets of
X is closed. If E � X, E� denotes the largest open set contained in E and
E� (or �E) the smallest closed set containing E: E� is the interior of E and
E� its closure. The �-algebra generated by the open sets in X is called the
Borel �-algebra in X and is denoted by B(X). A positive measure on B(X)
is called a positive Borel measure.
A sequence (xn)1n=1 in X converges to x 2 X if

lim
n!1

d(xn; x) = 0:

If, in addition, the sequence (xn)1n=1 converges to y 2 X; the inequalities

0 � d(x; y) � d(xn; x) + d(xn; y)

imply that y = x and the limit point x is unique.
If E � X and x 2 X; the following properties are equivalent:

(i) x 2 E�:
(ii) B(x; r) \ E 6= �; all r > 0:
(iii) There is a sequence (xn)1n=1 in E which converges to x:

If B(x; r) \ E = �, then B(x; r)c is a closed set containing E but not x:
Thus x =2 E�: This proves that (i))(ii). Conversely, if x =2 E�; since �Ec is
open there exists an open ball B(y; s) such that x 2 B(y; s) � �Ec � Ec: Now
choose r = s� d(x; y) > 0 so that B(x; r) � B(y; s): Then B(x; r) \ E = �:
This proves (ii))(i).
If (ii) holds choose for each n 2 N+ a point xn 2 E with d(xn; x) < 1

n

and (iii) follows. If there exists an r > 0 such that B(x; r) \ E = �; then
(iii) cannot hold. Thus (iii))(ii).
If E � X, the set E� nE� is called the boundary of E and is denoted by

@E:
A set A � X is said to be dense in X if A� = X: The metric space X is

called separable if there is an at most denumerable dense subset of X: For
example, Qn is a dense subset of Rn: The space Rn is separable.
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Theorem 3.1.1. B(Rn) = Rn:

PROOF. The �-algebra Rn is generated by the open n-cells in Rn and an
open n-cell is an open subset of Rn: Hence Rn � B(Rn): Let U be an open
subset in Rn and note that an open ball in Rn = (Rn; dn) is an open n-cell.
If x 2 U there exist an a 2Qn \ U and a rational number r > 0 such that
x 2 B(a; r) � U: Thus U is an at most denumerable union of open n-cells
and it follows that U 2 Rn: Thus B(Rn) � Rn and the theorem is proved.

Let X = (X; d) and Y = (Y; e) be two metric spaces. A mapping f :
X ! Y (or f : (X; d)! (Y; e) to emphasize the underlying metrics) is said
to be continuous at the point a 2 X if for every " > 0 there exists a � > 0
such that

x 2 B(a; �)) f(x) 2 B(f(a); "):
Equivalently this means that for any sequence (xn)1n=1 in X which converges
to a in X; the sequence (f(xn))1n=1 converges to f(a) in Y: If f is continuous
at each point of X, the mapping f is called continuous. Stated otherwise
this means that

f�1(V ) is open if V is open

or
f�1(F ) is closed if F is closed.

The mapping f is said to be Borel measurable if

f�1(B) 2 B(X) if B 2 B(Y )

or, what amounts to the same thing,

f�1(V ) 2 B(X) if V is open.

A Borel measurable function is sometimes called a Borel function. A
continuous function is a Borel function.

Example 3.1.1. Let f : (R;d1)! (R;d1) be a continuous strictly increasing
function and set �(x; y) =j f(x)� f(y) j; x; y 2 R: Then � is a metric on R.
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De�ne j(x) = x; x 2 R: The mapping j : (R;d1)! (R;�) is continuous. We
claim that the map j : (R;�)! (R;d1) is continuous: To see this, let a 2 R
and suppose the sequence (xn)1n=1 converges to a in the metric space (R;�);
that is j f(xn)� f(a) j! 0 as n!1: Let " > 0: Then

f(xn)� f(a) � f(a+ ")� f(a) > 0 if xn � a+ "

and
f(a)� f(xn) � f(a)� f(a� ") > 0 if xn � a� ":

Thus xn 2 ]a� "; a+ "[ if n is su¢ ciently large. This proves that he map
j : (R;�)! (R;d1) is continuous.
The metrics d1 and � determine the same topology and Borel subsets of

R:

A mapping f : (X; d) ! (Y; e) is said to be uniformly continuous if for
each " > 0 there exists a � > 0 such that e(f(x); f(y)) < " as soon as
d(x; y) < �:
If x 2 X and E; F � X; let

d(x;E) = inf
u2E

d(x; u)

be the distance from x to E and let

d(E;F ) = inf
u2E;v2F

d(u; v)

be the distance between E and F: Note that d(x;E) = 0 if and only if x 2 �E:
If x; y 2 X and u 2 E;

d(x; u) � d(x; y) + d(y; u)

and, hence
d(x;E) � d(x; y) + d(y; u)

and
d(x;E) � d(x; y) + d(y; E):

Next suppose E 6= �: Then by interchanging the roles of x and y; we get

j d(x;E)� d(y; E) j� d(x; y)



6

and conclude that the distance function d(x;E); x 2 X; is continuous. In
fact, it is uniformly continuous. If x 2 X and r > 0; the so called closed ball
�B(x; r) = fy 2 X; d(y; x) � rg is a closed set since the map y ! d(y; x);
y 2 X; is continuous.
If F � X is closed and " > 0, the continuous function

�XF;" = max(0; 1�
1

"
d(�; F ))

ful�ls 0 � �XF;" � 1 and �XF;" = 1 on F: Furthermore, �XF;"(a) > 0 if and only
if a 2 F" =def fx 2 X; d(x; F ) < "g : Thus

�F � �XF;" � �F" :

Let X = (X; d) be a metric space. A sequence (xn)1n=1 in X is called
a Cauchy sequence if to each " > 0 there exists a positive integer p such
that d(xn; xm) < " for all n;m � p: If a Cauchy sequence (xn)1n=1 contains a
convergent subsequence (xnk)

1
k=1 it must be convergent. To prove this claim,

suppose the subsequence (xnk)
1
k=1 converges to a point x 2 X: Then

d(xm; x) � d(xm; xnk) + d(xnk ; x)

can be made arbitrarily small for all su¢ ciently large m by choosing k su¢ -
ciently large. Thus (xn)1n=1 converges to x:
A subset E of X is said to be complete if every Cauchy sequence in E

converges to a point in E: If E � X is closed and X is complete it is clear
that E is complete. Conversely, if X is a metric space and a subset E of X
is complete, then E is closed:
It is important to know that R is complete equipped with its standard

metric. To see this let (xn)1n=1 be a Cauchy sequence. There exists a positive
integer such that j xn � xm j< 1 if n;m � p: Therefore

j xn j�j xn � xp j + j xp j� 1+ j xp j

for all n � p: We have proved that the sequence (xn)1n=1 is bounded (the
reader can check that every Cauchy sequence in a metric space has this
property). Now de�ne

a = sup fx 2 R; there are only �nitely many n with xn � xg :

The de�nition implies that there exists a subsequence (xnk)
1
k=1; which con-

verges to a (since for any r > 0; xn 2 B(a; r) for in�nitely many n). The
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original sequence is therefore convergent and we conclude that R is complete
(equipped with its standard metric d1): It is simple to prove that the product
of n complete spaces is complete and we conclude that Rn is complete.
Let E � X: A family (Vi)i2I of subsets of X is said to be a cover of E

if [i2IVi � E and E is said to be covered by the V 0
i s: The cover (Vi)i2I is

said to be an open cover if each member Vi is open. The set E is said to be
totally bounded if, for every " > 0; E can be covered by �nitely many open
balls of radius ": A subset of a totally bounded set is totally bounded.
The following de�nition is especially important.

De�nition 3.1.1. A subset E of a metric space X is said to be compact if
to every open cover (Vi)i2I of E, there is a �nite subcover of E, which means
there is a �nite subset J of I such that (Vi)i2J is a cover of E:

If K is closed, K � E; and E is compact, then K is compact. To see this,
let (Vi)i2I be an open cover of K: This cover, augmented by the set X n K
is an open cover of E and has a �nite subcover since E is compact. Noting
that K \ (X nK) = �; the assertion follows.

Theorem 3.1.2. The following conditions are equivalent:
(a) E is complete and totally bounded.
(b) Every sequence in E contains a subsequence which converges to a
point of E:
(c) E is compact.

PROOF. (a))(b). Suppose (xn)1n=1 is a sequence in E: The set E can be
covered by �nitely many open balls of radius 2�1 and at least one of them
must contain xn for in�nitely many n 2 N+: Suppose xn 2 B(a1; 2

�1) if
n 2 N1 � N0 =def N+; where N1 is in�nite. Next E \ B(a1; 2�1) can be
covered by �nitely many balls of radius 2�2 and at least one of them must
contain xn for in�nitely many n 2 N1: Suppose xn 2 B(a2; 2

�1) if n 2 N2;
where N2 � N1 is in�nite. By induction, we get open balls B(aj; 2�j) and
in�nite sets Nj � Nj�1 such that xn 2 B(aj; 2

�j) for all n 2 Nj and j � 1:
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Let n1 < n2 < :::, where nk 2 Nk; k = 1; 2; ::: . The sequence (xnk)
1
k=1 is a

Cauchy sequence, and since E is complete it converges to a point of E .

