CHAPTER 4
MODES OF CONVERGENCE

Introduction

In this chapter we will treat a variety of different sorts of convergence notions
in measure theory. So called L?-convergence is of particular importance.

4.1. Convergence in Measure, in L'(z), and in L*(p)

Let (X, M, i) be a positive measure space and denote by F(X) the class of
measurable functions f : (X, M) — (R,R). For any f € F(X), set

| £ lhi= /X | () | dp(x)

| £ lla= \/ /X F2(@)dp(z).

The Cauchy-Schwarz inequality states that

and

/X|fg|du§||f||z||9||21ff,g€f(X)-

To prove this, without loss of generality, it can be assumed that
0<]| flla<oo and 0 <|| g |l2< o0.

We now use the inequality

aff < %(oﬂﬁ?), a,f €R



to obtain

|1 1gl / 1 f? 9
dp < [ 5( + Ydp =1
aAHfMHgM 20 F13 Ngl3
and the Cauchy-Schwarz inequality is immediate.
If not otherwise stated, in this section p is a number equal to 1 or 2. If it

is important to emphasize the underlying measure || f ||, is written || f ||, -
We now define

LP(p) ={f € F(X); [ f llp< o0}

The special case p = 1 has been introduced earlier. We claim that the
following so called triangle inequality holds, viz.

1f+glle<Il S+ Tyl if fr9 € L0(n).

The case p = 1, follows by u-integration of the relation

| f+al<lfl+1]g].

To prove the case p = 2, we use the Cauchy-Schwarz inequality and have

If+g = f 1+ 1glll3

=Hf|!§+2/xlfg!du+\|g|!§

<IAUE+20 f 2l g lla+ g llz= (I f ll2+ 1 g [12)*

and the triangle inequality is immediate.

Suppose f, g € LP(u). The functions f and g are equal almost everywhere
with respect to p if {f # g} € Z,. This is easily seen to be an equivalence
relation and the set of all equivalence classes is denoted by LP(u). Below
we consider the elements of L”(1) as members of £P(y) and two members
of LP(u) are identified if they are equal a.e. [u]. From this convention it is
straight-forward to define f + ¢g and af for all f,g € L(u) and o € R and
the function d®)(f, g) =|| f — g ||, is a metric on LP(u). Convergence in the
metric space LP(p) = (LP(p),d®)) is called convergence in LP(11). A sequence
(fe)?2, in F(X) converges in measure to a function f € F(X) if

klim,u(|fk—f|>6):0a116>0.



If the sequence (fx)52; in F(X) converges in measure to a function f
€ F(X) as well as to a function g € F(X), then f = g a.e. [p] since

Ur-glac{lr-fl>fuf{lr-g>5}

and
W f=g =) <ull f=fil> )+l f=g 1> 3)

for every ¢ > 0 and positive integer k. A sequence (f;)72; in F(X) is said
to be Cauchy in measure if for every € > 0,

pll fo = fu|>€) = 0as k,n — oo,

By the Markov inequality, a Cauchy sequence in L”(u) is Cauchy in measure.

Example 4.1.1. (a) If f, = \/EX[O,%p k € N, then

I i |

1
om=1and || fi [l1m= N

Thus fp — 0 in L*(m) as k — oo but fi, - 0in L?*(m) as k — oo.

(b) L*(m) € L*(m) since

Xu,w[@s)‘% € L2(m)\ L(m)

and L*(m) ¢ L*(m) since

Yo (£)—— € L}(m) \ L3(m).

Vizl

Theorem 4.1.1. Suppose p=1 or 2.
(a) Convergence in LP(u) implies convergence in measure.



(b) If u(X) < oo, then L*(u) € L'(u) and convergence in L*(11) implies
convergence in L'(j1).

Proof. (a) Suppose the sequence (f,)>; converges to f in LP(u) and let
e > 0. Then, by the Markov inequality,

W=tz [ 1h=fPdui= S0 f=F I

and (a) follows at once.

