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1 Polygon Triangulation/Polygon Partition-
ing

At a conference in Stanford in 1973 Klee posed the problem of determining
the minimum number of guards sufficient to cover the interior of an n—wall art
gallery room. This problem was given in a response to a request from Chvatal
for an interesting challenge. Chvatal soon supplied what has become known
as Chvatal’s Art Gallery Theorem, i.e. | 5] guards are occasionally necessary
and always sufficient to cover a polygon of n vertices.

1.1 Art Gallery Theorems

The first proof of Chvatal’s Art Gallery Theorem was of course given by
Chvétal in 1975, see [14]. His proof starts with a triangulation of the polygon,
as does Fisk’s, but does not use graph coloring. Rather the theorem is proven
directly by induction. Although Chvatal’s proof is not as concise as Fisk’s, it
reveals aspects of the problem that are not brought to light by the coloring
argument.

Define a fan as a triangulation with one vertex (the fan center) shared
by all triangles. Chvatal took as his induction hypothesis this statement:

Induction Hypothesis: Every triangulation of an n-gon can be
partitioned into g < |n/3]| fans.

For the basis, note that n > 3 since we start with an n-gon, and that
there is just a single triangulation possible when n = 3,4, and 5, each of
which is a fan. Thus the induction hypothesis holds for n < 6.

Given a triangulation with n > 6, our approach will be to remove part
of the triangulation, apply the induction hypothesis, and then put back the
deleted piece. We know that there is always a diagonal (in fact, there are
always at least two) that partitions off a single triangle. But note that this
only reduces n by 1, and if we were unlucky enough to start with n =1 or
2 (mod) 3, then the induction hypothesis partitions into g = |(n —1)/3] =
|n/3| fans, and we will in general end up with g + 1 fans when we put back
the removed triangle. The moral is that, in order to make induction work
with the formula |n/3|, we have to reduce n by at least 3 so the induction
hypothesis will yield less than g fans, allowing the grouping of the removed
triangles into a fan.

So the question naturally arises: does there always exist a diagonal that
partitions off 4 edges of the polygon, and therefore reduces n by 37 The
answer is no! Chvatal’s brilliant idea was to realize that there is always a
diagonal that cuts off 4 or 5 or 6 edges:
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Lemma 1 (Chvatal 1975) For any triangulation of an n-gon with n > 6,
there always exists a diagonal d that cuts off exactly 4, 5 or 6 edges.

Proor: Choose d to be a diagonal that separates off a minimum number of
polygon edges that is at least 4. Let k¥ > 4 be the minimum number, and
label the vertices of the polygon 0,1,...,n — 1 such that d is (0, k). d must
support a triangle 7" whose apex is at some vertex ¢ with 0 < ¢ < k. Since
(0,t) and (k,t) each cut off fewer than &k edges, by the minimality of k£ we
have ¢t > 3 and k£ — t < 3. Adding these two inequalities yields k£ > 6.

Now the plan is to apply the induction hypothesis to the portion on the
other side of the special diagonal d. Let G, be the triangulation partitioned
off by d; it has k + 1 boundary edges and hence is a (k + 1)-gon. Let G
be the remainder of the original triangulation, sharing d; it has n — k + 1
vertices. The induction hypothesis says that G may be partitioned into
g =|(n—k+1)/3] fans. Since k > 4,¢' < [(n —3)/3] = |n/3] — 1. Thus,
in order to establish the theorem, we have to show that (G; need only add
one more fan to the partition. We will consider each possible value of k in
turn.

Case 1 (k =4). G is a 5-gon. We already observed that every pentagon is
a fan. Therefore, G has been partitioned into [n/3] — 1+ 1 = |n/3] fans.

Case 2 (k =5). GG is an 6-gon. Consider the triangle T" of G; supported by
d, with its apex at t. We cannot have t = 1 or ¢t = 4, as then the diagonals
(0,t) or (5,t) [respectively| would cut off just 4 edges, violating the assumed
minimality of k£ = 3. The cases t = 2 and ¢t = 3 are clearly symmetrical, so
assume without loss of generality that ¢ = 2. Now the quadrilateral (2, 3,4, 5)
can be triangulated in two ways:

Case 2a. The diagonal (2,4) is present. Then G is a fan, and we are finished.

Case 2b. The diagonal (3,5) is present. Form the graph Gy as the union of
Goand T. Gyphasn—5+1+1 =n—3 edges. Apply the induction hypothesis
to it, partitioning it into ¢’ = [(n — 3)/3]| = |n/3] — 1 fans. Now 7 must be
part of a fan F' in the partition of Gy, and the center of F' must be at one of
1T’s vertices:

Case 2b.1. F is centered at 0 or 2. Then merge (0,1,2) into F, and make
(2,3,4,5) its own fan. Now all of G is covered with ¢’ + 1 = |n/3] fans.