(b))(a). If E is not complete there is a Cauchy sequence in E with no
limit in E: Therefore no subsequence can converge in E; which contradicts
(b). On the other hand if E is not totally bounded, there is an " > 0 such
that E cannot be covered by �nitely many balls of radius ": Let x1 2 E
be arbitrary. Having chosen x1; :::; xn�1; pick xn 2 En [n�1i=1 B(xi; "); and
so on. The sequence (xn)1n=1 cannot contain any convergent subsequence as
d(xn; xm) � " if n 6= m; which contradicts (b).

f(a) and (b)g )(c). Let (Vi)i2I be an open cover of E: Since E is totally
bounded it is enough to show that there is an " > 0 such that any open
ball of radius " which intersects E is contained in some Vi: Suppose on the
contrary that for every n 2 N+ there is an open ball Bn of radius � 2�n

which intersects E and is contained in no Vi: Choose xn 2 Bn \ E and
assume without loss of generality that (xn)1n=1 converges to some point x in
E by eventually going to a subsequence. Suppose x 2 Vi0 and choose r > 0
such that B(x; r) � Vi0 : But then Bn � B(x; r) � Vi0 for large n, which
contradicts the assumption on Bn:

(c))(b). If (xn)1n=1 is a sequence in E with no convergent subsequence in
E, then for every x 2 E there is an open ball B(x; rx) which contains xn for
only �nitely many n: Then (B(x; rx))x2E is an open cover of E without a
�nite subcover.

Corollary 3.1.1. A subset of Rn is compact if and only if it is closed and
bounded.

PROOF. Suppose K is compact. If xn 2 K and xn =2 B(0; n) for every
n 2 N+; the sequence (xn)1n=1 cannot contain a convergent subsequence.
Thus K is bounded. Since K is complete it is closed.
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Conversely, suppose K is closed and bounded. Since Rn is complete and
K is closed, K is complete. We next prove that a bounded set is totally
bounded. It is enough to prove that any n-cell in Rn is a union of �nitely
many n-cells I1�:::�In where each interval I1; :::; In has a prescribed positive
length. This is clear and the theorem is proved.

Corollary 3.1.2. Suppose f : X ! R is continuous and X compact :
(a) There exists an a 2 X such that maxX f = f(a) and a b 2 X
such that minX f = f(b):
(b) The function f is uniformly continuous:

PROOF. (a) For each a 2 X; let Va = fx 2 X : f(x) < 1 + f(a)g : The open
cover (Va)a2K of X has a �nite subcover and it follows that f is bounded. Let
(xn)

1
n=1 be a sequence in X such that f(xn)! supK f as n!1: Since X is

compact there is a subsequence (xnk)
1
k=1 which converges to a point a 2 X:

Thus, by the continuity of f; f(xnk)! f(a) as k !1:
The existence of a minimum is proved in a similar way.

(b) If f is not uniformly continuous there exist " > 0 and sequences
(xn)

1
n=1 and (yn)

1
n=1 such that j f(xn) � f(yn) j� " and j xn � yn j< 2�n

for every n � 1: Since X is compact there exists a subsequence (xnk)
1
k=1 of

(xn)
1
n=1 which converges to a point a 2 X: Clearly the sequence (ynk)

1
k=1

converges to a and therefore

j f(xnk)� f(ynk) j�j f(xnk)� f(a) j + j f(a)� f(ynk) j! 0

as k !1 since f is continuous. But j f(xnk)� f(ynk) j� " and we have got
a contradiction. The corollary is proved.

Example 3.1.2. Suppose X = ]0; 1] and de�ne �1(x; y) = d1(x; y) and
�2(x; y) =j 1x�

1
y
j; x; y 2 X: As in Example 3.1.1 we conclude that the metrics

�1 and �2 determine the same topology of subsets of X: The space (X; �1)
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totally bounded but not complete. However, the space (X; �2) is not totally
bounded but it is complete. To see this, let (xn)1n=1be a Cauchy sequence in
(X; �2): As a Cauchy sequence it must be bounded and therefore there exists
an " 2 ]0; 1] such that xn 2 ["; 1] for all n: But then, by Corollary 3.1.1,
(xn)

1
n=1 contains a convergent subsequence in (X; �1) and, accordingly from

this, the same property holds in (X; �2): The space (X; �2) is not compact,
since (X; �1) is not compact, and we conclude from Theorem 3.1.2 that the
space (X; �2) cannot be totally bounded.

Example 3.1.3. Set �R=R[f�1;1g and

d̂(x; y) =j arctanx� arctan y j

if x; y 2 �R: Here

arctan1 =
�

2
and arctan�1 = ��

2
:

Example 3.1.1 shows that the standard metric d1 and the metric d̂jR�R
determine the same topology.
We next prove that the metric space �R is compact. To this end, consider

a sequence (xn)1n=1 in �R. If there exists a real numberM such that j xn j�M
for in�nitely many n; the sequence (xn)1n=1 contains a convergent subsequence
since the interval [�M;M ] is compact. In the opposite case, for each positive
real number M , either xn � M for in�nitely many n or xn � �M for
in�nitely many n: Suppose xn � M for in�nitely many n for every M 2
N+: Then d̂(xnk ;1) =j arctanxnk � �

2
j! 0 as k ! 1 for an appropriate

subsequence (xnk)
1
k=1:

The space �R= (�R,d̂) is called a two-point compacti�cation of R.
It is an immediate consequence of Theorem 3.1.2 that the product of

�nitely many compact metric spaces is compact. Thus R̂n equipped with
the product metric is compact.
We will �nish this section with several useful approximation theorems.

Theorem 3.1.3. Suppose X is a metric space and � positive Borel measure
in X: Moreover, suppose there is a sequence (Un)1n=1of open subsets of X
such that

X = [1n=1Un
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and
�(Un) <1; all n 2 N+:

Then for each A 2 B(X) and " > 0; there are a closed set F � A and an
open set V � A such that

�(V n F ) < ":

In particular, for every A 2 B(X);

�(A) = inf
V�A
V open

�(V )

and
�(A) = sup

F�A
F closed

�(F )

If X = R and �(A) = �1n=1� 1
n
(A) ; A 2 R; then �(f0g) = 0 and �(V ) =

1 for every open set containing f0g : The hypothesis that the sets Un; n 2
N+; are open (and not merely Borel sets) is very important in Theorem 3.1.3.

PROOF. First suppose that � is a �nite positive measure.
Let A be the class of all Borel sets A in X such that for every " > 0

there exist a closed F � A and an open V � A such that �(V nF ) < ": If F
is a closed subset of X and Vn =

�
x; d(x; F ) < 1

n

	
; then Vn is open and, by

Theorem 1.1.2 (f), �(Vn) # v(F ) as n ! 1. Thus F 2 A and we conclude
that A contains all closed subsets of X:
Now suppose A 2 A: We will prove that Ac 2 A: To this end, we choose

" > 0 and a closed set F � A and an open set V � A such that �(V nF ) < ":
Then V c � Ac � F c and, moreover, �(F c n V c) < " since

V n F = F c n V c:

If we note that V c is closed and F c open it follows that Ac 2 A:
Next let (Ai)1i=1 be a denumerable collection of members of A. Choose

" > 0: By de�nition, for each i 2 N+ there exist a closed Fi � Ai and an
open Vi � Ai such that �(Vi n Fi) < 2�i": Set

V = [1i=1Vi:
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Then
�(V n ([1i=1Fi)) � �([1i=1(Vi n Fi))

� �1i=1�(Vi n Fi) < ":

But
V n ([1i=1Fi) = \1n=1 fV n ([ni=1Fi)g

and since � is a �nite positive measure

�(V n ([1i=1Fi)) = lim
n!1

�(V n ([ni=1Fi)):

Accordingly, from these equations

�(V n ([ni=1Fi)) < "

if n is large enough. Since a union of open sets is open and a �nite union of
closed sets is closed, we conclude that [1i=1Ai 2 A: This proves that A is a
�-algebra. Since A contains each closed subset of X; A = B(X):
We now prove the general case. Suppose A 2 B(X): Since �Un is a �nite

positive measure the previous theorem gives us an open set Vn � A\Un such
that �Un(Vnn(A\Un)) < "2�n: By eventually replacing Vn by Vn\Un we can
assume that Vn � Un: But then �(Vnn(A\Un)) = �Un(Vnn(A\Un)) < "2�n:
Set V = [1n=1Vn and note that V is open. Moreover,

V n A � [1n=1(Vn n (A \ Un))

and we get
�(V n A) � �1n=1�(Vn n (A \ Un)) < ":

By applying the result already proved to the complement Ac we conclude
there exists an open set W � Ac such that

�(A nW c) = �(W n Ac) < ":

Thus if F =def W
c it follows that F � A � V and �(V n F ) < 2": The

theorem is proved.

If X is a metric space C(X) denotes the vector space of all real-valued
continuous functions f : X ! R: If f 2 C(X); the closure of the set of
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all x where f(x) 6= 0 is called the support of f and is denoted by suppf:
The vector space of all all real-valued continuous functions f : X ! R with
compact support is denoted by Cc(X):

Corollary 3.1.3. Suppose � and � are positive Borel measures in Rn such
that

�(K) <1 and �(K) <1

for every compact subset K of Rn: IfZ
Rn

f(x)d�(x) =

Z
Rn

f(x)d�(x); all f 2 Cc(Rn)

then � = �:

PROOF. Let F be closed. Clearly �(B(0; i)) < 1 and �(B(0; i)) < 1 for
every positive integer i: Hence, by Theorem 3.1.3 it is enough to show that
�(F ) = �(F ): Now �x a positive integer i and set K = �B(0; i) \ F: It is
enough to show that �(K) = �(K): ButZ

Rn

�R
n

K;2�j(x)d�(x) =

Z
Rn

�R
n

K;2�j(x)d�(x)

for each positive integer j and letting j !1 we are done.

