CHAPTER 3

Further Construction Methods of Measures

Introduction

In the first section of this chapter we collect some basic results on metric
spaces, which every mathematician must know about. Section 3.2 gives a
version of the Riesz Representation Theorem, which leads to another and
perhaps simpler approach to Lebesgue measure than the Carathéodory The-
orem. A reader can skip Section 3.2 without losing the continuity in this
paper. The chapter also treats so called product measures and Stieltjes in-
tegrals.

3.1. Metric Spaces

The construction of our most important measures requires topological con-
cepts. For our purpose it will be enough to restrict ourselves to so called
metric spaces.

A metric d on a set X is a mapping d : X x X — [0, oo[ such that

(a) d(z,y) =0if and only if z =y

(b) d(x,y) = d(y,x) (symmetry)
(c) d(z,y) < d(x,z) + d(z,y) (triangle inequality).

Here recall, if Ay, ..., A,, are sets,
Ay x o x Ay ={(x1, .., z,); mp € A foralli =1, ...,n}

A set X equipped with a metric d is called a metric space. Sometimes we
write X = (X, d) to emphasize the metric d. If E is a subset of the metric



space (X,d), the function djgxg(z,y) = d(z,y), if z,y € E, is a metric on
E. Thus (E,d|gxg) is a metric space.
The function ¢(t) = min(1,t), ¢ > 0, satisfies the inequality

p(s +1) < pls) + o(t).

Therefore, if d is a metric on X, min(1,d) is a metric on X. The metric
min(1,d) is a bounded metric.

The set R equipped with the metric d;(z,y) =| © — y | is a metric space.
More generally, R" equipped with the metric

dn($7y) = dn((xla "'7xn)7 <y17 7yn)) = 121]??” ’ T — Yk |
is a metric space. If not otherwise stated, it will always be assumed that R"
is equipped with this metric.
Let C'[0,T] denote the vector space of all real-valued continuous functions
on the interval [0,7], where T' > 0. Then

doo(,y) = max | z(t) —y(t) |
is a metric on C'[0,77].
If (Xg,ex), k=1,...,n, are metric spaces,

d(l’,y) = 1<,?’<Xn6k(xkayk)7 T = (1’1, axn) Y = (yla -"7yn)

is a metric on X; X ... X X,,. The metric d is called the product metric on
X X ... xX,.

If X = (X,d) is a metric space and z € X and r > 0, the open ball with
centre at x and radius r is the set B(z,r) = {y € X;d(y,z) <r} . f ECX
and F is contained in an appropriate open ball in X it is said to be bounded.
The diameter of E is, by definition,

diam E = sup d(z,y)
zyek

and it follows that F is bounded if and only if diam E < co. A subset of X
which is a union of open balls in X is called open. In particular, an open

ball is an open set. The empty set is open since the union of an empty family
of sets is empty. An arbitrary union of open sets is open. The class of all



open subsets of X is called the topology of X. The metrics d and min(1, d)
determine the same topology. A subset E of X is said to be closed if its
complement E° relative to X is open. An intersection of closed subsets of
X is closed. If £ C X, E° denotes the largest open set contained in £ and
E~ (or E) the smallest closed set containing E. E° is the interior of £ and
E~ its closure. The o-algebra generated by the open sets in X is called the
Borel g-algebra in X and is denoted by B(X). A positive measure on B(X)
is called a positive Borel measure.
A sequence (z,)°; in X converges to z € X if
lim d(z,,z) = 0.

n—oo

If, in addition, the sequence (x,,)32 ; converges to y € X, the inequalities
0 < d(z,y) < d(xn, x) + d(zn,y)

imply that y = x and the limit point z is unique.
If £ C X and z € X, the following properties are equivalent:

(i) z € E™.
(ii) B(x,r)NE # ¢, all r > 0.
(iii) There is a sequence (x,)2° ; in E which converges to x.

If B(z,r) N E = ¢, then B(x,r)" is a closed set containing F but not x.
Thus x ¢ E~. This proves that (i)=-(ii). Conversely, if z ¢ E~, since E° is
open there exists an open ball B(y, s) such that € B(y,s) C E¢ C E°. Now
choose r = s — d(z,y) > 0 so that B(z,r) C B(y, s). Then B(xz,r) N E = ¢.
This proves (ii)=-(i).

If (ii) holds choose for each n € N, a point z, € E with d(z,,z) < +
and (iii) follows. If there exists an r > 0 such that B(z,r) N E = ¢, then
(iii) cannot hold. Thus (iii)=-(ii).

If £ C X, theset E~ \E” is called the boundary of E and is denoted by
OF.

A set A C X is said to be dense in X if A~ = X. The metric space X is
called separable if there is an at most denumerable dense subset of X. For
example, Q" is a dense subset of R". The space R" is separable.



Theorem 3.1.1. B(R") =R,.

PROOF. The o-algebra R, is generated by the open n-cells in R"™ and an
open n-cell is an open subset of R". Hence R,, C B(R"). Let U be an open
subset in R™ and note that an open ball in R" = (R",d,,) is an open n-cell.
If x € U there exist an a €Q™ N U and a rational number r» > 0 such that
xz € B(a,r) C U. Thus U is an at most denumerable union of open n-cells
and it follows that U € R,,. Thus B(R") C R,, and the theorem is proved.

Let X = (X,d) and Y = (Y,e) be two metric spaces. A mapping f :
X =Y (or f:(X,d) — (Y,e) to emphasize the underlying metrics) is said
to be continuous at the point a € X if for every ¢ > 0 there exists a § > 0
such that
x € B(a,0) = f(x) € B(f(a),e).

Equivalently this means that for any sequence ()%, in X which converges
to a in X, the sequence (f(z,))5; converges to f(a) in Y. If f is continuous
at each point of X, the mapping f is called continuous. Stated otherwise
this means that

f7Y1(V) is open if V is open

or
f71(F) is closed if F is closed.

The mapping f is said to be Borel measurable if
f(B) € B(X)if Be B(Y)

or, what amounts to the same thing,
(V) € B(X)if V is open.

A Borel measurable function is sometimes called a Borel function. A
continuous function is a Borel function.

Example 3.1.1. Let f : (R,d;)— (R,d;) be a continuous strictly increasing
function and set p(z,y) =| f(z) — f(y) |, ,y € R. Then p is a metric on R.



Define j(x) = z, x € R. The mapping j : (R,d;)— (R,p) is continuous. We
claim that the map j : (R,p) — (R,d;) is continuous. To see this, let a € R
and suppose the sequence (z,,)%°; converges to a in the metric space (R,p),
that is | f(z,) — f(a) | = 0 as n — oo. Let ¢ > 0. Then

flzn) — fla) > fla+¢€) — f(a) >0ifx, >a+e¢
and

fla) — f(z,) > fla) — fla—e) >0ifz, <a—e.

Thus z,, € Ja —¢,a+ ¢[ if n is sufficiently large. This proves that he map
j: (R,p) — (R,dy) is continuous.

The metrics d; and p determine the same topology and Borel subsets of
R.

A mapping [ : (X,d) — (Y,e) is said to be uniformly continuous if for
each € > 0 there exists a § > 0 such that e(f(x), f(y)) < e as soon as
d(z,y) < 6.

If reXand F, FCX,let

d(z, E) = inf d(z,u)

uekl

be the distance from z to £ and let

d(E,F)= inf d(u,v)

ueEveF

be the distance between E and F. Note that d(z, F) = 0 if and only if x € E.
Ifx,ye X andu € F,

d(z,u) < d(z,y) + d(y,u)

and, hence

d(z, E) < d(z,y) + d(y,u)

and
d(z,E) <d(x,y) +d(y, E).

Next suppose E # ¢. Then by interchanging the roles of z and y, we get

| d(z, E) — d(y, E) |< d(z,y)



and conclude that the distance function d(z, E), € X, is continuous. In
fact, it is uniformly continuous. If z € X and r > 0, the so called closed ball
B(z,r) = {y € X; d(y,z) <r} is a closed set since the map y — d(y,z),
y € X, is continuous.

If F C X is closed and € > 0, the continuous function
1
Higa = max(O, 1- _d('a F))
’ €

fulfils 0 < I, < 1 and I, = 1 on F. Furthermore, ITj _(a) > 0 if and only
ifa € F. =4y {v € X; d(z,F) <e}. Thus

X
Xp < HF,a < Xp.-

Let X = (X,d) be a metric space. A sequence (z,)3; in X is called
a Cauchy sequence if to each € > 0 there exists a positive integer p such
that d(x,,x,) < e for all n,m > p. If a Cauchy sequence (z,,)$> ; contains a
convergent subsequence (z,, )52, it must be convergent. To prove this claim,
suppose the subsequence (x,, )72, converges to a point z € X. Then

d(zm, ) < d(Tm, Tp, ) + d(zp,, T)

can be made arbitrarily small for all sufficiently large m by choosing £ suffi-
ciently large. Thus (z,)5%, converges to x.