(b) The Cauchy-Schwarz inequality gives for any f € F(X),

(151 < [ P [ 1

IS <1 F 2 vV/i(X)

and Part (b) is immediate.

or

Theorem 4.1.2. Suppose f, € F(X), n € N,.

(a) If (fn)2, is Cauchy in measure, there is a measurable function f :
X — R such that f, — f in measure as n — oo and a strictly increasing
sequence of positive integers (n;)52, such that f,, — f a.e. [u] as j — oo.

(b) If u is a finite positive measure and f, — [ € F(X) a.e. [u] as
n — oo, then f, — [ in measure.

(c) (Egoroff’s Theorem) If u is a finite positive measure and f, —
f e F(X) a.e [u] as n — oo, then for every € > 0 there exists E € M such
that pu(FE) < € and

sup | fr(z) — f(z) |— 0 as n — oo.
k>n
rek*

PROOF. (a) For each positive integer j, there is a positive integer n; such
that | |
w(l fro—fil>279) <279, all k1 > n;.



There is no loss of generality to assume that n; < ny < ... . Set

E; = {| fnj - fnj+1 > 2_j}

and

IfzeFiandi>j>k

|fm( fnj |< Z |fnl+1 fnz( ) |

I<l<i

and we conclude that (f,,(z))52, is a Cauchy sequence for every x € Ff. Let
G = U2 F¢ and note that for every fixed positive integer £,

1(G) < w(Fy) < 223—2 k1

Thus G is a p-null set. We now define f(r) = lim; . fy,(z) if z € G and
flz)=0ifz ¢ G.

We next prove that the sequence (f,)%°; converges to f in measure. If
x € Iy and j > k we get

| f(z) = fo, (2) |[< 27940

Thus, if j > k |
w(| f = fo, |> 2771 < u(Fy) <2774

Since
W fo = £ 1 &) S il Fu = Foy 1> 5) + il Fo, = £ 1> 5)

if ¢ > 0, Part (a) follows at once.
(b) For each € > 0,

Aﬂh—ﬂ>@=AMth—fWu



and Part (c) follows from the Lebesgue Dominated Convergence Theorem.

(c) Set for fixed k,n € N,

B = Uz {1 =1 1> 7 |-

We have
and since p is a finite measure
w(Ey,) — 0 as n — oo.
Given € > 0 pick nj, € N such that p(Ej,, ) < £27% Then, if E = Ul Ekn,
u(E) < €. Moreover, if z ¢ E and j > ny

| fi(x) = flx) |<

| =

The theorem is proved.

Corollary 4.1.1. The spaces L'(1) and L*(u1) are complete.

PROOF. Suppose p =1 or 2 and let (f,)22; be a Cauchy sequence in LP ().
We know from the previous theorem that there exists a subsequence (f,)52,
which converges pointwise to a function f € F(X) a.e. [u]. Thus, by Fatou’s
Lemma,

/If—fk|pduéliminf/ [ for = i P du
X J—7oo Jx

and it follows that f — fi € LP(u) and, hence f = (f — fx) + fx € LP(p).
Moreover, we have that || f — fi ||[,— 0 as k — oo. This concludes the proof
of the theorem.

Corollary 4.1.2. Suppose &, € N(0,02), n € N, and &, — & in L*(P) as
n — oo. Then & is a centred Gaussian random variable.
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PROOF. We have that || £, ||2= \/E [&] =0, and || &, [2=| € [o=des 0

as n — 0o.
Suppose f is a bounded continuous function on R. Then, by dominated
convergence,

Ef(€,)] = /R F(0ut) (@) — /R f(o)dm ()

as n — oo. Moreover, there exists a subsequence (§,,, )72, which converges
to £ a.s. Hence, by dominated convergence

E[f(&,,)] = E[f(8)]

as k — oo and it follows that
BN = | Hovin),

By using Corollary 3.1.3 the theorem follows at once.

Theorem 4.1.3. Suppose X is a standard space and i a positive o-finite
Borel measure on X. Then the spaces L'(u) and L?*(u) are separable.