A metric space X is called a standard space if it is separable and com-
plete. Standard spaces have a series of very nice properties related to measure
theory; an example is furnished by the following

Theorem 3.1.4. (Ulam�s Theorem) Let X be a standard space and
suppose � is a �nite positive Borel measure on X: Then to each A 2 B(X)
and " > 0 there exist a compact K � A and an open V � A such that
�(V nK) < ":
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PROOF. Let " > 0: We �rst prove that there is a compact subset K of X
such that �(K) > �(X)�": To this end, let A be a dense denumerable subset
of X and let (ai)1i=1 be an enumeration of A: Now for each positive integer
j; [1i=1B(ai; 2�j") = X; and therefore there is a positive integer nj such that

�([nji=1B(ai; 2�j")) > �(X)� 2�j":
Set

Fj = [nji=1 �B(ai; 2�j")
and

L = \1j=1Fj:
The set L is totally bounded. SinceX is complete and L closed, L is complete.
Therefore, the set L is compact and, moreover

�(K) = �(X)� �(Lc) = �(X)� �([1j=1F cj )

� �(X)� �1j=1�(F cj ) = �(X)� �1j=1(�(X)� �(Fj))

� �(X)� �1j=12�j" = �(X)� ":

Depending on Theorem 3.1.3 to each A 2 B(X) there exists a closed
F � A and an open V � A such that �(V n F ) < ": But

V n (F \ L) = (V n F ) [ (F n L)

and we get

�(V n (F \ L)) � �(V n F ) + �(X nK) < 2":

Since the set F \ L is compact Theorem 3.1.4 is proved.

Two Borel sets in Rn are said to be almost disjoint if their intersection
has volume measure zero.

Theorem 3.1.5. Every open set U in Rn is the union of an at most denu-
merable collection of mutually almost disjoint cubes.
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Before the proof observe that a cube in Rn is the same as a closed ball
in Rn equipped with the metric dn.

PROOF. For each, k 2 N+; let Qkbe the class of all cubes of side length 2�k

whose vertices have coordinates of the form i2�k; i 2 Z: Let F1 be the union
of those cubes in Q1 which are contained in U: Inductively, for k � 1; let
Fk be the union of those cubes in Qk which are contained in U and whose
interiors are disjoint from [k�1j=1Fj: Since d(x;R

n n U) > 0 for every x 2 U it
follows that U = [1j=1Fj:

Exercises

1. Suppose f : (X;M)! (Rd;Rd) and g : (X;M)! (Rn;Rn) are measur-
able. Set h(x) = (f(x); g(x)) 2 Rd+n if x 2 X. Prove that h : (X;M) !
(Rd+n;Rd+n) is measurable.

2. Suppose f : (X;M)! (R;R) and g : (X;M)! (R;R) are measurable.
Prove that fg is (M;R)-measurable.

3. The function f : R ! R is a Borel function. Set g(x; y) = f(x); (x; y) 2
R2: Prove that g : R2 ! R is a Borel function.

4. Suppose f : [0; 1]! R is a continuous function and g : [0; 1]! [0; 1] a
Borel function. Compute the limit

lim
n!1

Z 1

0

f(g(x)n)dx:

5. SupposeX and Y are metric spaces and f : X ! Y a continuous mapping.
Show that f(E) is compact if E is a compact subset of X.
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6. SupposeX and Y are metric spaces and f : X ! Y a continuous bijection.
Show that the inverse mapping f�1 is continuous if X is compact.

7. Construct an open bounded subset V of R such that m(@V ) > 0:

8. The function f : [0; 1] !R has a continuous derivative. Prove that the
set f(K) 2 Zm if K = (f 0)�1(f0g):

9. Let P denote the class of all Borel probability measures on [0; 1] and L
the class of all functions f : [0; 1]! [�1; 1] such that

j f(x)� f(y) j�j x� y j; x; y 2 [0; 1] :

For any �; � 2 P; de�ne

�(�; �) = sup
f2L

j
Z
[0;1]

fd��
Z
[0;1]

fd� j :

(a) Show that (P; �) is a metric space. (b) Compute �(�; �) if � is linear
measure on [0; 1] and � = 1

n
�n�1k=0� k

n
; where n 2 N+ (linear measure on [0; 1]

is Lebesgue measure on [0; 1] restricted to the Borel sets in [0; 1]).

10. Suppose � is a �nite positive Borel measure on Rn: (a) Let (Vi)i2I be a
family of open subsets of Rn and V = [i2IVi. Prove that

�(V ) = sup
i1;:::;ik2I
k2N+

�(Vi1 [ ::: [ Vik):

(b) Let (Fi)i2I be a family of closed subsets of Rn and F = \i2IFi. Prove
that

�(F ) = inf
i1;:::;ik2I
k2N+

�(Fi1 \ ::: \ Fik):
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###

3.2. Linear Functionals and Measures

Let X be a metric space. A mapping T : Cc(X)! R is said to be a linear
functional on Cc(X) if

T (f + g) = Tf + Tg; all f; g 2 Cc(X)

and
T (�f) = �Tf; all � 2 R; f 2 Cc(X):

If in addition Tf � 0 for all f � 0; T is called a positive linear functional
on Cc(X): In this case Tf � Tg if f � g since g � f � 0 and Tg � Tf =
T (g � f) � 0: Note that Cc(X) = C(X) if X is compact.
The main result in this section is the following

Theorem 3.2.1. (The Riesz Representation Theorem) Suppose X is
a compact metric space and let T be a positive linear functional on C(X):
Then there exists a unique �nite positive Borel measure � in X with the
following properties:
(a)

Tf =

Z
X

fd�; f 2 C(X):

(b) For every E 2 B(X)

�(E) = sup
K�E

K compact

�(K):

(c) For every E 2 B(X)

�(E) = inf
V�E
V open

�(V ):
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The property (c) is a consequence of (b), since for each E 2 B(X) and
" > 0 there is a compact K � X n E such that

�(X n E) < �(K) + ":

But then
�(X nK) < �(E) + "

and X n K is open and contains E: In a similar way, (b) follows from (c)
since X is compact.
The proof of the Riesz Representation Theorem depends on properties of

continuous functions of independent interest. Suppose K � X is compact
and V � X is open. If f : X ! [0; 1] is a continuous function such that

f � �V and suppf � V

we write
f � V

and if
�K � f � �V and suppf � V

we write
K � f � V:

Theorem 3.2.2. Let K be compact subset X.
(a) Suppose K � V where V is open. There exists a function f on X

such that
K � f � V:

(b) Suppose X is compact and K � V1[ :::[Vn; where K is compact and
V1; :::; Vn are open. There exist functions h1; :::; hn on X such that

hi � Vi; i = 1; :::; n

and
h1 + :::+ hn = 1 on K:
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PROOF. (a) Suppose " = 1
2
minK d(�; V c): By Corollary 3.1.2, " > 0: The

continuous function f = �XK;" satis�es �K � f � �K"
; that is K � f � K":

Part (a) follows if we note that the closure (K")
� of K" is contained in V:

(b) For each x 2 K there exists an rx > 0 such that B(x; rx) � Vi for some
i. Let Ux = B(x; 1

2
rx): It is important to note that (Ux)� � Vi and (Ux)�

is compact since X is compact. There exist points x1; :::; xm 2 K such that
[mj=1Uxi � K: If 1 � i � n; let Fi denote the union of those (Uxj)

� which are
contained in Vi: By Part (a), there exist continuous functions fi such that
Fi � fi � Vi; i = 1; :::; n: De�ne

h1 = f1

h2 = (1� f1)f2

::::

hn = (1� f1):::(1� fn�1)fn:

Clearly, hi � Vi; i = 1; :::; n: Moreover, by induction, we get

h1 + :::+ hn = 1� (1� f1):::(1� fn�1)(1� fn):

Since [ni=1Fi � K we are done.

The uniqueness in Theorem 3.2.1 is simple to prove. Suppose �1 and
�2 are two measures for which the theorem holds. Fix " > 0 and compact
K � X and choose an open set V so that �2(V ) � �2(K)+ ": If K � f � V;

�1(K) =

Z
X

�Kd�1 �
Z
X

fd�1 = Tf

=

Z
X

fd�2 �
Z
X

�V d�2 = �2(V ) � �2(K) + ":

Thus �1(K) � �2(K): If we interchange the roles of the two measures, the
opposite inequality is obtained, and the uniqueness of � follows.
To prove the existence of the measure � in Theorem 3.2.1; de�ne for every

open V in X,
�(V ) = sup

f�V
Tf:
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Here �(�) = 0 since the supremum over the empty set, by convention, equals
0: Note also that �(X) = T1: Moreover, �(V1) � �(V2) if V1 and V2 are open
and V1 � V2: Now set

�(E) = inf
V�E
V open

�(V ) if E 2 B(X):

Clearly, �(E1) � �(E2); if E1 � E2 and E1;E2 2 B(X): We therefore say
that � is increasing.