A subset E of X is said to be complete if every Cauchy sequence in £
converges to a point in E. If £ C X is closed and X is complete it is clear
that F is complete. Conversely, if X is a metric space and a subset E of X
is complete, then FE' is closed.

It is important to know that R is complete equipped with its standard
metric. To see this let (z,)°, be a Cauchy sequence. There exists a positive
integer such that | x,, — z,, |< 1 if n,m > p. Therefore

| T || T —2p | + | 2y [S 14| 2 |

for all n > p. We have proved that the sequence (z,,)%, is bounded (the
reader can check that every Cauchy sequence in a metric space has this
property). Now define

a = sup {z € R; there are only finitely many n with x, < z}.

The definition implies that there exists a subsequence (z,, )52, which con-
verges to a (since for any r > 0, x,, € B(a,r) for infinitely many n). The



original sequence is therefore convergent and we conclude that R is complete
(equipped with its standard metric d;). It is simple to prove that the product
of n complete spaces is complete and we conclude that R"™ is complete.

Let E C X. A family (V;);e; of subsets of X is said to be a cover of E
if Uie/V; 2 E and E is said to be covered by the V/s. The cover (V;);er is
said to be an open cover if each member V; is open. The set E is said to be
totally bounded if, for every ¢ > 0, E can be covered by finitely many open
balls of radius €. A subset of a totally bounded set is totally bounded.

The following definition is especially important.

Definition 3.1.1. A subset E of a metric space X is said to be compact if
to every open cover (V;);c; of E, there is a finite subcover of E, which means
there is a finite subset J of I such that (V;);c; is a cover of E.

If K is closed, K C E, and E is compact, then K is compact. To see this,
let (V;)ier be an open cover of K. This cover, augmented by the set X \ K

is an open cover of E and has a finite subcover since E is compact. Noting
that K N (X \ K) = ¢, the assertion follows.

Theorem 3.1.2. The following conditions are equivalent:
(a) E is complete and totally bounded.
(b) Every sequence in E contains a subsequence which converges to a
point of E.
(c) E is compact.

PROOF. (a)=-(b). Suppose (x,)>, is a sequence in E. The set £ can be
covered by finitely many open balls of radius 27! and at least one of them
must contain z,, for infinitely many n € N, . Suppose x, € B(a,27!) if
n € N; C Ny =45 N, where N; is infinite. Next E N B(ai,27!) can be
covered by finitely many balls of radius 272 and at least one of them must
contain x,, for infinitely many n € N;. Suppose x, € B(ay,27!) if n € Ny,
where Ny C N is infinite. By induction, we get open balls B(a;,277) and
infinite sets N; C N;_; such that z,, € B(a;,277) for all n € N; and j > 1.



Let n; < ng < ..., where ny, € Ny, k = 1,2, ... . The sequence (z,,)52, is a
Cauchy sequence, and since F is complete it converges to a point of F .

(b)=>(a). If E is not complete there is a Cauchy sequence in F with no
limit in E. Therefore no subsequence can converge in E, which contradicts
(b). On the other hand if E is not totally bounded, there is an ¢ > 0 such
that £ cannot be covered by finitely many balls of radius €. Let x1 € F
be arbitrary. Having chosen a1, ...,7, 1, pick x, € E\ U} B(x;,¢), and
so on. The sequence (z,)%°; cannot contain any convergent subsequence as
d(xp, Tm) > € if n # m, which contradicts (b).

{(a) and (b)} =-(c). Let (V;)ier be an open cover of E. Since E is totally
bounded it is enough to show that there is an ¢ > 0 such that any open
ball of radius € which intersects F is contained in some V;. Suppose on the
contrary that for every n € N, there is an open ball B, of radius < 27"
which intersects E and is contained in no V;. Choose z,, € B, N E and
assume without loss of generality that (z,)%; converges to some point z in
E by eventually going to a subsequence. Suppose x € V;, and choose r > 0
such that B(z,r) C V;,. But then B, C B(x,r) C V,, for large n, which
contradicts the assumption on B5,,.

(¢)=(b). If (x,)32, is a sequence in F with no convergent subsequence in
E, then for every « € E there is an open ball B(z,r,) which contains z,, for
only finitely many n. Then (B(z,r,)).cr is an open cover of E without a

finite subcover.

Corollary 3.1.1. A subset of R is compact if and only if it is closed and
bounded.

PROOF. Suppose K is compact. If x, € K and z, ¢ B(0,n) for every
n € Ny, the sequence (z,)%°; cannot contain a convergent subsequence.
Thus K is bounded. Since K is complete it is closed.



Conversely, suppose K is closed and bounded. Since R" is complete and
K is closed, K is complete. We next prove that a bounded set is totally
bounded. It is enough to prove that any n-cell in R" is a union of finitely
many n-cells I; X ... x I, where each interval I, ..., I, has a prescribed positive
length. This is clear and the theorem is proved.

Corollary 3.1.2. Suppose f: X — R is continuous and X compact.
(a) There exists an a € X such that maxy f = f(a) and a b€ X
such that miny f = f(b).

(b) The function f is uniformly continuous.

PROOF. (a) Foreacha € X, let V, ={z € X : f(z) <1+ f(a)}. The open
cover (V,)a.ex of X has a finite subcover and it follows that f is bounded. Let
(2,)22; be a sequence in X such that f(z,) — supg f as n — oo. Since X is
compact there is a subsequence (x,, )72, which converges to a point a € X.
Thus, by the continuity of f, f(x,,) — f(a) as k — oo.

The existence of a minimum is proved in a similar way.

(b) If f is not uniformly continuous there exist ¢ > 0 and sequences
(zn)pzy and (yn)p2; such that | f(2,) — f(yn) |> € and | @, — y, [< 277
for every n > 1. Since X is compact there exists a subsequence (z,, )32, of
()52, which converges to a point a € X. Clearly the sequence (yn, )%,
converges to a and therefore

‘ f(xnk> - f(ynk) ’§| f(xnk) - f(a) ‘ + ’ f(a) - f(ynk) ’_> 0

as k — oo since f is continuous. But | f(z,,) — f(yn,) |> € and we have got
a contradiction. The corollary is proved.

Example 3.1.2. Suppose X = ]0,1] and define p,(z,y) = di(z,y) and
po(z,y) =| %—i |, z,y € X. As in Example 3.1.1 we conclude that the metrics
p; and p, determine the same topology of subsets of X. The space (X, p,)
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totally bounded but not complete. However, the space (X, p,) is not totally
bounded but it is complete. To see this, let (x,)22 ;be a Cauchy sequence in
(X, py). As a Cauchy sequence it must be bounded and therefore there exists
an ¢ € |0,1] such that x, € [e,1] for all n. But then, by Corollary 3.1.1,
(x,)22, contains a convergent subsequence in (X, p;) and, accordingly from
this, the same property holds in (X, p,). The space (X, p,) is not compact,
since (X, p;) is not compact, and we conclude from Theorem 3.1.2 that the
space (X, py) cannot be totally bounded.

Example 3.1.3. Set R=RU {—00, 00} and

~

d(x,y) =| arctanz — arctany |

ifx,y € R. Here
arctan oo = g and arctan —oo = —g.

Example 3.1.1 shows that the standard metric d; and the metric cZ|RxR
determine the same topology.

We next prove that the metric space R is compact. To this end, consider
a sequence (z,)2°, in R. If there exists a real number M such that | z,, |[< M
for infinitely many n, the sequence (z,,)$° ; contains a convergent subsequence
since the interval [— M, M] is compact. In the opposite case, for each positive
real number M, either x, > M for infinitely many n or z, < —M for
infinitely many n. Suppose z,, > M for infinitely many n for every M €
N_. Then d(z,, ,c0) =| arctan z,, — % |— 0 as k — oo for an appropriate
subsequence (2, )5 .

The space R= (f{,cz) is called a two-point compactification of R.

It is an immediate consequence of Theorem 3.1.2 that the product of
finitely many compact metric spaces is compact. Thus R” equipped with
the product metric is compact.

We will finish this section with several useful approximation theorems.

Theorem 3.1.3. Suppose X is a metric space and p positive Borel measure
in X. Moreover, suppose there is a sequence (U,)s,of open subsets of X
such that

X =U2,U0,
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and
w(U,) < oo, all n € N..

Then for each A € B(X) and € > 0, there are a closed set F' C A and an
open set VO A such that
p(V\F)<e.