PROOF. Let (Ej)2, be a denumerable collection of Borel sets with finite
p-measures and such that Fy C Fy,1 and U2 Fy = X. Set ), = xp, p and
first suppose that the set Dy is at most denumerable and dense in LP(p;,)
for every k € N,. Without loss of generality it can be assumed that each
member of Dy vanishes off F;. By monotone convergence

/ fdp = lim / fduy, f > 0 measurable,
X k—oo Jx

and it follows that the set U2, Dy, is at most denumerable and dense in LP(y).

From now on we can assume that p is a finite positive measure. Let A
be an at most denumerable dense subset of X and and suppose the subset
{rn; m € N4, } of ]0,00[ is dense in |0, 0o[. Furthermore, denote by U the



class of all open sets which are finite unions of open balls of the type B(a,,),
a€ A,neN,. IfUisany open subset of X

U=U[V:VCUandV elU]
and, hence, by the Ulam Theorem
p(U) =sup{p(V); Veldand V C U}.

Let K be the class of all functions which are finite sums of functions of
the type k)i, where k is a positive rational number and U € U. It follows
that IC is at most denumerable.

Suppose ¢ > 0 and that f € LP(u) is non-negative. There exists a
sequence of simple measurable functions (¢,)$°; such that

0< o T fae [u].

Since | f — ¢, |P< f?, the Lebesgue Dominated Convergence Theorem shows

that || f — ¢, |l,< § for an appropriate k. Let oy, ...,a; be the distinct

positive values of ¢, and set
Cc=1 + Eézlak.

Now for each fixed j € {1,...,l1} we use Theorem 3.1.3 to get an open
U; 2 ¢, ' ({a;}) such that || XU; = X ({ay ) |,< 47 and from the above we
get a V; € U such that V; C U; and || xp, — xv; [[,< 15 Thus

€
| Xv; T Xt ({ayd) lp< 20

and
| f - Egc:l&jxvj lp<e

Now it is simple to find a ¢ € K such that | f — ¢ ||,< . From this we
deduce that the set
K-—K={g9—h; g,h €K}

is at most denumerable and dense in L”(u).



The set of all real-valued and infinitely many times differentiable functions
defined on R" is denoted by C'(*)(R") and

CI®(R™) = {fe C)(R™); suppf compact } .

Recall that the support suppf of a real-valued continuous function f defined
on R" is the closure of the set of all x where f(z) # 0. If

fl@) = [THe( +a)el =2}, @ = (21, 2,) €R

where p(t) = exp(—t71), if t > 0, and o(t) = 0, if t <0, then f € C*(R") .
The proof of the previous theorem also gives Part (a) of the following

Theorem 4.1.4. Suppose p is a positive Borel measure in R"™ such that
u(K) < oo for every compact subset K of R™. The following sets are dense
in L'(p), and L*(p) :

(a) the linear span of the functions

X7, I open bounded n-cell in R",

(b) C(R™).

PROOF. a) The proof is almost the same as the proof of Theorem 4.1.3.
First the Ej:s can be chosen to be open balls with their centres at the origin
since each bounded set in R™ has finite y-measure. Moreover, as in the proof
of Theorem 4.1.3 we can assume that p is a finite measure. Now let A be an
at most denumerable dense subset of R™ and for each a € A let

R(a)={r>0; p({zr € X; |xx —ax|=7}) >0 for some k =1,....,n}.

Then U,c4R(a) is at most denumerable and there is a subset {r,; n € N}
of |0, 00[ \ UseaR(a) which is dense in |0, co[. Finally, let & denote the class
of all open sets which are finite unions of open balls of the type B(a,r,),
a € A, n € N, and proceed as in the proof of Theorem 4.1.3. The result
follows by observing that the characteristic function of any member of U
equals a finite sum of characteristic functions of open bounded n-cells a.e.

(1] -
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Part (b) in Theorem 4.1.4 follows from Part (a) and the following

Lemma 4.1.1. Suppose K C U C R", where K is compact and U 1is open.
Then there exists a function f € C(goo)(R”) such that

K< f<U

that is
Xk < f < xp and suppf C U.