Lemma 3.2.1. (a) If V1; :::; Vn are open,

�([ni=1Vi) � �ni=1�(Vi):

(b) If E1; E2; ::: 2 B(X);

�([1i=1Ei) � �1i=1�(Ei):

(c) If K1; :::; Kn are compact and pairwise disjoint,

�([ni=1Ki) = �
n
i=1�(Ki):

PROOF. (a) It is enough to prove (a) for n = 2: To this end �rst choose
g � V1[V2 and then hi � Vi, i = 1; 2; such that h1+h2 = 1 on supp g: Then

g = h1g + h2g

and it follows that

Tg = T (h1g) + T (h2g) � �(V1) + �(V2):

Thus
�(V1 [ V2) � �(V1) + �(V2):
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(b) Choose " > 0 and for each i 2 N+, choose an open Vi � Ei such �(Vi) <
�(Ei) + 2

�i": Set V = [1i=1Vi and choose f � V: Since suppf is compact,
f � V1 [ ::: [ Vn for some n: Thus, by Part (a),

Tf � �(V1 [ ::: [ Vn) � �ni=1�(Vi) � �1i=1�(Ei) + "

and we get
�(V ) � �1i=1�(Ei)

since " > 0 is arbitrary. But [1i=1Ei � V and it follows that

�([1i=1Ei) � �1i=1�(Ei):

(c) It is enough to treat the special case n = 2: Choose " > 0: Set � =
d(K1; K2) and V1 = (K1)�=2 and V2 = (K2)�=2: There is an open set U �
K1[K2 such that �(U) < �(K1[K2)+" and there are functions fi � U \Vi
such that Tfi > �(U \ Vi)� " for i = 1; 2: Now, using that � increases

�(K1) + �(K2) � �(U \ V1) + �(U \ V2)

� Tf1 + Tf2 + 2" = T (f1 + f2) + 2":

Since f1 + f2 � U;

�(K1) + �(K2) � �(U) + 2" � �(K1 [K2) + 3"

and, by letting "! 0;

�(K1) + �(K2) � �(K1 [K2):

The reverse inequality follows from Part (b). The lemma is proved.

Next we introduce the class

M =

8<:E 2 B(X); �(E) = sup
K�E

K compact

�(K)

9=;
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Since � is increasingM contains every compact set. Recall that a closed
set inX is compact, sinceX is compact. Especially, note that � andX 2M.

COMPLETION OF THE PROOF OF THEOREM 3.2.1:

CLAIM 1. M contains every open set.

PROOF OF CLAIM 1. Let V be open and suppose � < �(V ): There exists
an f � V such that � < Tf: If U is open and U � K =defsuppf; then f � U;
and hence Tf � �(U): But then Tf � �(K): Thus � < �(K) and Claim 1
follows since K is compact and K � V:

CLAIM 2. Let (Ei)1i=1 be a disjoint denumerable collection of members of
M and put E = [1i=1Ei: Then

�(E) = �1i=1�(Ei)

and E 2M:

PROOF OF CLAIM 2. Choose " > 0 and for each i 2 N+, choose a compact
Ki � Ei such that �(Ki) > �(Ei)� 2�i": Set Hn = K1 [ ::: [Kn: Then, by
Lemma 3.2.1 (c),

�(E) � �(Hn) = �
n
i=1�(Ki) > �

n
i=1�(Ei)� "

and we get
�(E) � �1i=1�(Ei):

Thus, by Lemma 3.2.1 (b), �(E) = �1i=1�(Ei). To prove that E 2M; let "
be as in the very �rst part of the proof and choose n such that

�(E) � �ni=1�(Ei) + ":
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Then
�(E) < �(Hn) + 2"

and this shows that E 2M:

CLAIM 3. Suppose E 2 M and " > 0: Then there exist a compact K and
an open V such that K � E � V and �(V nK) < ":

PROOF OF CLAIM 3. The de�nitions show that there exist a compact K
and an open V such that

�(V )� "

2
< �(E) < �(K) +

"

2
:

The set V nK is open and V nK 2 M by Claim 1. Thus Claim 2 implies
that

�(K) + �(V nK) = �(V ) < �(K) + "

and we get �(V nK) < ":

CLAIM 4. If A 2M; then X n A 2M:

PROOF OF CLAIM 4. Choose " > 0: Furthermore, choose compact K � A
and open V � A such that �(V nK) < ": Then

X n A � (V nK) [ (X n V ):

Now, by Lemma 3.2.1 (b),

�(X n A) � "+ �(X n V ):

Since X n V is a compact subset of X n A; we conclude that X n A 2M:

Claims 1, 2 and 4 prove thatM is a �-algebra which contains all Borel
sets. ThusM = B(X):
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We �nally prove (a). It is enough to show that

Tf �
Z
X

fd�

for each f 2 C(X): For once this is known

�Tf = T (�f) �
Z
X

�fd� � �
Z
X

fd�

and (a) follows.
Choose " > 0: Set f(X) = [a; b] and choose y0 < y1 < ::: < yn such that

y1 = a, yn�1 = b; and yi � yi�1 < ": The sets

Ei = f�1([yi�1; yi[); i = 1; :::; n

constitute a disjoint collection of Borel sets with the unionX: Now, for each i;
pick an open set Vi � Ei such that �(Vi) � �(Ei)+

"
n
and Vi � f�1(]�1; yi[):

By Theorem 3.2.2 there are functions hi � Vi; i = 1; :::; n; such that �ni=1hi =
1 on suppf and hif � yihi for all i: From this we get

Tf = �ni=1T (hif) � �ni=1yiThi � �ni=1yi�(Vi)

� �ni=1yi�(Ei) + �ni=1yi
"

n

� �ni=1(yi � ")�(Ei) + "�(X) + (b+ ")"

� �ni=1
Z
Ei

fd�+ "�(X) + (b+ ")"

=

Z
X

fd�+ "�(X) + (b+ ")":

Since " > 0 is arbitrary, we get

Tf �
Z
X

fd�:

This proves Theorem 3.2.1.

It is now simple to show the existence of volume measure in Rn: For
pedagogical reasons we �rst discuss the so called volume measure in the unit
cube Q = [0; 1]n in Rn:
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The Riemann integral Z
Q

f(x)dx;

is a positive linear functional as a function of f 2 C(Q): Moreover, T1 = 1
and the Riesz Representation Theorem gives us a Borel probability measure
� in Q such that Z

Q

f(x)dx =

Z
Q

fd�:

Suppose A � Q is a closed n-cell and i 2 N+: Then

vol(A) �
Z
Q

�Q
A;2�i(x)dx � vol(A2�i)

and
�Q
A;2�i(x)! �A(x) as i!1

for every x 2Rn: Thus
�(A) = vol(A):

The measure � is called the volume measure in the unit cube. In the special
case n = 2 it is called the area measure in the unit square and if n = 1 it is
called the linear measure in the unit interval.

PROOF OF THEOREM 1.1.1. Let �R=R[f�1;1g be the two-point com-
pacti�cation of R introduced in Example 3.1.3 and let R̂n denote the product
of n copies of the metric space R̂: Clearly,

B(Rn) =
n
A \Rn; A 2 B(R̂n)

o
:

Moreover, let w : Rn ! ]0;1[ be a continuous map such thatZ
Rn

w(x)dx = 1:

Now we de�ne

Tf =

Z
Rn

f(x)w(x)dx; f 2 C(R̂n):
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Note that T1 = 1. The function T is a positive linear functional on C(R̂n)
and the Riesz Representation Theorem gives us a Borel probability measure
� on R̂n such thatZ

Rn

f(x)w(x)dx =

Z
R̂n

fd�; f 2 C(R̂n):

As above we get Z
A

w(x)dx = �(A)

for each compact n-cell in Rn: Thus

�(Rn) = lim
i!1

Z
[�i;i]n

w(x)dx = 1

and we conclude that � is concentrated on Rn: Set �0(A) = �(A); A 2
B(Rn); and

dmn =
1

w
d�0:

Then, if f 2 Cc(Rn); Z
Rn

f(x)w(x)dx =

Z
Rn

fd�0

and by replacing f by f=w;Z
Rn

f(x)dx =

Z
Rn

fdmn:

From this mn(A) =vol(A) for every compact n-cell A and it follows that mn

is the volume measure on Rn. Theorem 1.1.1 is proved.

"""

3.3 q-Adic Expansions of Numbers in the Unit Interval

To begin with in this section we will discuss so called q-adic expansions of
real numbers and give some interesting consequences. As an example of an
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application, we construct a one-to-one real-valued Borel map f de�ned on
a proper interval such that the range of f is a Lebesgue null set. Another
example exhibits an increasing continuous function G on the unit interval
with the range equal to the unit interval such that the derivative of G is
equal to zero almost everywhere with respect to Lebesgue measure. In the
next section we will give more applications of q-adic expansions in connection
with in�nite product measures.
To simplify notation let (
; P;F) = ([0; 1[ ; v1j[0;1[;B([0; 1[)). Furthermore,

let q � 2 be an integer and de�ne a function h : R!f0; 1; 2; :::; q � 1g of
period one such that

h(x) = k;
k

q
� x <

k + 1

q
; k = 0; :::; q � 1:

Furthermore, set for each n 2 N+;

�n(!) = h(qn�1!); 0 � ! < 1:

Then
P [�n = k] =

1

q
; k = 0; :::; q � 1:

Moreover, if k1; :::; kn 2 f0; 1; 2; :::; q � 1g ; it becomes obvious on drawing a
�gure that