In particular, for every A € B(X),

p(A) = inf u(V)
V open

and

p(A) = sup p(F)
FCA
F' closed

If X =Rand p(Ad) =%°,61(A) , A€ R, then u({0}) =0 and pu(V) =
oo for every open set containing {0} . The hypothesis that the sets U, n €
N, are open (and not merely Borel sets) is very important in Theorem 3.1.3.

PROOF. First suppose that p is a finite positive measure.

Let A be the class of all Borel sets A in X such that for every ¢ > 0
there exist a closed F' C A and an open V' D A such that p(V\ F) <e. If F
is a closed subset of X and V,, = {x; d(z, F) < %} , then V, is open and, by
Theorem 1.1.2 (f), u(Vy,) | v(F) as n — oo. Thus F' € A and we conclude
that A contains all closed subsets of X.

Now suppose A € A. We will prove that A¢ € A. To this end, we choose
e >0 and a closed set F' C A and an open set V' O A such that u(V\ F) < .
Then V¢ C A° C F*° and, moreover, u(F°\ V°) < ¢ since

V\F=F\Ve

If we note that V¢ is closed and F¢ open it follows that A¢ € A.

Next let (A;)$2; be a denumerable collection of members of A. Choose
e > 0. By definition, for each i € N there exist a closed F; C A; and an
open V; D A; such that u(V; \ F;) < 27%. Set
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Then
p(V A (U1 F)) < (U2, (Vi \ 7))
<2V \ F) < e.
But
VA(UEF) = Mz AV (UL B}

and since p is a finite positive measure
u(V\ (U, F)) = lim u(V\ (U F)).
Accordingly, from these equations
p(VA (UL F)) <e

if n is large enough. Since a union of open sets is open and a finite union of
closed sets is closed, we conclude that U°; A; € A. This proves that A is a
o-algebra. Since A contains each closed subset of X, A = B(X).

We now prove the general case. Suppose A € B(X). Since uU» is a finite
positive measure the previous theorem gives us an open set V,, O ANU, such
that u¥(V,,\ (ANU,)) < e27". By eventually replacing V,, by V,,NU,, we can
assume that V,, C U,. But then u(V,,\ (ANU,)) = u¥(V, \(ANU,)) < 27"

Set V = U |V, and note that V' is open. Moreover,

VAAC UL (Va\ (ANUL))

and we get
p(V\NA) <E2 0V \ (ANT,)) <e.

By applying the result already proved to the complement A we conclude
there exists an open set W O A¢ such that

PANWE) = (W A%) <e.

Thus if F' =4 W€ it follows that ¥ C A C V and p(V \ F) < 2e. The
theorem is proved.

If X is a metric space C'(X) denotes the vector space of all real-valued
continuous functions f : X — R. If f € C(X), the closure of the set of
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all  where f(z) # 0 is called the support of f and is denoted by suppf.
The vector space of all all real-valued continuous functions f : X — R with
compact support is denoted by C.(X).

Corollary 3.1.3. Suppose p and v are positive Borel measures in R™ such
that
pu(K) < oo and v(K) < o0

for every compact subset K of R™. If

Rnf(ﬁ)du(flf) = Rnf(fv)dV(x% all f € C(R")

then p=wv.

PROOF. Let F be closed. Clearly p(B(0,i)) < oo and v(B(0,7)) < oo for
every positive integer i. Hence, by Theorem 3.1.3 it is enough to show that
w(F) = v(F). Now fix a positive integer i and set K = B(0,i) N F. It is
enough to show that u(K) = v(K). But

| @duto) = [T, @

for each positive integer j and letting j — oo we are done.

A metric space X is called a standard space if it is separable and com-
plete. Standard spaces have a series of very nice properties related to measure
theory; an example is furnished by the following

Theorem 3.1.4. (Ulam’s Theorem) Let X be a standard space and
suppose |1 s a finite positive Borel measure on X. Then to each A € B(X)
and € > 0 there exist a compact K C A and an open V. O A such that
pw(V\K) <e.



14

PROOF. Let ¢ > 0. We first prove that there is a compact subset K of X

such that u(K) > pu(X)—e. To this end, let A be a dense denumerable subset

of X and let (a;)2, be an enumeration of A. Now for each positive integer

J, U2, B(a;,277¢) = X, and therefore there is a positive integer n; such that
w(U7 B(ag,277¢)) > p(X) — 27,

Set ) .
Fy = U2, B(a;,27¢)

and

The set L is totally bounded. Since X is complete and L closed, L is complete.
Therefore, the set L is compact and, moreover

p(K) = p(X) = p(LF) = p(X) — p(U52, FY)

> u(X) = T2 () = p(X) — 532, (u(X) — ()
> pu(X) - X227 = p(X) —e.

Depending on Theorem 3.1.3 to each A € B(X) there exists a closed
F C A and an open V 2O A such that u(V \ F)) < . But

VN(FNL)=(V\F)U(F\L)
and we get
p(VA(FNL) <p(V\F)+p(X\K) < 2.

Since the set F'N L is compact Theorem 3.1.4 is proved.

Two Borel sets in R" are said to be almost disjoint if their intersection
has volume measure zero.

Theorem 3.1.5. FEvery open set U in R" is the union of an at most denu-
merable collection of mutually almost disjoint cubes.
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Before the proof observe that a cube in R" is the same as a closed ball
in R" equipped with the metric d,,.

PROOF. For each, k € N, let Q;be the class of all cubes of side length 2%
whose vertices have coordinates of the form i27%, i € Z. Let I} be the union
of those cubes in Q; which are contained in U. Inductively, for k£ > 1, let
I}, be the union of those cubes in Q;, which are contained in U and whose
interiors are disjoint from Uf;llF] Since d(z,R"\ U) > 0 for every z € U it
follows that U = U372, F}.

Exercises

1. Suppose f: (X, M) — (R4, Ry) and g : (X, M) — (R",R,) are measur-
able. Set h(z) = (f(x),g(r)) € R¥*" if z € X. Prove that h : (X, M) —
(R4 R4y, is measurable.

2. Suppose f: (X,M) — (R,R) and g : (X, M) — (R, R) are measurable.
Prove that fg is (M, R)-measurable.

3. The function f : R — R is a Borel function. Set g(z,y) = f(z), (z,y) €
R2?. Prove that g : R? — R is a Borel function.

4. Suppose f : [0,1] — R is a continuous function and ¢ : [0,1] —[0,1] a
Borel function. Compute the limit

1

lim f(g(x)")dx.

n—oo 0

5. Suppose X and Y are metric spaces and f : X — Y a continuous mapping.
Show that f(FE) is compact if E is a compact subset of X.
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6. Suppose X and Y are metric spaces and f : X — Y a continuous bijection.
Show that the inverse mapping f~! is continuous if X is compact.

7. Construct an open bounded subset V' of R such that m(9V) > 0.

8. The function f : [0,1] —R has a continuous derivative. Prove that the
set f(K) € 2, if K = ()" ({0}).

9. Let P denote the class of all Borel probability measures on [0,1] and L
the class of all functions f : [0,1] — [—1, 1] such that

| f(2) = @) <l 2=y 2,y €[0,1].

For any u,v € P, define

p(p,v) = sup | fdp — fdv].
feL  Jo, [0,1]
(a) Show that (P, p) is a metric space. (b) Compute p(u,v) if u is linear
measure on [0,1] and v = 57716, where n € N, (linear measure on [0, 1]
is Lebesgue measure on [0, 1] restricted to the Borel sets in [0, 1]).

10. Suppose p is a finite positive Borel measure on R™. (a) Let (V;);cr be a
family of open subsets of R and V = U,;¢;V;. Prove that

(b) Let (F});e; be a family of closed subsets of R™ and F' = N;c/F;. Prove
that
p(F)= inf p(F, N...NE,).

U100 €1
LEN
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H

3.2. Linear Functionals and Measures

Let X be a metric space. A mapping T : C.(X) — R is said to be a linear
functional on C.(X) if

T(f+g)=Tf+Tg, all f,g € Ce(X)

and

T(af)=aTf, ala € R, f € C.(X).

If in addition T'f > 0 for all f > 0, T is called a positive linear functional
on C.(X). In this case Tf < Tgif f<gsinceg—f>0and Tg—Tf =
T(g— f) > 0. Note that C.(X) = C(X) if X is compact.

The main result in this section is the following

Theorem 3.2.1. (The Riesz Representation Theorem) Suppose X is
a compact metric space and let T be a positive linear functional on C(X).
Then there exists a unique finite positive Borel measure p in X with the
following properties:

(a)
7f = [ fau, 1 eCx),

(b) For every E € B(X)

p(E) = sup  p(K).
KCE
K compact

(c) For every E € B(X)

p(E) = inf p(V).
V open
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The property (c) is a consequence of (b), since for each £ € B(X) and
e > 0 there is a compact K C X \ E such that

WX\ E) < pu(K) +e.