PROOF. Suppose p € C*(R") is non-negative, supp p C B(0,1), and

/ pdm, = 1.

Moreover, let € > 0 be fixed. For any g € L'(v,,) we define

@ = [ gl o - vy

Since
8k1 ++knp

k}l kn
Oxy'...0xk

the Lebesgue Dominated Convergent Theorem shows that f. € C*(R").
Here f. € C°(R") if g vanishes off a bounded subset of R". In fact,

|9|H111%X| le LY(vy,), all ky, ...k, € N

supp f- C (supp g)-..

Now choose a positive number e < 1d(K, U*) and define g = x_. Since

f@)= | gt = eppiwiy

we also have that f.(z) =1 if # € K. The lemma is proved.
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Example 4.1.2. Suppose f € L'(m,) and let g : R® — R be a bounded
Lebesgue measurable function. Set

h(z) = . f(x—y)g(y)dy, v € R".

We claim that A is continuous.
To see this first note that

o+ 8a) ~ hia) = [ (f(o+ Do =) = fa - 1)g(u)dy
and

b+ Ar) (@) [ [ | fa+ Ax—y) = fz =) |dy

=K Rnlf(Aery)—f(y)\dy

if | g(z) |< K for every x € R". Now first choose € > 0 and then ¢ € C.(R")
such that

I f=elhi<e
Using the triangle inequality, we get

| Wz + Az) = h(z) [S K| f=¢ 1 +/ | p(Az +y) = »(y) | dy)

n

SK(2€+/ | o(Az +y) — o(y) | dy)

n

where the right hand side is smaller than 3Ke if | Az | is sufficiently small.
This proves that A is continuous.

Example 4.1.3. Suppose A € R, and m,(A) > 0. We claim that the set

A-A={z—wz;0ec A}

contains a neighbourhood of the origin.
To show this there is no loss of generality to assume that m,(A4) < oco.
Set
flz)=m,(AN(A+z)), € R"
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Note that
f@) = [ xahaly = o)y

and Example 4.1.2 proves that f is continuous. Since f(0) > 0 there exists a
9 > 0 such that f(z) > 0if | z |< d. In particular, AN(A+z) # ¢ if | x |[< 4,
which proves that

B(0,6) C A— A.

The following three examples are based on the Axiom of Choice.

Example 4.1.4. Let NL be the non-Lebesgue measurable set constructed
in Section 1.3. Furthermore, assume A C R is Lebesgue measurable and
A C NL. We claim that m(A) = 0. If not, there exists a 6 > 0 such that
B(0,)) CA—ACNL—-NL. If0<r < dandr € Q, there exist a,b € NL
such that

a=>b+r.

But then a # b and at the same time a and b belong to the same equivalence
class, which is a contradiction. Accordingly from this, m(A) = 0.

Example 4.1.5. Suppose A C [—3, 5] is Lebesgue measurable and m(A) >

0. We claim there exists a non-Lebesgue measurable subset of A. To see this
note that
A=UZ,((rn+NL)NA)

where (7;)$2, is an enumeration of the rational numbers in the interval [—1, 1] .
If each set (r; + NL) N A, is Lebesgue measurable

m(A) =X m((r; + NL)N A)

and we conclude that m((r; + NL) N A) > 0 for an appropriate i. But then
m(NLN(A—r;))>0and NLN(A—r;) € NL, which contradicts Example
4.1.4. Hence (r; + NL)N A is non-Lebesgue measurable for an appropriate i.
If A is a Lebesgue measurable subset of the real line of positive Lebesgue
measure, we conclude that A contains a non-Lebesgue measurable subset.
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Example 4.1.6. Set I = [0,1]. We claim there exist a continuous function
f: I — I and a Lebesgue measurable set L C I such that f~!(L) is not
Lebesgue measurable.