P
�
�1 = k1; :::; �n�1 = kn�1

�
= �q�1i=0P

�
�1 = k1; :::; �n�1 = kn�1; �n = i

�
where each term in the sum in the right-hand side has the same value. Thus

P
�
�1 = k1; :::; �n�1 = kn�1

�
= qP

�
�1 = k1; :::; �n�1 = kn�1; �n = kn

�
and

P
�
�1 = k1; :::; �n�1 = kn�1; �n = kn

�
= P

�
�1 = k1; :::; �n�1 = kn�1

�
P [�n = kn] :

By repetition,

P
�
�1 = k1; :::�n�1 = kn�1; �n = kn

�
= �ni=1P [�i = ki] :

From this we get

P
�
�1 2 A1; :::�n�1 2 An�1; �n 2 An

�
= �ni=1P [�i 2 Ai]
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for all A1; :::; An � f0; 1; 2; :::; q � 1g :
Note that each ! 2 [0; 1[ has a so called q-adic expansion

! = �1i=1
�i(!)

qi
:

If necessary, we write �n = �(q)n to indicate q explicitly.
Let k0 2 f0; 1; 2; :::; q � 1g be �xed and consider the event A that a num-

ber in [0; 1[ does not have k0 in its q-adic expansion. The probability of A
equals

P [A] = P [�i 6= k0; i = 1; 2; :::] = lim
n!1

P [�i 6= k0; i = 1; 2; :::; n]

= lim
n!1

�ni=1P [�i 6= k0] = lim
n!1

(
q � 1
q
)n = 0:

In particular, if

Dn =
n
! 2 [0; 1[ ; �(3)i 6= 1; i = 1; :::; n

o
:

then, D = \1n=1Dn is a P -zero set.
Set

f(!) = �1i=1
2�
(2)
i (!)

3i
; 0 � ! < 1:

We claim that f is one-to-one. If 0 � !; !0 < 1 and ! 6= !0 let n be the
least i such that �(2)i (!) 6= �

(2)
i (!

0); we may assume that �(2)n (!) = 0 and
�(2)n (!

0) = 1: Then

f(!0) � �ni=1
2�
(2)
i (!

0)

3i
= �n�1i=1

2�
(2)
i (!

0)

3i
+
2

3n

= �n�1i=1

2�
(2)
i (!)

3i
+ �1i=n+1

4

3i
> �1i=1

2�
(2)
i (!)

3i
= f(!):

Thus f is one-to-one. We next prove that f(
) = D: To this end choose
y 2 D: If �(3)i (y) = 2 for all i 2 N+; then y = 1 which is a contradiction. If
k � 1 is �xed and �(3)k (y) = 0 and �

(3)
i (y) = 2; i � k + 1; then it is readily

seen that �(3)k (y) = 1 which is a contradiction. Now de�ne

! = �1i=1

1
2
�
(3)
i (y)

2i
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and we have f(!) = y:
Let Cn = D�

n ; n 2 N+: The set C = \1n=1Cn; is called the Cantor set.
The Cantor set is a compact Lebesgue zero set. The construction of the
Cantor set may alternatively be described as follows. First C0 = [0; 1]. Then
trisect C0 and remove the middle interval

�
1
3
; 2
3

�
to obtain C1 = C0 n

�
1
3
; 2
3

�
=�

0; 1
3

�
[
�
2
3
; 1
�
: At the second stage subdivide each of the closed intervals

of C1 into thirds and remove from each one the middle open thirds. Then
C2 = C1 n (

�
1
9
; 2
9

�
[
�
7
9
; 8
9

�
): What is left from Cn�1 is Cn de�ned above. The

set [0; 1] n Cn is the union of 2n �1 intervals numbered Ink ; k = 1; :::; 2n � 1;
where the interval Ink is situated to the left of the interval I

n
l if k < l:

Suppose n is �xed and let Gn : [0; 1]! [0; 1] be the unique monotone in-
creasing continuous function, which satis�es Gn(0) = 0; Gn(1) = 1; Gn(x) =
k2�n for x 2 Ink and which is a¢ ne on each interval of Cn: It is clear that
Gn = Gn+1 on each interval Ink , k = 1; :::; 2

n � 1: Moreover, j Gn � Gn+1 j�
2�n�1 and thus

j Gn �Gn+k j� �n+kk=n j Gk �Gk+1 j� 2�n:

Let G(x) = limn!1Gn(x); 0 � x � 1: The continuous and increasing func-
tion G is constant on each removed interval and it follows that G0 = 0 a.e.
with respect to linear measure in the unit interval.The function G is called
the Cantor function or Cantor-Lebesgue function.
Next we introduce the following convention, which is standard in Lebesgue

integration. Let (X;M; �) be a positive measure space and suppose A 2M
and �(Ac) = 0: If two functions g; h 2 L1(�) agree on A;Z

X

gd� =

Z
X

hd�:

If a function f : A ! R is the restriction to A of a function g 2 L1(�) we
de�ne Z

X

fd� =

Z
X

gd�:

Now suppose F : R ! R is a right continuous increasing function and
let � be the unique positive Borel such that

�(]a; x]) = F (x)� F (a) if a; x 2 R and a < x:

If h 2 L1(�) and E 2 R; the so called Stieltjes integralZ
E

h(x)dF (x)
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is by de�nition equal to Z
E

hd�:

If a; b 2 R, a < b; and F is continuous at the points a and b; we de�neZ b

a

h(x)dF (x) =

Z
I

hd�

where I is any interval with boundary points a and b:
The reader should note that the integralZ

R

h(x)dF (x)

in general is di¤erent from the integralZ
R

h(x)F 0(x)dx:

For example, if G is the Cantor function and G is extended so that G(x) = 0
for negative x and G(x) = 1 for x larger than 1, clearlyZ

R

h(x)G0(x)dx = 0

since G0(x) = 0 a.e. [m] : On the other hand, if we choose h = �[0;1];Z
R

h(x)dG(x) = 1:

3.4. Product Measures

Suppose (X;M) and (Y;N ) are two measurable spaces. If A 2 M and
B 2 N ; the set A�B is called a measurable rectangle in X�Y: The product
�-algebraM
N is, by de�nition, the �-algebra generated by all measurable
rectangles in X � Y: If we introduce the projections

�X(x; y) = x; (x; y) 2 X � Y

and
�Y (x; y) = y; (x; y) 2 X � Y;
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the product �-algebraM
N is the least �-algebra S of subsets of X � Y ,
which makes the maps �X : (X � Y;S) ! (X;M) and �Y : (X � Y;S) !
(Y;N ) measurable, that isM
N = �(��1X (M)[��1Y (N )):.
Suppose E generatesM; whereX 2 E ; and F generatesN ; where Y 2 F .

We claim that the class

E � F = fE � F ;E 2 E and F 2 Fg

generates the �-algebraM
N : First it is clear that

�(E � F) �M
N :

Moreover, the class

fE 2M;E � Y 2 �(E � F) g =M\
�
E � X; ��1X (E) 2 �(E � F)

	
is a �-algebra, which contains E and therefore equals M. Thus A � Y 2
�(E � F) for all A 2 M and, in a similar way, X � B 2 �(E � F) for all
B 2 N and we conclude that A � B = (A � Y ) \ (X � B) 2 �(E � F) for
all A 2M and all B 2 N : This proves that

M
N ��(E � F)

and it follows that
�(E � F) =M
N :

Thus
�(E � F) = �(E)
 �(F) if X 2 E and Y 2 F :

Since the �-algebraRn is generated by all open n-cells inRn, we conclude
that

Rk+n = Rk 
Rn:

Given E � X � Y; de�ne

Ex = fy; (x; y) 2 Eg if x 2 X

and
Ey = fx; (x; y) 2 Eg if y 2 Y:

If f : X � Y ! Z is a function and x 2 X; y 2 Y , let

fx(y) = f(x; y); if y 2 Y
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and
f y(x) = f(x; y); if x 2 X:

Theorem 3.4.1 (a) If E 2 M
N ; then Ex 2 N and Ey 2 M for every
x 2 X and y 2 Y:
(b) If f : (X � Y;M
N ) ! (Z;O) is measurable, then fx is (N ;O)-

measurable for each x 2 X and f y is (M;O)-measurable for each y 2 Y:

Proof. (a) Let

S = fE 2M
N ;Ex 2 N and Ey 2M for every x 2 X and y 2 Y g :

Clearly, X � Y 2 S: Furthermore, if E;E1;E2; ::: 2 S; (Ec)x = (Ex)c 2 N
and ([1i=1Ei)x = [1i=1(Ei)x 2 N for every x in X and (Ec)y = (Ey)c 2 M
and ([1i=1Ei)y = [1i=1(Ei)y 2 M for every y in Y: It follows that S is a
�-algebra. Furthermore, if A 2M and B 2 N ; (A�B)x = B 2 N if x 2 A
and (A � B)x = � 2 N if x =2 A and (A � B)y = A 2 M if y 2 B and
(A � B)y = � 2 M if y =2 B: Thus A � B 2 S and, accordingly from this,
S =M
N :
(b) For any set V 2 O;

(f�1(V ))x = (fx)
�1(V )

and
(f�1(V ))y = (f y)�1(V ):

Part (b) now follows from (a).

Below an (M;R0;1)-measurable or (M;R)-measurable function is simply
calledM-measurable.