But then
X\ K) <p(E)+e

and X \ K is open and contains E. In a similar way, (b) follows from (c)
since X is compact.

The proof of the Riesz Representation Theorem depends on properties of
continuous functions of independent interest. Suppose K C X is compact
and V C X is open. If f: X — [0,1] is a continuous function such that

f =Xy and suppf €V

we write
f=<Vv
and if
Xk < f <Xy and suppf CV
we write

K< f=<V

Theorem 3.2.2. Let K be compact subset X.
(a) Suppose K CV where V is open. There exists a function f on X
such that
K< f<V

(b) Suppose X is compact and K C V1 U...UV,,, where K is compact and
Vi,..., V. are open. There exist functions hq, ..., h, on X such that

hiKV;, izl,...,n

and
hi+..+h,=1o0n K.
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PROOF. (a) Suppose ¢ = 3 ming d(-, V¢). By Corollary 3.1.2, ¢ > 0. The
continuous function f = Hf(’e satisfies xrr < f < xg_, that is K < f < K..

Part (a) follows if we note that the closure (K.)~ of K. is contained in V.

(b) For each z € K there exists an r, > 0 such that B(z,r,) C V; for some
i. Let U, = B(z,ir,). It is important to note that (U,)~ C V; and (U,)~
is compact since X is compact. There exist points x1, ..., z,, € K such that
UL, Uy, 2 K. If 1 <0 <n, let F; denote the union of those (Us,;)~ which are
contained in V;. By Part (a), there exist continuous functions f; such that
F;, < fi <V, i=1,...,n. Define

hi = h
hy = (1= fi)fe

ho = (1= f1)..(1 = fas1) fa-

Clearly, h; < V;, i =1, ...,n. Moreover, by induction, we get

hid ot hy=1—(1— f)(l— o)1 — o).

Since U} F; O K we are done.

The uniqueness in Theorem 3.2.1 is simple to prove. Suppose p; and
iy are two measures for which the theorem holds. Fix € > 0 and compact
K C X and choose an open set V' so that (V) < puy(K)+e. K < f <V,

ul(K)z/Xdeulﬁ/dem:Tf

:/ fdpy < / Xvdpg = pa(V) < pa(K) + &
b X

Thus p,(K) < py(K). If we interchange the roles of the two measures, the
opposite inequality is obtained, and the uniqueness of p follows.

To prove the existence of the measure p in Theorem 3.2.1, define for every
open V in X,

p(V) =supTf.
F=V
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Here p(¢) = 0 since the supremum over the empty set, by convention, equals
0. Note also that u(X) = T'1. Moreover, (V) < u(V2) if V; and V5 are open
and V; C V,. Now set

u(E) = V‘}ng p(V)if B e B(X).
open

Clearly, p(Ey) < u(Ey), if By C Ey and Ey Ey € B(X). We therefore say
that p is increasing.

Lemma 3.2.1. (a) If V4,...,V,, are open,
(Ui, Vi) < B u(Va).
(b) If By, B, ... € B(X),

(U2, E;) < 532, ().

(¢) If Ky, ..., K, are compact and pairwise disjoint,
p(Uiny Ki) = B p(KG).

PROOF. (a) It is enough to prove (a) for n = 2. To this end first choose
g < ViUVy and then h; < V;, i = 1,2, such that h; +hs = 1 on supp g. Then
g =hig + hag

and it follows that

Tg = T(h1g) + T(hag) < (Vi) + p(V2),

Thus
p(ViuVa) < p(Va) + p(Va).
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(b) Choose € > 0 and for each i € N, choose an open V; DO E; such u(V;) <
w(E;) +27%. Set V = U, V; and choose f < V. Since suppf is compact,
f<ViU..uUV, for some n. Thus, by Part (a),

Tf<p(ViU..UVy) < S (Vi) < BZu(E) + ¢

and we get
p(V) < B pu(E;)

since ¢ > 0 is arbitrary. But U2, E; C V' and it follows that

(U Ey) < B2 ().

(c) It is enough to treat the special case n = 2. Choose ¢ > 0. Set p =

d(K1,K;) and Vi = (K4),/2 and Vi = (K3),/2. There is an open set U 2

K, UK, such that u(U) < p(K;UK3)+¢€ and there are functions f; < UNV;

such that T'f; > u(U NV;) — e for i = 1,2. Now, using that u increases
(K1) + p(K2) < p(UN VL) + p(U N V)

S Tfl + Tf2 + 28 = T(fl + f2) + 28.
Since f1 + fo < U,

n(K1) + p(Ks) < p(U) + 26 < p(Ky U K) + 3¢
and, by letting ¢ — 0,
p(Ky) + p(K) < p(K1 U K»).

The reverse inequality follows from Part (b). The lemma is proved.

Next we introduce the class

M= EeB(X); p(E)= sup u(K)
KKQE t
compac
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Since p is increasing M contains every compact set. Recall that a closed
set in X is compact, since X is compact. Especially, note that ¢ and X € M.

COMPLETION OF THE PROOF OF THEOREM 3.2.1:

CLAIM 1. M contains every open set.

PROOF OF CLAIM 1. Let V' be open and suppose a < p(V'). There exists
an f < Vsuchthat o <Tf. If Uisopenand U O K =4 ¢suppf, then f < U,
and hence T'f < p(U). But then T'f < p(K). Thus a < pu(K) and Claim 1
follows since K is compact and K C V.

CLAIM 2. Let (E;)2, be a disjoint denumerable collection of members of
M and put E = U2, E;. Then

w(E) = X2, u(Ey)
and E € M.
PROOF OF CLAIM 2. Choose € > 0 and for each i € N, choose a compact

K; C E; such that u(K;) > p(E;) —27%. Set H, = K; U ... U K,,. Then, by
Lemma 3.2.1 (c),

w(E) > p(Hy,) = S p(K) > Sy pu(E;) — €

and we get

W(E) = S, u(E).
Thus, by Lemma 3.2.1 (b), u(F) = £°,u(E;). To prove that E € M, let ¢
be as in the very first part of the proof and choose n such that

p(E) < XL p(Es) + €.
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Then
pw(E) < p(Hy,) + 2¢

and this shows that ¥ € M.

CLAIM 3. Suppose E € M and € > 0. Then there exist a compact K and
an open V such that K C ECV and u(V \ K) <e.

PROOF OF CLAIM 3. The definitions show that there exist a compact K
and an open V such that

u(V) = 5 < u(E) < p(K) + 3.

The set V' \ K is open and V \ K € M by Claim 1. Thus Claim 2 implies
that
pE) +p(V A K) = p(V) < p(K) +¢

and we get u(V \ K) < e.

CLAIM 4. If A € M, then X \ A € M.

PROOF OF CLAIM 4. Choose ¢ > 0. Furthermore, choose compact K C A
and open V' O A such that u(V \ K) < e. Then

X\VAC(VNK)U(X\V).
Now, by Lemma 3.2.1 (b),
WX\ A) <e+pu(X\V).

Since X \ V' is a compact subset of X \ A, we conclude that X \ A € M.

Claims 1, 2 and 4 prove that M is a o-algebra which contains all Borel
sets. Thus M = B(X).
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We finally prove (a). It is enough to show that

Tf < /deu

for each f € C(X). For once this is known

~Tf = T(~f) < /X —fdp < - /X fdu

and (a) follows.
Choose € > 0. Set f(X) = [a,b] and choose yy < y; < ... < y, such that
Y1 =a, Yo—1 = b, and y; — y;_1 < . The sets

Ei=f"Yyi—n,ul), i=1,..,n

constitute a disjoint collection of Borel sets with the union X. Now, for each i,
pick an open set V; 2 E; such that u(V;) < p(E;)+£ and V; C f~(]—o00, 1)
By Theorem 3.2.2 there are functions h; < V;, i = 1,...,n, such that X! | h; =
1 on suppf and h;f < y;h; for all i. From this we get

Tf=%_Thif) < S yiThy <X y:u(Vi)
19
< Z?:1yiﬂ(Ei) + E?:ﬂ/iﬁ
< Ny (yi — e)u(Ey) +ep(X) + (b +e)e

< Z?l/ fdu+eu(X)+ (b+¢e)e
E;

= /X fdp~+ep(X) + (b+e)e.

Since ¢ > 0 is arbitrary, we get

Tf < /X fdp.

This proves Theorem 3.2.1.