Case 2b.2. F is centered at 5. Merge both (2,3,5) and (3,4,5) into F', and
make (0, 1,2) a separate fan. The result is ¢’ + 1 fans.

Case 8 (k = 6). G; is a 7-gon. The tip t of the triangle 7" supported
by d cannot be at 1, 2, 4, 5, as then a diagonal would exist that cuts off
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4 < k < 6 edges, contradicting the minimality of k. Thus ¢ = 3. Each of the
two quadrilaterals (0,1,2,3) and (3,4,5,6) has two possible triangulations,
leading to four subcases.

Case 3a. The diagonals (3,1) and (3,5) are present. Then G, is a fan
centered at 3, and we are finished.

Case 3b. The diagonals (0,2) and (3,5) are present. Join the quadrilateral
(0,2,3,6) to Gy to form a polygon Gy with n — 6 + 1+ 2 = n — 3 vertices,
which by the induction hypothesis can be partitioned into ¢’ = [n/3] — 1
fans. Let F' be the fan of this partition to which the triangle (0, 2, 3) belongs.
The center of F' must be at one of its vertices:

Case 3b.1. F is centered at 0 or 2. Merge (0,1, 2) into F' and make (3,4, 5, 6)
a separate fan.

Case 3b.2. F is centered at 3. Merge (3,4,5,6) into F', and make (0,1,2) a
separate fan.

In all cases, G is partitioned into ¢’ + 1 = [n/3] fans.

Case 8c. The diagonals (1, 3) and (4, 6) are present. This is the mirror image
of Case 3b.

Case 3d. The diagonals (0,2) and (4,6) are present. Merge T with G5 to
form a polygon Gy of n —6+1+1 = n — 4 vertices. Applying the induction
hypothesis partitions Gy into ¢’ = |(n —4)/3] < |n/3] — 1 fans. Let F be
the fan of the partition containing 7'.

Case 3d.1. F is centered at 0. Merge the quadrilateral (0, 1,2, 3) into F', and
make (3,4,5,6) a separate fan.

Case 3d.2. F is centered at 3. Since all of G5 is behind the d = (0,6)
diagonal, it is clear that we can just as well consider F' to be centered at 0,
falling into Case 3d.1.

Case 3d.3. F' is centered at 6. This is the mirror image of Case 3d.1.
In all cases, G is partitioned into ¢’ + 1 = |n/3] fans. This completes the
proof. O

Placing guards at the fan centeres establishes the theorem:

Theorem 1 (Chvéatal’s Art Gallery Theorem 1975) |n/3| guards are
occastonally necessary and always sufficient to see the entire interior of a
polygon of n edges.



Note that both Chvatal’s and Fisk’s proofs incidentally establish by con-
struction that the guards can be chosen to be vertex guards. However it is
an easy task to find an example where one point guard is sufficient but more
than one vertex guard is needed to cover the polygon.

The material in this section comes from O’Rourke [42].

1.2 Sorting/Order Statistics

We shall in this section briefly discuss the problem of sorting a finite set
that has an order relation. By sorting a sequence we mean rearranging the
elements so that they appear in non-increasing or non-decreasing order.

A significant portion of commercial data processing involves sorting large
quantities of data. Therefore a large number of sorting algorithms have been
developed, see Knuth [32].

There are two classes of sorting algorithms. The first class assumes no
structure on the elements to be sorted. The basic operation is a comparison
between a pair of elements. The second class of algorithms makes use of the
structure of the set to be sorted. We will as an example of this discuss the
sorting of a set of integers in a fixed range.

A partial order on a set S is a relation R such that for each a,b and ¢
in S:

1. aRa is true (R is reflexive);

2. aRb and bRc imply aRc (R is transitive);

3. aRb and bRa imply a = b (R is antisymmetric).
A linear order or total order on a set S is a partial order such that for
every pair of elements a,b we have that aRb or bRa. The relation < on the

integers is a total order but set inclusion is a partial order that in general is
not a total order.

The sorting problem can be formulated as follows. We are given a se-
quence of n elements ay, as, ... ,a, from a set having a total order, which we
shall denote by <. We want to find a permutation 7 of these n elements such
that ar(1), ar(2),--- ,Gr(n) appear in a non-decreasing order, i.e.

Ur(1) < Or2) < oo < Go(n)-
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Knuth has introduced a notational device that distinguishes between up-
per and lower bounds, which we adopt.

e O(f(n)) denotes the set of all functions g(n) such that there exist
positive constants C' and ny with

lg(n)| < Cf(n)
for all n > ny.

e Q(f(n)) denotes the set of all functions g(n) such that there exist pos-
itive constants C and ny with

g(n) = Cf(n)
for all n > ny.

e O(f(n)) denotes the set of all functions g(n) such that there exist pos-
itive constants C', Cy and ng with

Cif(n) < g(n) < Caf(n)
for all n > ny.

e o(f(n)) denotes the set of all functions g(n) such that for all positive
constants C' there is an ng with

lg(n)| < Cf(n)

for all n > ny.