Theorem 3.4.2. Suppose (X;M; �) and (Y;N ; �) are positive �-�nite
measurable spaces and suppose E 2M
N . If

f(x) = �(Ex) and g(y) = �(Ey)



33

for every x 2 X and y 2 Y; then f is M-measurable, g is N -measurable,
and Z

X

fd� =

Z
Y

gd�:

Proof. We �rst assume that (X;M; �) and (Y;N ; �) are �nite positive
measure spaces.
Let D be the class of all sets E 2 M
N for which the conclusion of

the theorem holds. It is clear that the class G of all measurable rectangles
in X � Y is a subset of D and G is a �-system. Furthermore, the Beppo
Levi Theorem shows that D is a �-system. Therefore, using Theorem 1.2.2,
M
N = �(G) � D and it follows that D =M
N :
In the general case, choose a denumerable disjoint collection (Xk)

1
k=1of

members ofM and a denumerable disjoint collection (Yn)1n=1of members of
N such that

[1k=1Xk = X and [1n=1 Yn = Y:

Set
�k = �Xk�, k = 1; 2; :::

and
�n = �Yn�, n = 1; 2; ::: .

Then, by the Beppo Levi Theorem, the function

f(x) =

Z
X

�1n=1�E(x; y)�Yn(y)d�(y)

= �1n=1

Z
X

�E(x; y)�Yn(y)d�(y) = �
1
n=1�n(Ex)

isM-measurable. Again, by the Beppo Levi Theorem,Z
X

fd� = �1k=1

Z
X

fd�k

and Z
X

fd� = �1k=1(�
1
n=1

Z
X

�n(Ex)d�k(x)) = �
1
k;n=1

Z
X

�n(Ex)d�k(x):

In a similar way, the function g is N -measurable andZ
Y

gd� = �1n=1(�
1
k=1

Z
Y

�k(E
y)d�n(y)) = �

1
k;n=1

Z
Y

�k(E
y)d�n(y):
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Since the theorem is true for �nite positive measure spaces, the general case
follows.

De�nition 3.4.1. If (X;M; �) and (Y;N ; �) are positive �-�nite measur-
able spaces and E 2M
N , de�ne

(�� �)(E) =

Z
X

�(Ex)d�(x) =

Z
Y

�(Ey)d�(y):

The function �� � is called the product of the measures � and �:

Note that Beppo Levi�s Theorem ensures that �
� is a positive measure.
Before the next theorem we recall the following convention. Let (X;M; �)

be a positive measure space and suppose A 2 M and �(Ac) = 0: If two
functions g; h 2 L1(�) agree on A;Z

X

gd� =

Z
X

hd�:

If a function f : A ! R is the restriction to A of a function g 2 L1(�) we
de�ne Z

X

fd� =

Z
X

gd�:

Theorem 3.4.3. Let (X;M; �) and (Y;N ; �) be positive �-�nite measur-
able spaces.

(a) (Tonelli�s Theorem) If h : X � Y ! [0;1] is (M
N )-measurable
and

f(x) =

Z
Y

h(x; y)d�(y) and g(y) =
Z
X

h(x; y)d�(x)

for every x 2 X and y 2 Y; then f is M-measurable, g is N -measurable,
and Z

X

fd� =

Z
X�Y

hd(�� �) =

Z
Y

gd�

(b) (Fubini�s Theorem)
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(i) If h : X � Y ! R is (M
N )-measurable andZ
X

(

Z
Y

j h(x; y) j d�(y))d�(x) <1

then h 2 L1(�� �): Moreover,Z
X

(

Z
Y

h(x; y)d�(y))d�(x) =

Z
X�Y

hd(�� �) =

Z
Y

(

Z
X

h(x; y)d�(x))d�(y)

(ii) If h 2 L1((�� �)�); then hx 2 L1(�) for �-almost all x andZ
X�Y

hd(�� �) =

Z
X

(

Z
Y

h(x; y)d�(y))d�(x)

(iii) If h 2 L1((�� �)�); then hy 2 L1(�) for �-almost all y andZ
X�Y

hd(�� �) =

Z
Y

(

Z
X

h(x; y)d�(x))d�(y)

PROOF. (a) The special case when h is a non-negative (M
N )-measurable
simple function follows from Theorem 3.4.2. Remembering that any non-
negative measurable function is the pointwise limit of an increasing sequence
of simple measurable functions, the Lebesgue Monotone Convergence Theo-
rem implies the Tonelli Theorem.

(b) PART (i) : By Part (a)

1 >

Z
X

(

Z
Y

h+(x; y)d�(y))d�(x) =

Z
X�Y

h+d(�� �)

=

Z
Y

(

Z
X

h+(x; y)d�(x))d�(y)

and

1 >

Z
X

(

Z
Y

h�(x; y)d�(y))d�(x) =

Z
X�Y

h�d(�� �)

=

Z
Y

(

Z
X

h�(x; y)d�(x))d�(y):
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Let
A =

�
x 2 X; (h+)x; (h�)x 2 L1(�)

	
:

Then Ac is a �-null set and we getZ
A

(

Z
Y

h+(x; y)d�(y))d�(x) =

Z
X�Y

h+d(�� �)

and Z
A

(

Z
Y

h�(x; y)d�(y))d�(x) =

Z
X�Y

h�d(�� �):

Thus Z
A

(

Z
Y

h(x; y)d�(y))d�(x) =

Z
X�Y

hd(�� �)

and, hence, Z
X

(

Z
Y

h(x; y)d�(y))d�(x) =

Z
X�Y

hd(�� �):

The other case can be treated in a similar way. The theorem is proved.

PART (ii) : We �rst use Theorem 2.2.3 and write h = ' +  where ' 2
L1(�� �);  is (M
N )�-measurable and  = 0 a.e. [�� �] : Set

A =
�
x 2 X; ('+)x; ('�)x 2 L1(�)

	
:

Furthermore, suppose E � f(x; y);  (x; y) 6= 0g ; E 2M
N and

(�� �)(E) = 0:

Then, by Tonelli�s Theorem

0 =

Z
X

�(Ex)d�(x):

Let B = fx 2 X; �(Ex) 6= 0g and note that B 2 M: Moreover �(B) = 0
and if x =2 B, then  x = 0 a.e. [�] that is hx = 'x a.e. [�] : Now, by Part (i)Z

X�Y
hd(�� �)� =

Z
X�Y

'd(�� �) =

Z
A

(

Z
Y

'(x; y)d�(y))d�(x)
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=

Z
A\Bc

(

Z
Y

'(x; y)d�(y))d�(x) =

Z
A\Bc

(

Z
Y

h(x; y)d�(y))d�(x)

=

Z
X

(

Z
Y

h(x; y)d�(y))d�(x):

Part (iii) is proved in the same manner as Part (ii): This concludes the
proof of the theorem.

If (Xi;Mi); i = 1; :::; n; are measurable spaces, the product �-algebra
M1 
 ::: 
Mn is, by de�nition, the �-algebra generated by all sets of the
form

A1 � :::� An

where Ai 2Mi; i = 1; :::; n: Now assume (Xi;Mi; �i); i = 1; :::; n; are �-�nite
positive measure spaces. By induction, we de�ne �1 = �1 and �k = �k�1��k;
k = 1; 2; :::; n: The measure, �n is called the product of the measures �1; :::; �n
and is denoted by �1 � :::� �n: It is readily seen that

Rn = R1 
 :::
R1 (n factors)

and
vn = v1 � :::� v1 (n factors):

Moreover,

R�
n � (R�

1 )
n =def R�

1 
 :::
R�
1 (n factors):

If A 2 P(R) n R�
1 ; by the Tonelli Theorem, the set A � f0; :::; 0g (n � 1

zeros) is an mn-null set, which, in view of Theorem 3.4.1, cannot belong to
the �-algebra (R�

1 )
n: Thus the Axiom of Choice implies that

R�
n 6= (R�

1 )
n:

Clearly, the completion of the measure m1 � ::: �m1 (n factors) equals
mn:
Sometimes we prefer to writeZ

A1�:::�An
f(x1; :::; xn)dx1:::dxn
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instead of Z
A1�:::�An

f(x)dmn(x)

or Z
A1�:::�An

f(x)dx:

Moreover, the integralZ
A1

:::

Z
An

f(x1; :::; xn)dx1:::dxn

is the same as Z
A1�:::�An

f(x1; :::; xn)dx1:::dxn:

De�nition 3.4.2. (a) The measure


1(A) =

Z
A

e�
x2

2
dxp
2�
; A 2 R

is called the canonical Gauss measure in R:

(b) The measure


n = 
1 � :::� 
1 (n factors)

is called the canonical Gauss measure in Rn: Thus, if

j x j=
q
x21 + :::+ x2n; x = (x1; :::; xn) 2 Rn

we have


n(A) =

Z
A

e�
jxj2
2

dxp
2�
; A 2 Rn:

(c) A Borel measure � in R is said to be a centred Gaussian measure if
� = f(
1) for some linear map f : R! R:
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(d) A real-valued random variable � is said to be a centred Gaussian
random variable if its probability law is a centred Gaussian measure in R:
Stated otherwise, � is a real-valued centred Gaussian random variable if either

L(�) = �0 (abbreviated � 2 N(0; 0))

or there exists a � > 0 such that

L( �
�
) = 
1 (abbreviated � 2 N(0; �)).