It is now simple to show the existence of volume measure in R". For
pedagogical reasons we first discuss the so called volume measure in the unit
cube @ = [0,1]" in R™.
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The Riemann integral

Lf@ﬂ%

is a positive linear functional as a function of f € C(Q). Moreover, T1 = 1
and the Riesz Representation Theorem gives us a Borel probability measure

w1 in @ such that
[ rtars= [ su
Q Q

Suppose A C @ is a closed n-cell and i € N . Then
vol(A) < / M9, (a)de < vol(Ay 1)
o &

and

1154

ao-i(®) = xa(z) as i — o0

for every x €R". Thus
p(A) = vol(A).

The measure p is called the volume measure in the unit cube. In the special
case n = 2 it is called the area measure in the unit square and if n = 1 it is
called the linear measure in the unit interval.

PROOF OF THEOREM 1.1.1. Let R=RU {—00, 00} be the two-point com-
pactification of R introduced in Example 3.1.3 and let R"™ denote the product
of n copies of the metric space R. Clearly,

B(R") = {A NR™ Ae B(Rn)} .

Moreover, let w : R" — 0, 00| be a continuous map such that

/nw(x)dm 1

Tf= . f(@)w(z)dz, fe CRM).

Now we define
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Note that 71 = 1. The function T is a positive linear functional on C'(R™)
and the Riesz Representation Theorem gives us a Borel probability measure
1 on R™ such that

(v)w(z)dr = fdu, feC@RM).

R’IL Rn

As above we get

for each compact n-cell in R". Thus

p(R™) = lim w(z)dr =1

oSl

and we conclude that p is concentrated on R™. Set py,(A) = pu(A), A €
B(R™), and

1
dm, = —du,.

w

Then, if f € C.(R"),
fayw)ds = [ fdug
Rn Rn
and by replacing f by f/w,
f(z)dz = fdm,,.
R" R"

From this m,,(A) =vol(A) for every compact n-cell A and it follows that m,,
is the volume measure on R". Theorem 1.1.1 is proved.

(k)

3.3 g-Adic Expansions of Numbers in the Unit Interval

To begin with in this section we will discuss so called g-adic expansions of
real numbers and give some interesting consequences. As an example of an
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application, we construct a one-to-one real-valued Borel map f defined on
a proper interval such that the range of f is a Lebesgue null set. Another
example exhibits an increasing continuous function G on the unit interval
with the range equal to the unit interval such that the derivative of G' is
equal to zero almost everywhere with respect to Lebesgue measure. In the
next section we will give more applications of g-adic expansions in connection
with infinite product measures.

To simplify notation let (Q2, P, F) = ([0, 1], vyjp,17, B([0, 1[)). Furthermore,
let ¢ > 2 be an integer and define a function h : R —{0,1,2,...,q — 1} of
period one such that

k kE+1
h(z) = k, —§x<L, k=0,..,qg—1.
q q

Furthermore, set for each n € N,
£, (W) =hlg"'w), 0<w< 1.

Then ]
P, =k] = 5, k=0,..q—1.

Moreover, if ki, ....,k, € {0,1,2,...,¢ — 1}, it becomes obvious on drawing a
figure that

P& =ki, &y =kna] = S0P [& =k, oo €y = K1, €, = 1]
where each term in the sum in the right-hand side has the same value. Thus
Pl& =k, &y =kna] =qP (& =k, &y = ko1, & = ki

and
P [51 =ky,..&y =kno1,€, = kn} =P [51 =ky,.., &1 = kn_l] Pg, =k,].
By repetition,

P [51 =k, .., 1 =kn1,§, = kn} =1 ,P[¢, =K.
From this we get

P |:§1 € A17 "'fnfl € An717€n € An] = H?:lp [61 € Al]
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for all Ay,..., A, C€{0,1,2,...,q—1}.
Note that each w € [0, 1] has a so called g-adic expansion

fz(w)

i

_ yo0
w =22,

If necessary, we write £, = 5,(1‘1) to indicate ¢ explicitly.

Let ko € {0,1,2,...,q — 1} be fixed and consider the event A that a num-
ber in [0, 1[ does not have ko in its g-adic expansion. The probability of A
equals

PIA]=P[¢ # ko, 1=1,2,...] = lim P, # ko, i =1,2,...,n]

n—oo

-1
= lim T2, P& # ko] = lim (1—=)" = 0.
n—oo n—00 q
In particular, if

D, — {w cl0,1; ¥ £1, i= 1n}

then, D =N, D, is a P-zero set.
Set o
[e’s) 257, w
flw) =%, 32-( )
We claim that f is one-to-one. If 0 < w,w’ < 1 and w # W' let n be the
least i such that 51(2)@1) # 552)@/ ); we may assume that £ (w) = 0 and
£@(w') = 1. Then

, 0<w< 1.

20 (w) 260w | 2
) > L, e = N -
fw') =X, 3 i=1 30 + 3n
12600 g 4 o 2687(W)
= Z31‘:11 3i + Zi:n+1§ > X2 30 = f(w).

Thus f is one-to-one. We next prove that f(£2) = D. To this end choose
y e D.If §§3) (y) =2 for all i € N, then y = 1 which is a contradiction. If
k > 1 is fixed and 5,(63) (y) = 0 and §§3) (y) = 2,4 >k + 1, then it is readily
seen that £ S’) (y) = 1 which is a contradiction. Now define

1¢(3)
W= 25012&2_1'(3/)
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and we have f(w) =y.

Let C,, = D, n € N;. The set C' = N2 ,C,, is called the Cantor set.
The Cantor set is a compact Lebesgue zero set. The construction of the
Cantor set may alternatively be described as follows. First Cy = [0, 1]. Then
trisect Cy and remove the middle interval ] %, % [ to obtain Cy = Cp \ } %, % [ =
[O, %} U [%, 1} . At the second stage subdivide each of the closed intervals
of (] into thirds and remove from each one the middle open thirds. Then
Cy=C1\ (|3, 2[U]1L,2]). What is left from C,,_; is C,, defined above. The

set [0, 1]\ O,? i: the union of 2" —1 intervals numbered I}, k =1,...,2" — 1,
where the interval I} is situated to the left of the interval I}* if k < [.

Suppose n is fixed and let G, : [0,1] — [0, 1] be the unique monotone in-
creasing continuous function, which satisfies G,,(0) = 0,G,,(1) = 1,G,(z) =
k27" for x € I} and which is affine on each interval of C,, It is clear that
Gpn = G4 on each interval I, k = 1,...,2" — 1. Moreover, | G,, — G411 |<
271 and thus

n

Let G(z) = lim, 0o Gn(z), 0 < z < 1. The continuous and increasing func-
tion G is constant on each removed interval and it follows that G’ = 0 a.e.
with respect to linear measure in the unit interval. The function G is called
the Cantor function or Cantor-Lebesgue function.

Next we introduce the following convention, which is standard in Lebesgue
integration. Let (X, M, i) be a positive measure space and suppose A € M
and p(A°) = 0. If two functions g, h € L' (1) agree on A,

/gdu:/ hd .
X X

If a function f : A — R is the restriction to A of a function g € £'(u) we

define
/ fdp = / gdp.
X X

Now suppose F' : R — R is a right continuous increasing function and
let 1 be the unique positive Borel such that

w(la,z]) = F(z) — F(a) ifa,z € R and a < z.
If h € L'(u) and E € R, the so called Stieltjes integral

/E h(z)dF ()
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is by definition equal to

/ hd .
E

Ifa,b e R, a <b, and F' is continuous at the points a and b, we define

/a ’ h(z)dF(z) = /1 hdp

where [ is any interval with boundary points a and b.
The reader should note that the integral

/R h(z)dF ()

in general is different from the integral

/R h(z) ' (2)da.

For example, if G is the Cantor function and G is extended so that G(x) = 0
for negative x and G(z) = 1 for = larger than 1, clearly

/R h(@)G (x)dz = 0

since G'(x) = 0 a.e. [m]. On the other hand, if we choose h = xq y,

/ h(z)dG(x) = 1.
R

3.4. Product Measures

Suppose (X, M) and (Y,N) are two measurable spaces. If A € M and
B € N, the set A x B is called a measurable rectangle in X x Y. The product
o-algebra M ®@N is, by definition, the o-algebra generated by all measurable
rectangles in X x Y. If we introduce the projections

Wx(l',y) =, (x,y) €EX XY

and
’/TY(-%,Q) =Y, (:an) € X X Y7
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the product o-algebra M ® N is the least o-algebra S of subsets of X x Y,
which makes the maps 7x : (X xY,S8) — (X, M) and 7y : (X xY,S) —
(Y, N) measurable, that is M @ N = o (7' (M)Ury (N))..