We first show that any algorithm which sorts by comparison only, must
on some sequence of length n use at least Q(nlogn) comparisons.

The problem of sorting by comparisons can be expressed in other ways.
Given a set of distinct weights and a balance scale, we can ask for the least
number of weightings necessary to completely rank the weights in order of
magnitude, when the pans of the balance scale can each accommodate only
one weight.

All n—elements sorting methods which satisfy the above constraints can

be represented in terms of a binary tree structure. Each node contains two
indices [, j] denoting a comparison of a; versus a;. The left outgoing edge
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corresponds to the outcome a; < a; and the right edge represents the case
a; < a;. We represent the termination of the algorithm by a box containing
the permutation of ay, as, ... ,a, that leads to the ordering

Ur(1) < Gr2) < - -0 < Ga(n)-

Theorem 2 There is a constant C' > 0 such that for any algorithm that
sorts n elements by comparison only, there is a sequence of n elements for
which the algorithm requires at least C' nlogn comparisons

PROOF: In the above model for an algorithm we can think of the termination
points of the algorithm as leaves. We claim that after k steps of the algorithm
we have at most 2¥ leaves. This is obviously true for ¥ = 1 and if £k > 1 we
see that the tree is a union of two disjoint subtrees, each of which has height
k — 1. An induction argument therefore establishes the claim. Let N be the
minimum number of comparisons that are required for any algorithm. Since
the number of permutations of n elements is n! we must have

) )

which shows the result. O

w3

2N>n!>(

o3

We remark that using a better estimate of n! like Stirling’s formula, one

can show that
nlogn + %logn -n

log 2
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Suppose S7 and Sy are two sequences that have been sorted in increasing
order. We can easily sort the sequence one gets by concatenating S; and S,
by successively selecting the smallest remaining element from S; and Sy. (In
order to make this into a well-defined algorithm we break the ties in favour
of S1) This algorithm requires at most m+n—1 comparisons, where m, n are
the number of elements in 57, Sy. This remark is the basis for the following
divide-and-conquer—method.

Theorem 3 Let T'(n) be the smallest number of comparisons that are needed
to sort a sequence of n elements in increasing order. Then

T(n) = 6(nlogn).
PROOF: If n is even it follows from the above remark that
T(n) < 2T(g) +n—1.

If n is odd we have that

T(n) < T( )+n—1.

2

An easy induction argument shows that 7'(n) = O(nlogn). Using Theorem 2
concludes the proof. O

If a sequence to be sorted has some additional features it may be sorted
in linear time. We will only discuss one example of this.

Let S be a set of integers ay,as,... ,a, in the range {0,1,... ,m — 1},
m > 1,n > 1. We shall now describe the bucket sort-method. For each
k € {0,1,...,m—1} initialize a que — each such que is called a bucket. Scan

the sequence from left to right and place the element a; in the a;—bucket.
Concatenate the buckets by appending the content of £+ 1 to the end of que
k. This yields the sorted sequence in O(n + m) time. If m = O(n) we can
therefore sort the sequence in linear time O(n).

We now turn to order statistics.

Let S = {a;}7_; be a sequence of elements with a total ordering <. We
will say that a; is the kth smallest element if a; is the smallest element
in S with the property that there is a subset J C {1,2,... ,n} with &k — 1
elements such that

a; <a; for all je€J
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Notice that the index of the kth smallest element does not need to be unique.

For real numbers z let [z] be the smallest integer v such that v > z.
(|z] denotes the largest integer v such that v < ) We recall that the choice

k= [g] corresponds to the median of S. By careful application of the

divide-and-conquer strategy, often referred to as prune and search, we can
find the kth smallest element of S in O(n) time.

Theorem 4 Let S be a sequence of n elements with a linear ordering <.
Then there is an algorithm that finds the kth smallest element in S in linear
time O(n).

PRrROOF: Let ¢(k,S) denote the kth smallest element in S. Let 7(k,n) be
the shortest time for finding the kth smallest element and set

T(n) = max{7(k,n):1 <k <n}.

Assume n > 100. Set m = [21 and split S into sets with 5 elements each
and possibly one with fewer elements than 5. Call these sets Ei,..., Ep,
with E, having 5 elements for v = 1,2,... ,m — 1. Let z; be the median
m
of Ey and set X = {xx}7",. Let ¢ = go([;},X) be the median of X and
set 1 ={lel,:aq<q and g # q}, Jo = {l € I, : ay = ¢} and
Js={lel,:qg<a and a; # q}. Here I, = {1,2,... ,n}. Let v; denote
the number of elements of J;, i = 1,2,3. We claim that v; and v3 are each at

3 .
most In Let Q ={j:1<j<m and ¢ <z;}. Notice that () contains at

n o
least 10 elements (almost). For each j € @ there are at least two additional

. . n 3n
elements in E; that are > ¢q. Hence the size of J; is at most n —3— < —.