(e) A family (�t)t2T of real-valued random variables is said to be a centred
real-valued Gaussian process if for all t1; :::; tn 2 T; �1; :::; �n 2 R and every
n 2 N+; the sum

� = �nk=1�k�tk

is a centred Gaussian random variable:

Exercises

1. Let (X;M; �) and (Y;N ; �) be two �-�nite measure spaces. Let f 2 L1(�)
and g 2 L1(�) and de�ne h(x; y) = f(x)g(y); (x; y) 2 X � Y: Prove that
h 2 L1(�� �) and Z

X�Y
hd(�� �) =

Z
X

fd�

Z
Y

gd�:

2. Let (X;M; �) be a �-�nite measure space and f : X ! [0;1[ a measur-
able function. Prove thatZ

X

fd� = (��m) f(x; y); 0 < y < f(x); x 2 Xg :

3. Let (X;M; �) be a �-�nite measure space and f : X ! R a measurable
function. Prove that (��m)(f(x; f(x)); x 2 X g) = 0:
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4. Let E 2 R�
2 and E � [0; 1]� [0; 1] : Suppose m(Ex) � 1

2
for m-almost all

x 2 [0; 1] : Show that

m(fy 2 [0; 1] ;m(Ey) = 1g) � 1

2
:

5. Let c be the counting measure on R restricted to R and

D = f(x; x); x 2 Rg :

De�ne for every A 2 (R�R) [ fDg ;

�(A) =

Z
R

(

Z
R

�A(x; y)dv1(x))dc(y)

and

�(A) =

Z
R

(

Z
R

�A(x; y)dc(y))dv1(x):

(a) Prove that � and � agree on R�R:
(b) Prove that �(D) 6= �(D):

6. Let I = ]0; 1[ and

h(x; y) =
x2 � y2

(x2 + y2)2
; (x; y) 2 I � I:

Prove that Z
I

(

Z
I

h(x; y)dy)dx =
�

4
;Z

I

(

Z
I

h(x; y)dx)dy = ��
4

and Z
I�I

j h(x; y) j dxdy =1:

7. For t > 0 and x 2 R let

g(t; x) =
1p
2�t

e�
x2

2t
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and

h(t; x) =
@g

@t
:

Given a > 0; prove that Z 1

�1
(

Z 1

a

h(t; x)dt)dx = �1

and Z 1

a

(

Z 1

�1
h(t; x)dx)dt = 0

and conclude that Z
[a;1[�R

j h(t; x) j dtdx =1:

(Hint: First prove that Z 1

�1
g(t; x)dx = 1

and
@g

@t
=
1

2

@2g

@x2
:)

8. Given f 2 L1(m); let

g(x) =
1

2

Z x+1

x�1
f(t)dt; x 2 R:

Prove that Z
R

j g(x) j dx �
Z
R

j f(x) j dx:

9. Let I = [0; 1] and suppose f : I ! R is a Lebesgue measurable function
such that Z

I�I
j f(x)� f(y) j dxdy <1:

Prove that Z
I

j f(x) j dx <1:

10. Suppose A 2 R� and f 2 L1(m): Set

g(x) =

Z
R

d(y; A)f(y)

j x� y j2 dy; x 2 R:
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Prove that Z
A

j g(x) j dx <1:

11. Suppose that the functions f; g : R! [0;1[ are Lebesgue measurable
and introduce � = fm and � = gm: Prove that the measures � and � are
�-�nite and

(�� �)(E) =

Z
E

f(x)g(y)dxdy if E 2 R� 
R�:

12. Suppose � is a �nite positive Borel measure on Rn and f : Rn ! R a
Borel measurable function. Set g(x; y) = f(x)� f(y); x; y 2 Rn: Prove that
f 2 L1(�) if and only if g 2 L1(�� �):

13. A random variable � is non-negative and possesses the distribution func-
tion F (x) = P [� � x] : Prove thatE [�] =

R1
0
(1� F (x))dx:

14. Let (X; d) be a metric space and suppose Y 2 B(X): Then Y equipped
with the metric djY�Y is a metric space. Prove that

B(Y ) = fA \ Y ; A 2 B(X)g :

15. The continuous bijection f : (X; d) ! (Y; e) has a continuous inverse.
Prove that f(A) 2 B(Y ) if A 2 B(X)

16. A real-valued function f(x; y); x; y 2 R; is a Borel function of x for every
�xed y and a continuous function of y for every �xed x: Prove that f is a
Borel function. Is the same conclusion true if we only assume that f(x; y) is
a real-valued Borel function in each variable separately?
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17. Suppose a > 0 and

�a = e�a
1X
n=0

an

n!
�n

where �n(A) = �A(n) if n 2 N = f0; 1; 2; :::g and A � N: Prove that

(�a � �b)s
�1 = �a+b

for all a; b > 0; if s(x; y) = x+ y; x; y 2 N:

18. Suppose

f(t) =

Z 1

0

xe�x
2

x2 + t2
dx; t > 0:

Compute

lim
t!0+

f(t) and
Z 1

0

f(t)dt:

Finally, prove that f is di¤erentiable.

3.5 Change of Variables in Volume Integrals

If T is a non-singular n by n matrix with real entries, we claim that

T (vn) =
1

j detT jvn

(here T is viewed as a linear map of Rn into Rn). Remembering Corollary
3.1.3 this means that the following linear change of variables formula holds,
viz. Z

Rn

f(Tx)dx =
1

j detT j

Z
Rn

f(x)dx all f 2 Cc(Rn):

The case n = 1 is obvious. Moreover, by Fubini�s Theorem the linear change
of variables formula is true for arbitrary n in the following cases:
(a) Tx = (x�(1); :::; x�(n)); where � is a permutation of the numbers 1; :::; n:
(b) Tx = (�x1; x2; :::; xn); where � is a non-zero real number.
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(c) Tx = (x1 + x2; x2; :::; xn):
Recall from linear algebra that every non-singular n by n matrix T can be

row-reduced to the identity matrix, that is T can by written as the product
of �nitely many transformations of the types in (a),(b), and (c). This proves
the above linear change of variables formula.
Our main objective in this section is to prove a more general change

of variable formula. To this end let 
 and � be open subsets of Rn and
G : 
 ! � a C1 di¤eomorphism, that is G = (g1; :::; gn) is a bijective
continuously di¤erentiable map such that the matrix G0(x) = ( @gi

@xj
(x))1�i;j�n

is non-singular for each x 2 
: The inverse function theorem implies that
G�1 : �! 
 is a C1 di¤eomorphism [DI] :

Theorem 3.5.1. If f is a non-negative Borel function in 
; thenZ
�

f(x)dx =

Z



f(G(x)) j detG0(x) j dx:

The proof of Theorem 3.5.1 is based on several lemmas.
Throughout, Rn is equipped with the metric

dn(x; y) = max
1�k�n

j xk � yk j :

Let K be a compact convex subset of 
: Then if x; y 2 K and 1 � i � n;

gi(x)� gi(y) =

Z 1

0

d

dt
gi(y + t(x� y))dt

=

Z 1

0

�nk=1
@gi
@xk

(y + t(x� y))(xk � yk)dt

and we get
dn(G(x); G(y)) �M(G;K)dn(x; y)

where

M(G;K) = max
1�i�n

�nk=1max
z2K

j @gi
@xk

(x) j :

Thus if �B(a; r) is a closed ball contained in K;

G( �B(a; r)) � �B(G(a);M(G;K)r):
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Lemma 3.5.1. Let (Qk)1k=1 be a sequence of closed balls contained in 
 such
that

Qk+1 � Qk

and
diam Qk ! 0 as k !1:

Then, there is a unique point a belonging to each Qk and

lim sup
n!1

vn(G(Qk))

vn(Qk)
�j detG0(a) j :

PROOF. The existence of a point a belonging to each Qk is an immediate
consequence of Theorem 3.1.2. The uniqueness is also obvious since the
diameter of Qk converges to 0 as k ! 1: Set T = G0(a) and F = T�1G:
Then, if Qk = �B(xk; rk);

vn(G(Qk)) = vn(T (T
�1G(Qk))) =j detT j vn(T�1G( �B(xk; rk)))

�j detT j vn( �B(T�1G(xk);M(T�1G;Qk)rk) =j detT j M(T�1G;Qk)nvn(Qk):
Since

lim
k!1

M(T�1G;Qk) = 1

the lemma follows at once.

Lemma 3.5.2. Let Q be a closed ball contained in 
: Then

vn(G(Q)) �
Z
Q

j detG0(x) j dx:

PROOF. Suppose there is a closed ball Q contained in 
 such that

vn(G(Q)) >

Z
Q

j detG0(x) j dx:

This will lead us to a contradiction as follows.
Choose " > 0 such that

vn(G(Q)) � (1 + ")
Z
Q

j detG0(x) j dx:
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Let Q = [2n1 Bk where B1; :::; B2n are mutually almost disjoint closed balls
with the same volume. If

vn(G(Bk)) < (1 + ")

Z
Bk

j detG0(x) j dx; k = 1; :::; 2n

we get
vn(G(Q)) � �2

n

k=1vn(G(Bk))

< �2
n

k=1(1 + ")

Z
Bk

j detG0(x) j dx = (1 + ")

Z
Q

j detG0(x) j dx

which is a contradiction. Thus

vn(G(Bk)) � (1 + ")
Z
Bk

j detG0(x) j dx

for some k: By induction we obtain a sequence (Qk)1k=1 of closed balls con-
tained in 
 such that

Qk+1 � Qk;

diam Qk ! 0 as k !1

and

vn(G(Qk)) � (1 + ")
Z
Qk

j detG0(x) j dx:

But applying Lemma 3.5.1 we get a contradiction.