Suppose £ generates M, where X € £, and F generates N, where Y € F.
We claim that the class

EXRF={ExXF;E€fand F € F}
generates the o-algebra M @ N. First it is clear that
cERF)CMRN.
Moreover, the class
{EEM;ExY €c(ERF)}=MN{ECX; 7 (E) €d(ERF) }

is a o-algebra, which contains £ and therefore equals M. Thus A x Y €
o(EXF) for all A € M and, in a similar way, X x B € o(E X F) for all
B € N and we conclude that A x B=(AxY)N (X x B) € 0(E X F) for
all A€ M and all B € M. This proves that

MRON Co(EXRF)
and it follows that
c(ERF)=MeN.

Thus
c(EXF)=0()@c(F)if X €€ and Y € F.

Since the o-algebra R,, is generated by all open n-cells in R”, we conclude
that
Riin =Rr @ Ry,.

Given FF C X x Y, define
E,={y; (z,y) e E} ifre X

and
EY ={z; (z,y) e E} ifyeY.

Iff:XxY — Zisafunctionand xr € X,y €Y, let

f(y) = f(z,y), fyeY
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and
f(x) = f(z,y), ifz e X.

Theorem 3.4.1 (a) If E € M N, then E, € N and EY € M for every
reX and yey.

) If f: (X XY, M@N)— (Z,0) is measurable, then f, is (N,O)-
measurable for each x € X and fY is (M, O)-measurable for each y € Y.

Proof. (a) Let
S={Fe MN;E,e¢ Nand EY € M for every z € X and y € Y}.

Clearly, X xY € S. Furthermore, if E, Fy F,... € S, (E9), = (E,)* € N
and (U2, E;), = U2, (E;), € N for every z in X and (E°)Y = (EY)° € M
and (U2 E;)Y = UR,(E;)Y € M for every y in Y. It follows that S is a
o-algebra. Furthermore, if Ae¢ Mand BeEN, (AxB),=BeNifzecA
and (Ax B), =¢peNifr ¢ Aand (Ax B)Y = A e Mify e B and
(AxB)Y =¢ec Mify ¢ B. Thus A x B € S and, accordingly from this,
S=MeN.
(b) For any set V € O,

and
(V)Y = (1)1 (V).

Part (b) now follows from (a).

Below an (M, R « )-measurable or (M, R )-measurable function is simply
called M-measurable.

Theorem 3.4.2. Suppose (X, M,u) and (Y,N,v) are positive o-finite
measurable spaces and suppose B € M@ N. If

f(z) =v(E,) and g(y) = u(EY)
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for every x € X and y €Y, then [ is M-measurable, g is N -measurable,

and
/fd,u—/gdy.
X Y

Proof. We first assume that (X, M,u) and (Y,N,v) are finite positive
measure spaces.

Let D be the class of all sets £ € M ® N for which the conclusion of
the theorem holds. It is clear that the class G of all measurable rectangles
in X xY is a subset of D and G is a w-system. Furthermore, the Beppo
Levi Theorem shows that D is a A-system. Therefore, using Theorem 1.2.2,
MRN =0(G) C D and it follows that D = M @ N.

In the general case, choose a denumerable disjoint collection (Xj)52 ;of

members of M and a denumerable disjoint collection (Y7,)52 ;of members of
N such that

U X=X and U2, Y, =Y.
Set
M = Xx s b =1,2, ...
and
Un =Xy,V,n=12,...

Then, by the Beppo Levi Theorem, the function

f(z) = /X Yol Xe (T, y) Xy, (y)dv(y)

=0, /X Xe(T )Xy, (Y)dv(y) = ol vn(Es)

is M-measurable. Again, by the Beppo Levi Theorem,

/deuzﬁiil/xfduk

and
[ tin= sz [ i) = S5 [ vaEodia).

X

In a similar way, the function g is N -measurable and

[ atv =2 [ v ) = s [ B0,
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Since the theorem is true for finite positive measure spaces, the general case
follows.

Definition 3.4.1. If (X, M, ) and (Y, N,v) are positive o-finite measur-
able spaces and £ € M @ N, define

(e B) = [ W(EBa)auta) = [ p(E")in(y),

The function p x v is called the product of the measures p and v.

Note that Beppo Levi’s Theorem ensures that ©® v is a positive measure.

Before the next theorem we recall the following convention. Let (X, M, u)
be a positive measure space and suppose A € M and pu(A°) = 0. If two
functions g, h € £(u1) agree on A,

/gd,u—/ hdyu.
X X

If a function f : A — R is the restriction to A of a function g € £'(u) we

define
/ fdp = / gdj.
X X

Theorem 3.4.3. Let (X, M,pu) and (Y,N,v) be positive o-finite measur-
able spaces.

(a) (Tonelli’s Theorem) If h: X XY — [0,00] is (M ® N)-measurable
and

f(fr)zfyh(w7y)dV(y> and g(y)z/ h(x,y)du(x)

X
for every x € X and y € Y, then [ is M-measurable, g is N-measurable,

and
/fdu:/ hd(uxu):/gdy
X XxY Y

(b) (Fubini’s Theorem)
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(i) If h: X xY — R is (M ® N )-measurable and
/ ( / | Wz, y) | dv(y))du(z) < oo
X Y

then h € L*(u x v). Moreover,

[ meavtnine) = [ vdgexn) = [ ([ we i)
(i) If h € L'((u x v)™), then h, € L*(v) for p-almost all x and

[ wiw) = [ ([ nyiv(e)ante)

(4ii) If h € L'((u x v)7), then h¥ € L*(p) for v-almost all y and

/Xxyhd(””)_/Y(/Xh(ﬂf»y)du(w))dV(y)

PROOF. (a) The special case when & is a non-negative (M ® N )-measurable
simple function follows from Theorem 3.4.2. Remembering that any non-
negative measurable function is the pointwise limit of an increasing sequence
of simple measurable functions, the Lebesgue Monotone Convergence Theo-
rem implies the Tonelli Theorem.

(b) PART (i) : By Part (a)

o> [ ([ Wit = [ wtdgo)

XxXY

:/Y(/X b (z,y)dp(z))dv(y)

and

o> [ ([ Wit = [ wdgo)

XxY

:/Y(/Xh—(a:,y)du(w))dV(y)-
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Let
A={z e X; (W), (h ). € L'(v)}.

Then A° is a p-null set and we get

[ e mdtinine = [ wtdgecn)

" [ @it = [ wigeoon.
o [ pemirtan) = [ natex o)
and, hence,

| weavtinine) = [ wdgex),

The other case can be treated in a similar way. The theorem is proved.

PART (ii) : We first use Theorem 2.2.3 and write h = ¢ + 1) where ¢ €
LY x v), ¢ is (M ® N) " -measurable and 1) = 0 a.e. [u X v]. Set

A={zeX; (¢ (¢ ) € L'(V)}.
Furthermore, suppose E D {(z,y); ¥(z,y) # 0}, E € M®N and
(% ¥)(E) = 0.

Then, by Tonelli’s Theorem

0= /X V(E,)du(z).

Let B = {z € X; v(E,) # 0} and note that B € M. Moreover u(B) = 0
and if x ¢ B, then ¢, = 0 a.e. [v] that is h, = ¢, a.e. [v]. Now, by Part (i)

fo o= [ et = [ (f et iisine
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= ([ ez, y)dv(y))du(r) = ([ h(x,y)dv(y))du(x)
[ [
= [ ([ hopavtnynto)

Part (i4i) is proved in the same manner as Part (ii). This concludes the
proof of the theorem.

If (X;,M,;), i = 1,...,n, are measurable spaces, the product o-algebra
My ® ... ® M, is, by definition, the o-algebra generated by all sets of the
form

A x ... x A,

where A; € M;, i =1,...,n. Now assume (X;, M;, 11;), i = 1, ..., n, are o-finite
positive measure spaces. By induction, we define v; = py and vy = vg_1 X i,
k=1,2,...,n. The measure, v, is called the product of the measures 1, ..., 41,
and is denoted by pq X ... X pu,,. It is readily seen that

R,=Ri®.. Ry (n factors)

and
Uy, = U1 X ... X 01 (n factors).

Moreover,
R, 2 (Ri{)" =def Ry ®...@ Ry (n factors).

If A e P(R)\ R, by the Tonelli Theorem, the set A x {0,...,0} (n — 1
zeros) is an m,,-null set, which, in view of Theorem 3.4.1, cannot belong to
the o-algebra (R;)". Thus the Axiom of Choice implies that

R, #(Ry)"
Clearly, the completion of the measure m; X ... x my (n factors) equals

M.
Sometimes we prefer to write

/ f(zq, ...y xy)dxy.. dx,
A1 X...XAp
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instead of

/141><..‘><An f(@)dmn ()

A1 X...XAp
Moreover, the integral

/ / f(l‘l,...,l'n)dllfl...dl’n
Aq A

/ f(zq, .y xy)dey..dx,.
A1 X...xXAp

or

is the same as

Definition 3.4.2. (a) The measure

2

2 dx
A) = Tr— A€
'71( ) Ae \/ﬁ

is called the canonical Gauss measure in R.