Similar arguments applies to J;. We can now observe the following. Let
Si={a: 1€ J;},i=1,2,3. lf 1y >k then o(k,S) = ¢(k,S1). If vy < k but
v1+vy > k then ¢(k,S) =q. If v +vy < k then p(k,S) = p(k—11 —1s, S3).
Hence there is a constant C' > 0 such that

3n n
An easy induction argument yields that 7'(n) = O(n). O

We remark that in most UNIX-systems one can find the quick-sort algo-
rithm.
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2 Triangulations

We will in this chapter be concerned with planar triangulations.

2.1 General Properties

In two dimensions, a triangulation 7 is a finite collection of closed triangles
{T;} such that each T; has a non-empty interior and the T;:s have pairwise
disjoint interiors. Moreover we also require that if two distinct triangles have
more than one point in common the must share a common edge.

We will say that T is a triangulation of the set E if
E=T
TeT

Important problems are the existence of triangulations with prescribed prop-
erties and efficient algorithms for their construction. A general reference for
this section is [45].

Theorem 5 Let Q2 be a closed simply connected polygonal domain and let

Va denote its set of vertices. Assume W C Int(Q2) is a finite set. Then there
exists a triangulation T of Q whose set of vertices equals Vo |JW .

A chord or a diagonal of a polygon is a line segment between two vertices
that lies inside the polygon and does not intersect the polygon’s boundary
except at the end points.
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Lemma 2 FEvery polygon with more than three sides has a chord.

PROOF: (Theorem 5) We first see that there is a triangulation of Q2 whose
vertex set equals V. For once we have found a chord we can split the polygon
in two and recursively triangulate each part. Next we add one point at a time.
If P lies inside a triangle we split that triangle in three.

If P falls on a common edge of two triangles we split each of them in two
triangles.

Every triangulation 7 gives rise to a graph on the vertex set of 7 by
identifying edges of 7 with the edges of the graph. This graph is called the
skeleton or triangulation graph of the triangulation.

Finally we remark that the number of edges in a triangulation of a polyg-
onal domain {2 is uniquely determined by the number of the vertices at the
boundary and the number of the inner vertices. More precisely, we have the
following result which easily follows by applying Euler’s formula.

Theorem 6 Let 2 be a closed simply connected polygonal domain and let
Va denote its set of vertices. Assume W C Int(Q2) is a finite set. Let T be
any triangulation of Q whose set of vertices equals Vo JW. Then!

IFor a finite set U we let |U| denote the number of elements in U.
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1. the number of triangles in T is equal to

‘VQ‘ + Q‘W‘ — 2.

2. the number of edges in T, diagonals and boundary edges, is equal to

2(Va| + 3|W| - 3.

How fast can we triangulate a polygon with N vertices? Chazelle [9] has
established a linear time algorithm for this.

2.2 Transformations of Triangulations

Let T be a triangulation and assume that assume that 77,7, € T share a
common edge and that R = T (JT5 is a convex quadrilateral. By replacing
the diagonal of R with the opposite diagonal we get a new triangulation with
the same set of vertices.

This transformation is called swapping of diagonals or edges.

Suppose now that 7; and 75 are two triangulations of a polygon with the
same vertex sets. It is natural to ask if it is possible to transform 77 into 75
by only using diagonal swaps of convex quadrilaterals. The following result
by Dyn/Goren/Rippa [18] answers this question.

Theorem 7 Let T, and Ty be two triangulations of a polygonal domain €.

Assume T and T have the same set of vertices. Then it is possible to trans-
form Ty into T by only swapping diagonals of conver quadrilaterals.

We begin with the following easy lemma.

Lemma 3 Let v ={Fy,...,Py_1} be a simple closed polygon. Then v has
at least three interior angles strictly less that .
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PROOF: Let oy, ... ,an_1 denote the interior angles of . Then
SN = (N - 2).
Let M be the number of o;:s that are strictly less than 7. Then
(N—=2)mr > (N —M)m + X4, <re; > (N — M),
so M > 2. O

Lemma 4 Let T be a triangulation of the closed set 2. Denote by V' the
set of vertices of T and let A,B € V be two distinct vertices. Assume
(A,B) C Int(Q) and V((A,B) = 0. Then there exists a triangulation
T* of Q whose vertex set is V' and such that [A, B] is an edge of T*. The
transformation from T to T* can be achieved by swapping diagonals of convex
quadrilaterals. Moreover only edges that intersect (A, B) are swapped during
the transformation.