PROOF OF THEOREM 3.5.1. Let U � 
 be open and write U = [1i=1Qi
where the Q0is are almost disjoint cubes as in Theorem 3.1.5. Then

vn(G(U)) � �1i=1vn(G(Qi)) � �1i=1
Z
Qi

j detG0(x) j dx

=

Z
U

j detG0(x) j dx:

Using Theorem 3.1.3 we now have that

vn(G(E)) �
Z
E

j detG0(x) j dx
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for each Borel set E � 
: But thenZ
�

f(x)dx �
Z



f(G(x)) j detG0(x) j dx

for each simple Borel measurable function f � 0 and, accordingly from this
and monotone convergence, the same inequality holds for each non-negative
Borel function f: But the same line of reasoning applies to G replaced by
G�1 and f replaced by f(G) j detG0 j, so thatZ




f(G(x)) j detG0(x) j dx �
Z
�

f(x) j detG0(G�1(x)) jj det(G�1)0(x) j dx

=

Z
�

f(x)dx:

This proves the theorem.

Example 3.5.1. If f : R2 ! [0;1] is (R2;R0;1)-measurable and 0 < " <
R <1, the substitution

G(r; �) = (r cos �; r sin �)

yields Z
"<
p
x21+x

2
2<R

f(x1; x2)dx1dx2 =

Z R

"

Z 2�

0

f(r cos �; r sin �)rdrd�

and by letting "! 0 and R!1; we haveZ
R2

f(x1; x2)dx1dx2 =

Z 1

0

Z 2�

0

f(r cos �; r sin �)rdrd�:

The purpose of the example is to show an analogue formula for volume
measure in Rn:
Let Sn�1 = fx 2 Rn; j x j= 1g be the unit sphere in Rn: We will de�ne a

so called surface area Borel measure �n�1 on Sn�1 such thatZ
Rn

f(x)dx =

Z 1

0

Z
Sn�1

f(r!)rn�1drd�n�1(!)
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for any (Rn;R0;1)-measurable function f : Rn ! [0;1] : To this end de�ne
G : Rn n f0g ! ]0;1[� Sn�1 by setting G(x) = (r; !); where

r =j x j and ! = x

j x j :

Note that G�1 : ]0;1[� Sn�1 ! Rn n f0g is given by the equation

G�1(r; !) = r!:

Moreover,

G�1(]0; a]� E) = aG�1(]0; 1]� E) if a > 0 and E � Sn�1:

If E 2 B(Sn�1) we therefore have that

vn(G
�1(]0; a]� E)) = anvn(G

�1(]0; 1]� E)):

We now de�ne

�n�1(E) = nvn(G
�1(]0; 1]� E)) if E 2 B(Sn�1)

and

�(A) =

Z
A

rn�1dr if A 2 B(]0;1[):

Below, by abuse of language, we write vnjRnnf0g = vn: Then, if 0 < a �
b <1 and E 2 B(Sn�1);

G(vn)(]0; a]� E) = �(]0; a])�n�1(E)

and
G(vn)(]a; b]� E) = �(]a; b])�n�1(E):

Thus, by Theorem 1.2.3,
G(vn) = �� �n�1

and the claim above is immediate.
To check the normalization constant in the de�nition of �n�1; �rst note

that

vn(j x j< R) =

Z R

0

Z
Sn�1

rn�1drd�(!) =
Rn

n
�n�1(S

n�1)
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and we get
d

dR
vn(j x j< R) = Rn�1�n�1(S

n�1):

Exercises

1. Extend Theorem 3.5.1 to Lebesgue measurable functions.

2. The function f : R! [0;1[ is Lebesgue measurable and
R
R
fdm = 1:

Determine all non-zero real numbers � such that
R
R
hdm <1; where

h(x) = �1n=0f(�
nx+ n); x 2 R:

###

3.6. Independence in Probability

Suppose (
;F ; P ) is a probability space. The random variables �k : (
; P )!
(Sk;Sk); k = 1; :::; n are said to be independent if

P(�1;:::;�n) = �
n
k=1P�k :

A family (�i)i2I of random variables is said to be independent if �i1 ; :::; �in
are independent for any i1; :::in 2 I with ik 6= il if k 6= l: A family of
events (Ai)i2I is said to be independent if (�Ai)i2I is a family of independent
random variables. Finally a family (Ai)i2I of sub-�-algebras of F is said to
be independent if, for any Ai 2 Ai; i 2 I; the family (Ai)i2I is a family of
independent events.

Example 3.6.1. Let q � 2 be an integer. A real number ! 2 [0; 1[ has a
q-adic expansion

! = �1k=1
�
(q)
k

qk
:
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The construction of the Cantor set shows that (�(q)k )
1
k=1 is a sequence of

independent random variables based on the probability space

([0; 1[ ; v1j[0;1[;B([0; 1[)):

Example 3.6.2. Let (X;M; �) be a positive measure space and let Ai 2M;
i 2 N+; be such that

�1i=1�(Ai) <1:

The �rst Borel-Cantelli Lemma asserts that �-almost all x 2 X lie in Ai
for at most �nitely many i: This result is an immediate consequence of the
Beppo Levi Theorem sinceZ

X

�1i=1�Aid� = �
1
i=1

Z
X

�Aid� <1

implies that
�1i=1�Ai <1 a.e. [�] :

Suppose (
;F ; P ) is a probability space and let (Ai)1i=1 be independent
events such that

�1i=1P [Ai] =1:

The second Borel-Cantelli Lemma asserts that almost surely Ai happens for
in�nitely many i:
To prove this, we use the inequality

1 + x � ex; x 2 R

to obtain
P
�
\k+ni=k A

c
i

�
= �k+ni=k P [A

c
i ]

= �k+ni=k (1� P [Ai]) � �k+ni=k e
�P [Ai] = e��

k+n
i=k P [Ai]:

By letting n!1;

P [\1i=kAci ] = 0

or

P [[1i=kAi] = 1:
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But then
P [\1k=1 [1i=k Ai] = 1

and the second Borel-Cantelli Lemma is proved.

Theorem 3.6.1. Suppose �1; :::; �n are independent random variables and
�k 2 N(0; 1); k = 1; :::; n: If �1; :::; �n 2 R; then

�nk=1�k�k 2 N(0;�nk=1�2k)

PROOF. The case �1; :::; �n = 0 is trivial so assume �k 6= 0 for some k: We
have for each open interval A;

P [�nk=1�k�k 2 A] =
Z
�nk=1�kxk2A

d
1(x1):::d
1(xn)

Z
�nk=1�kxk2A

1p
2�

n e
� 1
2
(x21+:::+x

2
n)dx1:::dxn:

Set � =
p
�21 + :::+ �2n and let y = Gx be an orthogonal transformation

such that
y1 =

1

�
(�1x1 + :::+ �nxn):

Then, since detG = 1;

P [�1k=1�k�k 2 A] =
Z
�y12A

1p
2�

n e
� 1
2
(y21+:::+y

2
n)dy1:::dyn

=

Z
�y12A

1p
2�
e�

1
2
y21dy1

where we used Fubini�s theorem in the last step. The theorem is proved.

Finally, in this section, we prove a basic result about the existence of
in�nite product measures. Let �k; k 2 N+ be Borel probability measures
in R. The space RN+ is, by de�nition, the set of all sequences x = (xk)1k=1
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of real numbers. For each k 2 N+; set �k(x) = xk: The �-algebra RN+

is the least �-algebra S of subsets of RN+ which makes all the projections
�k : (R

N+ ;S) ! (R;R); k 2 N+; measurable. Below, (�1; :::; �n) denotes
the mapping of RN+ into Rn de�ned by the equation

(�1; :::; �n)(x) = (�1(x); :::; �n(x)):

Theorem 3.6.1. There is a unique probability measure � on RN+ such that

�(�1;:::;�n) = �1 � :::� �n

for every n 2 N+:

The measure � in Theorem 3.6.1 is called the product of the measures
�k; k 2 N+; and is often denoted by

�1k=1�k:

PROOF OF THEOREM 3.6.1. Let (
; P;F) = ([0; 1[ ; v1j[0;1[;B([0; 1[) and
set

�(!) = �1k=1
�
(2)
k (!)

2k
; ! 2 
:

We already know that P� = P: Now suppose (ki)1i=1 is a strictly increasing
sequence of positive integers and introduce

�0 = �1i=1
�
(2)
ki
(!)

2i
; ! 2 
:

Note that for each �xed positive integer n; the Rn-valued maps (�(2)1 ; :::; �(2)n )

and (�(2)k1 ; :::; �
(2)
kn
) are P -equimeasurable. Thus, if f : 
! R is continuous,Z



f(�)dP = lim
n!1

Z



f(�nk=1
�
(2)
k (!)

2k
)dP (!)

= lim
n!1

Z



f(�ni=1
�
(2)
ki
(!)

2i
)dP (!) =

Z



f(�0)dP

and it follows that P�0 = P� = P:
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By induction, we de�ne for each k 2 N+ an in�nite subset Nk of the set
N+n[k�1i=1Ni such that the setN+n[ki=1Ni contains in�nitely many elements
and de�ne

�k = �
1
i=1

�(2)nik(!)

2i

where (nik)1i=1 is an enumeration of Nk: The map

	(!) = (�k(!))
1
k=1

is a measurable map of (
;F) into (RN+ ;RN+) and

P	 = �1k=1�i

where �i = P for each i 2 N+:
For each i 2 N+ there exists a measurable map 'i of (
;F) into (R;R)

such that P'i = �i (see Section 1.6). The map

�(x) = ('i(xi))
1
i=1

is a measurable map of (RN+ ;RN+) into itself and we get � = (P	)�. This
completes the proof of Theorem 3.6.1.

"""