First recall from Section 3.3 the construction of the Cantor set C' and the
Cantor function G. First Cy = [0, 1]. Then trisect Cy and remove the middle
interval ]%,%[ to obtain C; = \H, %[ = [0, %] U [%, 1} . At the second
stage subdivide each of the closed intervals of C into thirds and remove
from each one the middle open thirds. Then Co = C1 \ (]§, 2[U]5, 3[). We
repeat the process and what is left from C,,_; is C,,. The set [0, 1]\ C,, is the
union of 2" —1 intervals numbered I}, k =1, ..., 2" — 1, where the interval [}
is situated to the left of the interval I}* if £ < [. The Cantor set C' = N2, C,,.

Suppose n is fixed and let G, : [0,1] — [0, 1] be the unique the monotone
increasing continuous function, which satisfies G,,(0) = 0, G,,(1) = 1, G, (x) =
k27" for x € I}! and which is linear on each interval of C), It is clear that
G, = Gp41 on each interval I}!, kK = 1,...,2" — 1. The Cantor function is
defined by the limit G(x) = lim,,_,oo Gp(z), 0 < 2 < 1.

Now define .
h(x) = 5(90 +G(r), vel

where G is the Cantor function. Since h : I — [ is a strictly increasing and
continuous bijection, the inverse function f = h~! is a continuous bijection
from I onto /. Set

A=nI\C)

and
B = h(C).

Recall from the definition of GG that GG is constant on each removed interval

I} and that h takes each removed interval onto an interval of half its length.

Thus m(A) = 4 and m(B) =1 —m(A4) = 1.

By the previous example there exists a non-Lebesgue measurable subset
M of B. Put L = h™*(M). The set L is Lebesgue measurable since L C C'
and C'is a Lebesgue null set. However, the set M = f~1(L) is not Lebesgue
measurable.

Exercises
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1. Let (X, M,u) be a finite positive measure space and suppose @(t) =
min(t, 1), ¢ > 0. Prove that f,, — f in measure if and only if (| f,—f]) — 0
in L(u).

2. Let u = myo,). Find measurable functions f, : [0,1] — [0,1], n € N,
such that f, — 0 in L?(u) as n — oo,

liminf f,,(z) =0 all z € [0, 1]

n—o0

and
limsup f,(z) =1 all z € [0,1].

n—oo

3. If fe F(X) set
I/ llo= inf {a € [0,00]; (] f]> @) <a}.

Let
L) = {f € F(X); || £ llo< o0}
and identify functions in L°(x) which agree a.e. [u].

(a) Prove that d© =|| f — g ||o is a metric on L°(x) and that the corre-
sponding metric space is complete.

(b) Show that F(X) = L%(u) if 4 is a finite positive measure.

4. Suppose LP(X, M, u) is separable, where p = 1 or 2. Show that L(X, M~ i)
is separable.

5. Suppose g is a real-valued, Lebesgue measurable, and bounded function
of period one. Prove that

o0

im [ f(x)g(na)de = / Z F(@)dz /0 o)

n—oo
—00
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for every f € L'(m).

6. Let h,(t) =2 +sinnt, 0 <t <1, and n € N,. Find real constants o and
[ such that

lim f dt—a/f

M/ 1) g4y = 5/01f<t>dt

for every real-valued Lebesgue 1ntegrable function f on [0,1].

and

7.1 k= (k. kg ) e N7, set ep(z) = I sink;z;, © = (21, ...,x,) € R”,
and | k |= (S k2)z. Prove that

lim fexrdm, =0

for every f € L*(m,,).

8. Suppose f € L'(m,), where m,, denotes Lebesgue measure on R". Com-
pute the following limit and justify the calculations:

lim | flz+h)— f(x) | de.

‘h‘*)OO Rn

4.2 Orthogonality

Suppose (X, M, 1) is a positive measure space. If f,g € L*(u), let

(f,9) =des / fgdu
X
be the so called scalar product of f and ¢g. The Cauchy-Schwarz inequality

| (g I<IFllll g ll2
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shows that the map f — (f, g) of L?(u) into R is continuous. Observe that

If+gll=If 1z +2(f.9)+ I 9 113

and from this we get the so called Parallelogram Law

Hf+gll+ 1 f—glz=20FI2+ g2

We will say that f and g are orthogonal (abbr. f L g) if (f, g) = 0. Note
that
If+glz=Il £z + 11 gll2if and only if f L g.
Since f 1 ¢ implies ¢ L f, the relation 1 is symmetric. Moreover, if
f L hand g L h then (af + 8g) L h for all a,8 €R. Thus h* =4y
{f € L*(u); f L h} is a subspace of L?(u), which is closed since the map
f — (f,h), f € L*(u) is continuous. If M is a subspace of L?(u), the set

M* =gf Npenrh™

is a closed subspace of L?(y). The function f = 0 if and only if f L f.