PROOF: Assume that [A, B] is not an edge? of 7. Set Fr = {T € T :
Int(T) (A, B) # 0} and W = Uypep, T Then [A,B] C W. Since every
point P € W can be connected to [A, B] inside the triangle T € Fr that
contains P we see that W is connected.

Let L be the line through A and B. Clearly L(OW = {A, B} and
(L\[A,B]) YW = (. L separates the plane into two open half planes H,
and H .

We now claim that W is simply connected. Let Fr = {F;} and notice
that the closed intervals J, = T () [A, B] have pairwise disjoint interiors. We
may assume that the ordering of the Tj:s has been chosen so that dist(A, Jy)
increases with k. Set W,, = Uzzl Ty. The above argument shows that W), is
connected for every n. We also observe that 07,1 \ W, is connected. Hence
Wy is simply connected if W, is simply connected. Therefore W is simply
connected by induction.

Set S = OW (V. From the above follows that W, = W[ H, is a
polygon with vertices (S H;) U{A, B}.

The idea of the proof is now to construct a new triangulation 7" such
that F7» has fewer triangles than Fr.

Using Lemma 3 on the polygon W, we see that there is a p € S Hy
such that the interior angle to W at p is strictly less than 7. Let Fr(p) be

2We have adopted the convention that [A, B] denotes the closed segment AB, i.e. with
the endpoints A, B included, while (A4, B) denotes the open segment [A, B] \ {4, B}.
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the set of triangles T' € F7 that have a vertex at p. Let £7(p) be the class
of edges e in T such that e((4, B) # () and have end point at p. We have
that £7(p) # 0 and if e € E7(p) then e is the common edge of two triangles
in Fr(p).

Set Er(p) = {e1,...,e,} and let ¢; be the end point of e; that is dif-
ferent from p. Notice that it may happen that ¢; € Int(W). We now give
OW the counterclockwise ordering. Let pg, p; be the elements in S that are
immediately before and after p. We now assume that ¢y, ... , g, are listed in
counterclockwise order as end points of rays emanating from p. Since each
q; belongs to H_ and is contained inside the sector determined by pg, p and

py it follows that {qi,... ,gn,po,p1} is a simple polygon Q.

Using Lemma 3 on ) we see that there is a k, 1 < k < n, such that the
interior angle of () at gy is strictly less than 7. Let 7} and 7, be the triangles
in Fr(p) with the common edge e, and set R = T} (J 7. Then the interior
angle of R at p is strictly less than 7. If 1 < £ < n then R is contained in
the sector determined by gx_1,¢x and gx11. Hence the interior angle of R at
qx is strictly less than 7 in this case. If £ equals 1 then one of the triangles
11, T, must equal the triangle pp;q;. Hence in this case R is contained in
the sector determined by p;,q; and ¢o. If £ = n then R is contained in
the sector determined by ¢,_1, ¢, and pg. Therefore the interior angle of R
at g is strictly less than 7. Hence R is a convex quadrilateral. Swapping
diagonals in R gives us a new triangulation 7* such that £+ (p) has one edge
less than £7(p). Repeating this construction leads to a triangulation 7" with
Er(p) = 0. Hence Fr has fewer triangles than Fr.

Iterating the above procedure leads to a triangulation 7; with Fr, = 0,
i.e. [4, B] is an edge in 7;. The lemma is proved. O

PrOOF: (Theorem 7) Let ey, ... , e, be the edges in 7, that do not belong to
the boundary of Q2. Let 7() be the triangulation one gets by using Lemma 4
to transform 77 into a triangulation that contains e;. For 2 < k < n we let
T*) be the triangulation one gets by using Lemma 4 to transform 7*~1 into
a triangulation that contains ej. Since e; and e, do not intersect if 1 < j < k
it follows from Lemma 4 that e, ... ,ex_; belong to 7®*) 2 < k < n. Hence
T™ equals 75 which yields the theorem. O
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3 Convex Hulls

We complete O’Rourke’s presentation of convex hull algorithms, see [41], with
the algorithm of Kirkpatrik-Seidel which connects several concepts treated
above.

3.1 Kirkpatrik-Seidel’s Ultimate Convex Hull Algorithm

This algorithm was published in 1986 in [30].

The basic idea is to develop a divide and conquer algorithm that runs in
O(nlogh) time, where h is the size of the hull e.g. the number of extreme
edges. For simplicity, we will only concentrate on finding the upper chain of
the convex hull, which connects the leftmost point with the rightmost point.

We will divide the points in P into two sets P, and Pg of approximately
equal size by using a vertical separating line. A few key observations are in
order.

1. We can compute the upper supporting line, the bridge, before we com-
pute the convex hulls of P, and Pg, since these are functions of the
point set, and not of the convex hulls of P, and Pg. (Of course, the
computation will be a little trickier since we cannot use the convex
hull to find the bridge, as we did in the regular divide and conquer
algorithm.)