R

(b) The measure
Y = Y1 X ... Xy (n factors)

is called the canonical Gauss measure in R". Thus, if

|z |=1/22+ .. +22, 2= (21,...,2,) €ER"

A= [ L qer
7” A \/%7 -

we have

(c¢) A Borel measure i in R is said to be a centred Gaussian measure if
p = f(v,) for some linear map f: R — R.
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(d) A real-valued random variable ¢ is said to be a centred Gaussian
random variable if its probability law is a centred Gaussian measure in R.
Stated otherwise, £ is a real-valued centred Gaussian random variable if either

L(&) = dp (abbreviated & € N(0,0))

or there exists a o > 0 such that

£<§> =, (abbreviated £ € N(0,0)).

(e) A family (&,)er of real-valued random variables is said to be a centred
real-valued Gaussian process if for all ¢1,....t, € T, aq, ..., a,, € R and every
n € N, the sum

é- - EZZIOéké-tk

is a centred Gaussian random variable.

Exercises

1. Let (X, M, 1) and (Y, N, v) be two o-finite measure spaces. Let f € L!(u)
and g € L'(v) and define h(z,y) = f(z)g9(y), (z,y) € X x Y. Prove that

h e L'Y(u x v) and
/ hd(pu x v) :/ fdu/ gdv.
XxY X Y

2. Let (X, M, 1) be a o-finite measure space and f : X — [0, co[ a measur-
able function. Prove that

/deuzwxm){(x,y); 0<y<f(z), z€X}.

3. Let (X, M, i) be a o-finite measure space and f : X — R a measurable
function. Prove that (u x m)({(x, f(z)); z € X }) = 0.
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4. Let E € Ry and E C [0,1] x [0,1]. Suppose m(E,) < % for m-almost all
x € [0,1]. Show that

m({y € [0,1];m(E¥) = 1}) <

N[ =

5. Let ¢ be the counting measure on R restricted to R and
D ={(x,x); z € R}.

Define for every A € (RXR)U{D},

() = [ ([ o) (@)dets)

and

/)= [ (] xalepde)ano)

(a) Prove that p and v agree on R X R.
(b) Prove that p(D) # v(D).

6. Let I =)0, 1] and

22 — o2
h(‘r?y) = ma (‘Tay) € I'x1I.
Prove that
T
1 JrI
T
([ h(x,y)dr)dy = 1
1 JrI
and

/ | h(z,y) | dedy = oc.
IxI

7. Fort >0 and z € R let
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and

Given a > 0, prove that

/Z(/aoo h(t, x)dt)de = —1
/aoo(/z h(t, x)dz)dt = 0

| h(t, ) | dtdx = cc.

and

and conclude that

[a,00[xR
(Hint: First prove that
/ g(t,x)dx =1
and
dg 19% )
ot 20x%

8. Given f € L'(m), let

z+1
o(z) = %/1 f(t)dt, 7 € R.

Prove that

/R|9($)|d$§/R|f(x)|dx.

9. Let I = [0,1] and suppose f : I — R is a Lebesgue measurable function
such that

[ 15— 1) | ety < .

Prove that

x1
/|f(x)|dx<oo.
I
10. Suppose A € R~ and f € L'(m). Set

o) = /Rd(y,A)f(y)dy, CER.

|z —y |?
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Prove that

IRECIEEES

11. Suppose that the functions f,g : R — [0, 00 are Lebesgue measurable
and introduce p = fm and v = gm. Prove that the measures p and v are
o-finite and

(uxv)(E) = /Ef($)g(y)dxdy ifEFEER @R ™.

12. Suppose p is a finite positive Borel measure on R” and f : R - R a
Borel measurable function. Set g(z,y) = f(x) — f(y), =,y € R". Prove that
f € LY(p) if and only if g € L* (1 x ).

13. A random variable £ is non-negative and possesses the distribution func-
tion F(x) = P[£ < x]. Prove thatE [¢] = [[7(1 — F(z))dx.

14. Let (X, d) be a metric space and suppose Y € B(X). Then Y equipped
with the metric djyy is a metric space. Prove that

B(Y)={ANY; A e B(X)}.

15. The continuous bijection f : (X,d) — (Y,e) has a continuous inverse.
Prove that f(A) € B(Y) if A € B(X)

16. A real-valued function f(x,y),z,y € R, is a Borel function of x for every
fixed y and a continuous function of y for every fixed x. Prove that f is a
Borel function. Is the same conclusion true if we only assume that f(z,y) is
a real-valued Borel function in each variable separately?
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17. Suppose a > 0 and

o0 n

p, =€ “ Z %(SH

n=0

where §,(A) = x4(n) if n € N ={0,1,2,...} and A C N. Prove that

(Ma X ,Lbb)S_l = :ua-i-b

for all a,b > 0, if s(z,y) =x +vy, x,y € N.

18. Suppose

g2

« xe
t) = ——dx, t > 0.
0= e
Compute

tlir()I}r f(t) and/O f(t)dt.

Finally, prove that f is differentiable.
3.5 Change of Variables in Volume Integrals

If T is a non-singular n by n matrix with real entries, we claim that

1
—= /Un
| det T |

T'(v,)

(here T' is viewed as a linear map of R™ into R™). Remembering Corollary
3.1.3 this means that the following linear change of variables formula holds,
viz.

1
Tx)dr = ————
R" f( x> v | detT | R
The case n = 1 is obvious. Moreover, by Fubini’s Theorem the linear change
of variables formula is true for arbitrary n in the following cases:
(a) Tz = (Tx(1); ---» Tx(n)), Where 7 is a permutation of the numbers 1, ..., n.
(b) Tx = (axq, 2, ..., Tp), Where « is a non-zero real number.

(x)dz all f e C.(R"™).
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(¢) Tx = (z1 + x, T, ..., Tyy).

Recall from linear algebra that every non-singular n by n matrix 7' can be
row-reduced to the identity matrix, that is 7' can by written as the product
of finitely many transformations of the types in (a),(b), and (c). This proves
the above linear change of variables formula.

Our main objective in this section is to prove a more general change
of variable formula. To this end let 2 and I' be open subsets of R™ and
G : Q — I a C" diffeomorphism, that is G = (gi,...,9,) is a bijective
continuously differentiable map such that the matrix G'(z) = (g—g;(l‘))lgi,jgn
is non-singular for each z € 2. The inverse function theorem implies that
G™':T — Qis a C! diffeomorphism [DI].

Theorem 3.5.1. If f is a non-negative Borel function in §2, then

/f dx—/f ) | det G'(z) | da.

The proof of Theorem 3.5.1 is based on several lemmas.
Throughout, R" is equipped with the metric

Let K be a compact convex subset of 2. Then if z,y € K and 1 <1 < n,

@) =aits) = [ Gty tlo =)

— [ S g+t = o~ et

and we get
dn(G(z),G(y)) < M(G, K)dn(z,y)
where
M(G,K) = max %}_, max | ag’( ).
1<i<n zeK ' Oxy,

Thus if B(a;7) is a closed ball contained in K,

G(B(a;r) € B(G(a); M(G, K)r).
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Lemma 3.5.1. Let (Qr)2; be a sequence of closed balls contained in € such
that

Qi1 C Qx

and
diam @, — 0 as k — oc.

Then, there is a unique point a belonging to each Q) and

lim sup onlG(Qn)) <| det G'(a) | .

n—oo Un<Qk)
PROOF. The existence of a point a belonging to each ); is an immediate
consequence of Theorem 3.1.2. The uniqueness is also obvious since the
diameter of Q) converges to 0 as k — oo. Set T'= G'(a) and F = T7'G.

Then, if Qr = B(xg;71),

un(G(Qr)) = va(T(T7'G(Q1))) =| det T | v, (T G(B(xy;71)))
<| det T | v, (B(T'G(21); M(T*G; Qp)ry) =| det T | M(T*G; Q) v, (Qy).
Since

lim M(T'G;Qy) =1

k—oo

the lemma follows at once.

Lemma 3.5.2. Let (Q be a closed ball contained in 2. Then

1, (G(Q)) < /Q | det G'(x) | dx.

PROOQOF. Suppose there is a closed ball () contained in §2 such that

v, (G(Q)) > /Q | det G'(x) | dx.