If M is a subspace of L?(p) and f € L?(u1) there exists at most one point
g € M such that f — g € M~*. To see this, let gy, g1 € M be such that
f—ge €M+, k=0,1. Then g; — go = (f — go) — (f — g1) € M~ and hence
g1 — 9o L g1 — go that is go = g1.

Theorem 4.2.1. Let M be a closed subspace in L*(u) and suppose f €
L*(11). Then there exists a unique point g € M such that

I f=gl2ZIl f=hl2 all he M.
Moreover,

f—ge M.

The function g in Theorem 4.2.1 is called the projection of f on M and
is denoted by Proj,; f.

PROOF OF THEOREM 4.2.1. Set

d =geg dP(f,M) = inf || [ =gl
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and let (g,)%°, be a sequence in M such that
d= i | g .
Then, by the Parallelogram Law
I (f=ge)+(F=90) I3+ | (F =91) = (f =90) 1= 201l f=gn |13 + I f=9n [13)

that is

1
41 f =509+ gn) 153+ 1 g0 =gk 15=2(1 F =g I3+ | f = g 1I3)
and, since %(gk +gn) € M, we get

A%+ || gn — ge <200 F =g 12+ 11 f = gn [12)-

Here the right hand converges to 4d? as k and n go to infinity and we conclude
that (g,)%°, is a Cauchy sequence. Since L?(u) is complete and M closed
there exists a g € M such that g, — g as n — oco. Moreover,

d=[f—=gl2.

We claim that f — g € M*. To prove this choose h € M and o > 0
arbitrarily and use the inequality

I(f=9) +ah 3=l f =gl

to obtain
I f=gll3 +2a(f —g.hy+? | h]32] f—gl3

and

2(f —g.h) +a | k]3> 0.
By letting a — 0, (f — g, h) > 0 and replacing h by —h, (f — g, h) < 0. Thus
f — g € h* and it follows that f — g € M*.

The uniqueness in Theorem 4.2.1 follows from the remark just before the
formulation of Theorem 4.2.1. The theorem is proved.

A linear mapping T : L*(u) — R is called a linear functional on L*(u).
If h € L*(n), the map h — (f,h) of L?*(1) into R is a continuous linear
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functional on L?(y). It is a very important fact that every continuous linear
functional on L?(y) is of this type.

Theorem 4.2.2. Suppose T is a continuous linear functional on L*(u).
Then there exists a unique w € L*(u1) such that

Tf = (f.w) all f € L().

PROOF. Uniqueness: If w,w’ € L?(p) and (f,w) = (f,w’) for all f € L?(u),
then (f,w—w') =0 for all f € L?(u). By choosing f = w —w' we get f L f
that is w = w'.

Existence: The set M =4 T71({0}) is closed since T is continuous and
M is a linear subspace of L?(u) since T is linear. If M = L*(u) we choose
w = 0. Otherwise, pick a g € L?(u) \ M. Without loss of generality it can be
assumed that T'g = 1 by eventually multiplying g by a scalar. The previous
theorem gives us a vector h € M such that u =4,y g — h € M*. Note that
0 <[l u 3= (u,g — h) = {u,g).