2. We can delete all points that are immediately “below” the bridge.
Specifically, if the bridge joins points p and ¢, we can delete all points
with = coordinates between p and g. We recurse on the remaining
points to find the upper chain of P] and P}, (remaining sets of points).
This will potentially reduce the number of points we recurse on.

There are a few things we need to do to implement the above ideas.
The first is that we cannot afford to presort the points before starting the
algorithm, so that for each divide step we have to invoke a linear time median
finding algorithm to split S into equal pieces.

The second challenge is to find the bridge in O(n) time. This will be done
by a prune and search argument. In this method, we spend cn time, and we
either find what we are looking for, or (for example) delete half the points
from consideration, and recurse. The running time for such a scheme is

cn+c%+c%...c=0(n).

Observe that this actually works, so long as we eliminate a constant fraction
of the points!
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Before we get into details about how the bridge is actually computed, we
will try to analyse the running time as a function of h, the size of the upper
chain of the hull. If » = 1 in any recursive call, we compute a bridge and
realize that the bridge connects the leftmost and rightmost points, and all
other points can be eliminated immediately. Hence this takes O(n) time.

If the upper chain of P}, has size hr and the upper chain of P; has size
hr, then we have that h = 1 4+ hg + hz. The running time of the algorithm
can be expressed as T'(n, h).

T(n,h) <en if h=1
T(n,h) <cn+ T(g, hL) + T(g, hR).
We need to argue that regardless of the split of h between hy and hg, the

algorithm runs in O(nlog h) time. This is easy to prove by induction. Assume
T(m,h') < emlogh' for m < n and 1 < A’ < h. This implies

T(n,h) <cn+ cg log hy, + cg log hg.

Now use the fact that 3 (log hz+log hg) < log L2 i e. that the log-function
is a concave function. This gives

hr + hg

T(n,h) <cn—+ cg <2 log( )) < cn+ cen(logh — 1) < enlog h.

It remains to indicate how to compute the bridge in O(n) time.

Assume that the bridge has slope K*. We will “guess” a value for the
slope K, and try to figure out how K* compares to K. Through each point
p; in P, let the line of slope K be ¢;. The line ¢; which has all the points of P
“below” it is the line we are looking for — this line has the highest intercept
with the dividing line (or the y axis, since they are all parallel). In O(n)
time we can compute which line has this property. (This line may not be
unique.) If the line is defined by a point from P;, and a point from Pg this
is the bridge we are looking for. If the line is defined only by points of Pj,
then K* < K, and if the line is defined only by points of Pr then K* > K.
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In any case, this gives us some information about K*. To apply the “prune
and search” paradigm, we need to somehow discard a constant fraction of the
points to continue looking for the bridge. We might “guess” the correct slope,
and as soon as we do that the algorithm stops. If our guess is incorrect, we
recurse on a constant fraction of the points. The running time is a decreasing
geometric series and converges to O(n).

We now outline the method for the pruning step. Consider a pair of
points a,b € P. Assume that a is to the left of b. Let the slope defined by
this pair of points be K’'. Suppose K* < K and K < K', then K* < K'. In
this case we claim that a cannot be a bridge vertex. Suppose K* > K and
K > K', then K* > K'. In this case we claim that b cannot be a bridge
vertex. In either case, we are able to eliminate points as being candidate
vertices.

How do we guarantee that we can find sufficiently many lines that have
slope less than K, and sufficiently many lines with slope more than K? To
achieve this, we arbitrarily pair up the points in set P, and compute their
slopes. We then select the median slope of this set of § lines, and use that
as our guess for the slope of the bridge. We either guess the slope correctly
and stop, or in either case we eliminate one point from 7 pair’s. We are left
with at most ?jT" points and recurse on this set of points. This completes the
prune and search algorithm.
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4 Delaunay Triangulations/Voronoi Diagrams

Delaunay triangulations are named after the Russian mathematician Boris
Delone. See [17] written in memory of George Voronoi.

4.1 Delaunay Triangulation: Existence and Unique-
ness

Let S C R? be a finite set of points that does not lie on a line. We say that
T is a Delaunay triangulation if 7 is a triangulation of the convex hull of
S with vertex set S and the circumcircles of the triangles in 7 newer contain
a point from S in their interiors.

We shall now prove the existence of Delaunay triangulations. We will do
this by taking the convex hull of the lift of S to the graph of f(z,y) = 22+ y%
The crucial property of the graph of f that we will need is the following
observation.

Proposition 1 Let f(x,y) = 2> + y? and g(z,y) = {(z,y),v) + a, v € R?
and a € R. Then f(z,y) < g(z,y) if and only if |(x,y) — g\Z < L, where

Jv]?
L= —.
a+ 1
PRrRooF: Trivial. O

The significance of this result is that the set of points in R?® where the
graph of f is below a plane always projects to the interior of a circle in R2.