This will lead us to a contradiction as follows.
Choose € > 0 such that

v (G(Q)) > (1 +6)/Q | det G'(z) | dx.
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Let Q = U?" B, where By, ..., Byn are mutually almost disjoint closed balls
with the same volume. If

v (G(Bg)) < (1 —1—5)/ | det G'(z) | dx, k=1,...,2"

we get
ua(G(Q)) < ZiL10a(G(By))
<X (1+ 5)/3 | det G'(z) | dx = (1 —1—6)/@ | det G'(z) | dx

which is a contradiction. Thus
v(G(Bg)) > (1 +€)/ | det G'(z) | dx
By

for some k. By induction we obtain a sequence (Qx)52; of closed balls con-
tained in €2 such that

Qi1 € Ok,
diam @), — 0 as k — o0

and

v (G(Qr)) > (1 —|—5)/Q | det G'(z) | dx.

But applying Lemma 3.5.1 we get a contradiction.

PROOF OF THEOREM 3.5.1. Let U C €2 be open and write U = U2, Q);
where the @)}s are almost disjoint cubes as in Theorem 3.1.5. Then

0(G0)) < E20(G(Q)) <2, [ |det G/ (o) | da

7

:/ | det G'(z) | dz.
U

Using Theorem 3.1.3 we now have that

v (G(E)) < /E | det G'(z) | dx
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for each Borel set £ C ). But then

/f dm</f ) | det G'(x) | dx

for each simple Borel measurable function f > 0 and, accordingly from this
and monotone convergence, the same inequality holds for each non-negative
Borel function f. But the same line of reasoning applies to GG replaced by
G~! and f replaced by f(G) | det G’ |, so that

/f ) | det G'(x) \dx</f ) | det G'(G71(2)) || det(G™1Y(2) | dx

= /Ff(x)dx

This proves the theorem.

Example 3.5.1. If f : R? — [0,00] is (R2, Ry )-measurable and 0 < & <
R < oo, the substitution

G(r,0) = (rcosf,rsinb)

yields
R 27
f(z1, x9)dx1dTe = / / f(rcos@,rsin@)rdrdd
/£<w/a:%+x§<R € 0
and by letting ¢ — 0 and R — oo, we have
0 2
f(z1, xe)dx1dae = / f(rcos@,rsin@)rdrdd.
R2 o Jo

The purpose of the example is to show an analogue formula for volume
measure in R™.

Let S"' = {z € R";| # |= 1} be the unit sphere in R". We will define a
so called surface area Borel measure o,,_; on S™ ! such that

flz)de = /Oo ferw)r™tdrdo, 1 (w)
R" 0o Jgn
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for any (R, Ro.c0)-measurable function f : R™ — [0, oo]. To this end define
G :R"\ {0} —]0,00[ x S"! by setting G(z) = (r,w), where

r=|z| and w = —.
z |

Note that G™!:]0,00[ x S"~* — R™\ {0} is given by the equation
G Hr,w) = rw.

Moreover,

G1(]0,a] x E) =aG7%(]0,1] x E)ifa >0and E C S" ',
If £ € B(S"!) we therefore have that

v, (G7H(0,a] x E)) = a™v,(G(]0,1] x E)).
We now define
on1(E) = nv,(G7Y]0,1] x E)) if E € B(S"™)

and

p(A) = /Arn_ldr if A € B(]0,00).

Below, by abuse of language, we write v, g {0y = v,. Then, if 0 < a <

b<ooand E € B(S"™™),
G (vn)(]0,a] x E) = p(]0,a])on1(E)

and
G(vn)(Ja, 0] x E) = p(Ja,b])on-1(E).

Thus, by Theorem 1.2.3,
G(vp) =p X op1

and the claim above is immediate.
To check the normalization constant in the definition of o,_1, first note

that

R R"
u(lz |< R) = / / r"drdo(w) = —0,_1(S™)
0 Sn—1 n
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and we get

ﬁvnﬂ r|<R)=R"1o,1(S" ).

Exercises

1. Extend Theorem 3.5.1 to Lebesgue measurable functions.

2. The function f : R — [0, 00[ is Lebesgue measurable and [, fdm = 1.
Determine all non-zero real numbers « such that fR hdm < oo, where

h(z) =% f(a"x+n), z € R.

1
3.6. Independence in Probability

Suppose (€2, F, P) is a probability space. The random variables &, : (2, P) —
(Sk,Sk), k=1,...,n are said to be independent if

A family (&;)ies of random variables is said to be independent if &, , ..., &;,
are independent for any 1iy,...i, € I  with ¢ # 4 if & # [. A family of
events (A;);es is said to be independent if (x 4. )ics is a family of independent
random variables. Finally a family (A;);c; of sub-o-algebras of F is said to
be independent if, for any A; € A;, i € I, the family (A;);cs is a family of
independent events.

Example 3.6.1. Let ¢ > 2 be an integer. A real number w € [0, 1] has a
g-adic expansion

é](;])

w= X5 2
k=1 qk
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The construction of the Cantor set shows that (fl(f))zo:l is a sequence of
independent random variables based on the probability space

([0’ 1[ » U10,1[5 B([()? 1[))

Example 3.6.2. Let (X, M, 1) be a positive measure space and let 4; € M,
t € N, be such that
S p(As) < oo

The first Borel-Cantelli Lemma asserts that p-almost all z € X lie in A;
for at most finitely many 7. This result is an immediate consequence of the
Beppo Levi Theorem since

/ Z;.i1XAld/jJ = 2?21/ XAzdﬂ <
X X

implies that
YiZiXa, <00 ae. [u].

Suppose (€2, F, P) is a probability space and let (A;)?°; be independent
events such that

The second Borel-Cantelli Lemma asserts that almost surely A; happens for
infinitely many 1.
To prove this, we use the inequality

l1+zx<e”, z€R

to obtain
P[NP AS] = TP A]

=M (1 — P[A)]) < TTH e P = g vn)

By letting n — oo,
P[NZ, A =0

or
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But then
PN, U A] =1

and the second Borel-Cantelli Lemma is proved.

Theorem 3.6.1. Suppose &, ...,&,, are independent random variables and
£, € N0,1), k=1,...n. If aq,...,a, € R, then

Spojapy, € N(0, 50, 07)

PROOQOF. The case ay, ..., a, = 0 is trivial so assume «; # 0 for some k. We
have for each open interval A,

PS0_ o5y € A] = / 0y (1) ()

p_aprp€A

1 1.2 2
/ e 2@t AT gy da,.
Zkzlakl‘keA V 27T

Set 0 = \/a?+ ...+ a2 and let y = Gz be an orthogonal transformation
such that

1
Yy = ;(061371 + ...+ anﬂj‘n).

Then, since det G =1,

— 5+ Fy?

e Vdyi ...dy,

1
P X2 oy € A :/

ocy1€A V 2m

1 1,2
= €_§y1 dyl
/oyleA \% 27T

where we used Fubini’s theorem in the last step. The theorem is proved.

Finally, in this section, we prove a basic result about the existence of
infinite product measures. Let u;, £k € N, be Borel probability measures
in R. The space RN+ is, by definition, the set of all sequences = = (z;)32,
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of real numbers. For each k € N, set mx(7) = x3. The o-algebra RN+
is the least o-algebra S of subsets of RN+ which makes all the projections
7, (RN+)S) — (R,R), k € N, measurable. Below, (71, ...,7,) denotes
the mapping of RN+ into R™ defined by the equation

(71, ey ™) () = (m1(T), .oy T ().

Theorem 3.6.1. There is a unique probability measure j on RN+ such that

Tn) =y X Xy,

-----

for every n € N ..

The measure p in Theorem 3.6.1 is called the product of the measures
iy, k € N, and is often denoted by

[ee]
X =1

PROOF OF THEOREM 3.6.1. Let (Q,P7 ]—") = ([0, 1[,U1|[0,1[7B([0, 1[) and
set

We already know that P, = P. Now suppose (k;)°; is a strictly increasing
sequence of positive integers and introduce

)
Y
/= z;-;szzﬁ ), w € Q.

Note that for each fixed positive integer n, the R"-valued maps (£; (2) s 522))
and (&, ),. . ,(jl)) are P-equimeasurable. Thus, if f: ) — R is contlnuous,

[ snar = 1w [ sz .

n—oo Qk
(2
~ lim [ o / f(n

and it follows that P, = P77 = P.
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By induction, we define for each k£ € N, an infinite subset N, of the set
N, \ U N; such that the set N, \U%_| N; contains infinitely many elements
and define -

nk‘ = Eizl 22
where (n;,)$°; is an enumeration of Nj. The map
U(w) = (m(w)its
is a measurable map of (2, F) into (RN+, RN+) and
P\p = Xzozl)\i

where \; = P for each i € N,.
For each ¢ € N there exists a measurable map ¢, of (2, F) into (R, R)
such that P, = p; (see Section 1.6). The map

[(z) = (@ilw:))iZy

is a measurable map of (RN+, RN+) into itself and we get u = (Py)r. This
completes the proof of Theorem 3.6.1.

[k