To conclude the proof, let fixed f € L?(u) be fixed, and use that (T'f)g —
f € M to obtain

(Tflg—fu)=0

or
(Tf)(g,u) = (f,u).
By setting
1
T
we are done.
M

4.3. The Haar Basis and Wiener Measure
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In this section we will show the existence of Brownian motion with continu-
ous paths as a consequence of the existence of linear measure A in the unit
interval. The so called Wiener measure is the probability law on C'[0, 1] of
real-valued Brownian motion in the time interval [0,1]. The Brownian mo-
tion process is named after the British botanist Robert Brown (1773-1858).
It was suggested by Lous Bachelier in 1900 as a model of stock price fluctua-
tions and later by Albert Einstein in 1905 as a model of the physical phenom-
enon Brownian motion. The existence of the mathematical Brownian motion
process was first established by Norbert Wiener in the twenties. Wiener also
proved that the model can be chosen such that the patht — W(t),0 <t <1,
is continuous a.s. Today Brownian motion is a very important concept in
probability, financial mathematics, partial differential equations and in many
other fields in pure and applied mathematics.

Suppose n is a non-negative integer and set I,, = {0,...,n}. A sequence
(€i)icr, in L?(u) is said to be orthonormal if e; L e; for all ¢ # j, i,j € I,
and || e; ||= 1 for each i € I,,. If (¢;);e;, is orthonormal and f € L?(u),

= Ziern, (free Lejall jel
and Theorem 4.2.1 shows that

| f—Sier, (f,enei |2<|| f — Zier, aie; |2 all real a, ..., a,.

Moreover

I f =1 f = Zien (frenei |15 + || Sien, (frenei |13
and we get
Sier,(fre)® < £ 13-

We say that (e,,)ner, is an orthonormal basis in L?(y) if it is orthonormal
and

J = Zier, (f enes all f € L¥().
A sequence (e;)3°, in L?(u) is said to be orthonormal if (e;)", is ortho-

normal for each non-negative integer n. In this case, for each f € L?(u),

S2o(f e <l £ 112

and the series
Efio <f ) 6i> €;
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converges since the sequence

(Biso(fs eaei)nzo

of partial sums is a Cauchy sequence in L*(u). We say that (e;)2, is an

orthonormal basis in L?(y) if it is orthonormal and

J =20l feide; for all f € L2(p).

Theorem 4.3.1. An orthonormal sequence (e;)%, in L*(u) is a basis of
L2(p) if
((f,e;) =0alli e N)= f=0

Proof. Let f € L?(u) and set

g=f- E?io<fa 6z’>€i-

Then, for any j € N,
<g7 ej) = <f - 2?20<f7 6i>6i7 €j>

= (fej) = EZo(f,ei){eir e5) = (f,e5) = (f,e5) = 0.
Thus g =0 or
f=3Z0(f, e)es.

The theorem is proved.

As an example of an application of Theorem 4.3.1 we next construct an
orthonormal basis of L?()\), where ) is linear measure in the unit interval.
Set

=

) = Xjoa[() =Xt tER

Moreover, define hgy(t) =1, 0 < ¢ < 1, and foreachn > land j = 1,..., 2",

1
2

hin(t) =27 H(2" 't —j+1),0<t <1,
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Stated otherwise, we have for each n > 1 and j =1,...,2"}

( n— i1
2 2 : ) 2‘]7;11 ;n721 )

1 .
h]n<t> - —2 2 E S t S 27{7717
0, elsewhere in [0,1].

It is simple to show that the sequence hoo hjn,j = 1,...,2"7 1, n > 1, is
orthonormal in L?()\). We will prove that the same sequence constitute an
orthonormal basis of L?*(\). Therefore, suppose f € L*()) is orthogonal to
each of the functions hog hjn, j = 1,...,2"" 1 n > 1. Then for each n > 1 and

j=1,..2"1
3 i
/ fd\ = /_1 fdA
2‘11_11 2]77,721
and, hence, .
/%_ﬁm— ~0
2]77,111
since
1 1
/ fd)\:/ fhoodA = 0.
0 0
Thus

k
/5 FAN=0,1<j<k<2!
2nj— 1

and we conclude that

1 b
/ 1[a7b]fd>\:/ fdd=0,0<a<b< 1
0 a

Accordingly from this, f = 0 and we are done.

The above basis (hk)zo:[) = (ho&hn, hlg, hgg, h13, h23, h33, h43, ) of Lz()\)
is called the Haar basis.