Theorem 8 (Existence) Let S C R? be a finite set that does not lie on a
line. Then S has a Delaunay triangulation.

PROOF: Set f(z,y) = 2*+y* and put Sy = {(z,y, f(z,y)) : (x,y) € S}. Let
now E be the convex hull of Sy in R?. The lower part of the boundary of E is
the union of closed convex polygons F;. For each Fj there is a v; € R? and an
a; € R such that if g;(z,y) = ((z,y), vi)+ a; then f(x,y) < g;(x,y) whenever
(x,y,2) € F; for some z € R. If (z,y,2) € F;( Sy then f(z,y) = gi(z,y).
Let G; be the projection of F; onto R?. From Proposition 1 follows that
G;(\S is contained in a circle C;. Also C; contains no point from S in
its interior. Triangulating each G; now yields the existence of a Delaunay
triangulation. 0
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We shall next show how the edge-swapping transformation described in
the previous section can be adapted to construct a Delaunay triangulation.
The algorithm starts with any triangulation 7 of the convex hull of S. For
a triangle T we let C(T') and w(T") denote the circumcircle of 7" and the
closure of its interior. If e is an interior edge of T we let R(e) denote the
union of the triangles in 7 with the common edge e. If there is an interior
edge e such that R(e) is strictly convex and some vertex of R(e) is contained
in the interior of C'(T) for some triangle 7' € T with edge e as an edge then
we swap the edge. We call this the flip algorithm. We refer to [4] for the
following result.

Theorem 9 The flip algorithm terminates at a Delaunay triangulation.

For the proof of the theorem we need the following results.

Lemma 5 Let Ty = ABC and T, = BCD be two triangles with disjoint
interiors and a common edge BC. Assume that the quadrilateral R = Ty |J T5
is not strictly conver. Then D lies outside C(T7) and A lies outside C(13).

ProOF: From the assumption follows that R has at least one interior angle
> . Since the interior angles of R at A and D are strictly less that 7 we may
assume that the interior angle at B is > m. We will argue by contradiction.
Assume that D fall inside C(T7). Let D; be the intersection between C(T7)
and the ray emanating from B that goes through D. Then the polygon
ABD;C has all its vertices on C(7T}) and is therefore strictly convex. This
contradicts the fact that ABDC and ABD,C have the same interior angle
at B. By symmetry we are done. Il

Proposition 2 Suppose Ty, T, are two triangles with disjoint interiors and
a common edge e. Let Ay, Ay be the vertices of Ty, Ty that are not on e.
Assume that Ay falls outside C(Ty) and that Ay falls outside C(T}). Let L
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be the line through e. Assume that L separates the point P from Ty and that
P falls inside C(T1). Then P falls inside C(T3).

PROOF: We need only to treat the case when P does not belong to L. Let H
be the half plane determined by L that contains P. By elementary geometry
we have that w(T1) N H C w(T2) () H. O

PRrOOF: (Proof of Theorem 9) Let £(7) be the set of interior edges e such
that if P is any vertex of R(e) and if T € T is any triangle with e as an edge
then P belongs to the closure of the exterior of p(P). From Corollary ?? fol-
lows that £(7) increases by one element with every step of the flip algorithm.
Hence the flip algorithm terminates.

We now let 7 be a triangulation that is left unchanged by the flip algo-
rithm. Let 7T},75 € T be two triangles with a common edge e. Let A;, A,
be the vertices of 71,7, that do not lie on e. Since the flip algorithm has
terminated it follows from Corollary ?? or Lemma 5 that A; is outside C(73)
and A, is outside C(T1).

Assume that 7 is not a Delaunay triangulation. Then there exists a
T € T and a vertex P for 7 such that P is in the interior of C'(T). Clearly
P ¢ T. Then there is an edge e of T such that if L denotes the line through
e then L separates T from P. We notice that P can not lie on L. Let A be
one of the end points of e. We may assume that (A, P) does not contain any

vertex of 7 for otherwise we replace P by the vertex of 7 that is closest to
A.

Let T* € T be the triangle different from 7" that also has e as an edge.
Then 7™ and P lie on the same side of L. From Proposition 2 follows that
P is contained in the interior of C(7*).

We begin by assuming that Int(7*) () (A, P) # 0. In this case [A, P]
is not an edge for 7. Let T3,...,7T, be the triangles in 7 that intersect
(A, P). We let them be ordered such that dist(7y () (A, P), A) increases with
k. Then T} = T*. Let Ly be the line through the common edge of 7} and
Ty.1. We observe that Ly separates P from Tj. By repeated application of
Proposition 2 we see that P is in the interior of C'(T}) for all k, 1 < k < n.
This contradicts the fact that P € T,,.