Let 0 <t <1 and define for fixed £k € N

ag(t) = /01 Xjo,(¥) e (z)dz = /Ot hydA
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so that
X[O,ﬂ = Ezozoak(t)hk in LZ()\)

Then, if 0 < s,t <1,

1
min(s, £) = / Yo (2)X 0.0 (£) = (S22 0 (5) s, X o)

= 25200k (8)(Prs X(o.49) = Do (s)ar(t).

Note that
t = 3532 0ai(t).

If (Gr)2, is a sequence of N (0, 1) distributed random variables based on
a probability space (§2, F, P) the series

Yotk (t)Gi

converges in L?(P) and defines a Gaussian random variable which we denote
by W (t). From the above it follows that (W (t))o<;<1 is a real-valued centred
Gaussian stochastic process with the covariance

E[W(s)W(t)] = min(s,1).

Such a process is called a real-valued Brownian motion in the time interval
[0,1].
Recall that

(hOO,h117 h127 h227 h137 h237 h337 h437 ) = (h‘k>;o:0

We define

o0
(aoo,an, 12, 22, A13, A23, 433, @43, ) = (ak)k:o

and

(GOO,Glla G127 G227 G137 G237 G337 G437 ) - (Gk)zo:[]

It is important to note that for fixed n,

t
aj(t) = /0 X(0.0(¥)hjn(x)dx # O for at most one j.

Set
Uo (t) = Qaqo (t) Go[)
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and )
Un(t) = E2n_1 ajn(t)Gjn, n e N+.

]:
We know that
W (t) = B2y Un(t) in L*(P)

for fixed t.
The space C [0, 1] will from now on be equipped with the metric

d(z,y) =z =y |l

where || = ||oo= maxo<t<1 | (t) | . Recall that every x € C'[0, 1] is uniformly
continuous. From this, remembering that R is separable, it follows that the
space C'[0, 1] is separable. Since R is complete it is also simple to show that
the metric space C'|0, 1] is complete. Finally, if z,, € C'[0,1], n €N, and

Yoo | @ [l 00
the series
XnsoTn

converges since the partial sums
Sn = 2p_oTk, k€N

forms a Cauchy sequence.
We now define

O={we;3X°, || Uy ||oo< o0} .

Here © € F since
“ Un Hoo: sup | Un(t) |
0<t<1
teQ

for each n. Next we prove that 2\ © is a null set.
To this end let n > 1 and note that

P [” Un |loo> 2_%] <P . max (|| ajn [loo| Gjn |) > 274

<j<en—t

But
1

n+1
2

I @jn [loo=

2
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and, hence,
Pl U o> 28] < 2P [ G [ 284
Since . d
lejPHGoo|2x]§2/ ye’yQ/Q Y < 222
we get
P |:H Un Hoo> 27%} S on _on/2
and conclude that
b Zl[llUn\|oo>z—%] => Pl Unll>277] < 0.
n=0 "0

From this and the Beppo Levi Theorem (or the first Borel-Cantelli Lemma)
P[O] =1.

The trajectory t — W (t,w), 0 < t < 1, is continuous for every w € O.
Without loss of generality, from now on we can therefore assume that all
trajectories of Brownian motion are continuous (by eventually replacing (2
by ©).

Suppose

and let Iy, ..., I,, be open subintervals of the real line. The set
S(ty, .ot h, o 1,) ={z € C0,1]; z(ty) € Iy, k=1,...,n}

is called an open n-cell in C'[0,1]. A set in C'[0,7] is called an open cell if
there exists an n € N, such that it is an open n-cell. The o-algebra generated
by all open cells in C'[0,1] is denoted by C. The construction above shows
that the map

W:Q— C|0,1]

which maps w to the trajectory
t—W(tw), 0<t<1

is (F,C)-measurable. The image measure Py is called Wiener measure in
C'[0,1].
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The Wiener measure is a Borel measure on the metric space C'[0,1]. We
leave it as an excersice to prove that

¢ =B(C[0,1]).

[k