Let W be the closed convex sector with apex A determined by e and
[A, P]. Let Ty, ..., T, be the triangles in 7 with apex at A that are contained
in W. We determine the ordering by requiring that 77 = T™ with T} and
Ty+1 having a common edge e,. Let Ly be the line determined by e;. Then
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Ly, separates P from T} so P must be contained in the interior of C(T})
for all k&, 1 < k < n. Let e, be the edge of 7,, with an end in A that is
different from e, ;. Let T,,1 € T be the triangle different from 7;, that
has e, as an edge. Since P belongs to the interior of C(7},) it follows that
Int(7,+1) () (A4, P) # (. This is impossible by our previous argument. This
completes the proof of the theorem. [l

Theorem 10 Let S C R? be a finite set that does not lie on a line. Suppose
a,be S, a#b, and that there is a circle C' such that a,b € S and there is no
point from S in the intertor of C. Then there is a Delaunay triangulation T
of S such that [a,b] is an edge in T. Assume that a,b,c € S are the vertices
of the triangle T. If C(T) contains no points from S in its interior then T
1s a triangle in some Delaunay triangulation of S that can be constructed as
in Theorem 8.

PRrROOF: We begin by establishing the second part of the theorem. Let P,, P,
and P, be the lifts of a,b and ¢ to the graph of the function f(z,y) =
22 + y2. Then there is a unique plane H passing through P,, P, and P,.
From Proposition 1 follows that the lift Sy of S to the graph of f lies on one
side of H. Hence T belongs to some Delaunay triangulation of S.

We can now prove the first part of the theorem by observing that the
circle C can be modified so as to contain at least three points from S without
having any point of S in its interior. U

Theorem 11 (Uniqueness) Let S C R? be a finite set that does not lie
on a line. Assume that no four points in S belong to a circle.Then S has a
unique Delaunay triangulation.

PROOF: Set f(z,y) = x® + y* and let S; be the lift of S to the graph of
f. The lower part of the boundary of the convex hull of S is the union of
convex polygons F;. From Proposition 1 follows that each F; has exactly three
vertices. Hence there is a unique Delaunay triangulation 7* constructed by
Theorem 8. If 7 is any Delaunay triangulation of S then every triangle from
T belongs to 7* by the previous theorem. ]

We remark that by a similar argument one can show that any Delaunay
triangulation is of the form given by Theorem 8. We leave the verification of
this to the reader.
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4.2 Delaunay Triangulation from a Stereographic Trans-
formation

We shall in this section indicate how to construct Delaunay triangulations
by stereographic transformations onto a sphere. A reference for this result is

7].

Let
X

TP

It is easily seen that M maps the plane H = {(z,y,—1) : (z,y) € R?} onto
2\ {0}, where Q is the sphere

M (x) x = (z,y,2) € R*\ {0}.

1 1
Q={xeR*: |X—(0,0,—§)\ 25}

We also remark that M maps circles and lines in H onto circles in €2 and
conversely.

We shall now construct a triangulation using the following procedure.

Let S C H be a finite set. Let Eg denote the convex hull of the set
M(S) € 2\ {0}. Then Es is a convex polyhedron. We now let Ed denote
the class of faces {F;} of Es such that 0 and Eg lie on the same side of the
plane containing F;.

We denote by V; the vertex set of F;, i.e. V; = F;(\ M(S). Hence M(V;)
is contained in a circle. Choose now a triangulation of the convex hull of
M(V;). We let Tas be the collection of triangles one gets by letting F; vary
over all faces in E{ and making one choice of the triangulation of the convex
hull of M(V;). We call T3 a triangulation obtained by stereographic
projection.

Theorem 12 Let S C {(z,y,—1) : (z,y) € R?} be a finite set that does not
lie on a line. Then every triangulation one gets by stereographic projection
18 a Delaunay triangulation.

PROOF: Define

~ X ~

M(X):_Z’ X:(xayaz)EQE{(I,y,Z)€R3:—1SZ<O}.

Notice that M (x) = M(x)~for all x € Q\ {0}. Since M is one-to-one on the
lower part E¢ of Eg and M (F;) equals the convex hull of M (V;) we see that
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T is a triangulation of the convex hull of S. From the mapping properties of
M it follows that for all 7" € T,s the intersection between S and the interior
of the circumcircle of T is empty. O

4.3 Delaunay Triangulations minimize the Dirichlet In-
tegral

We shall in this section study the Dirichlet integral of piecewise linear func-
tions. Let 7 be a triangulation with vertex set S. Assume f: S — R and
let f7 denote the piecewise linear extension of f to |J., that is linear on
each T € T. We let

D, T) = Srer [ [ V7l dudy
T
denote the Dirichlet integral of f.

We shall now establish the following remarkable extremal property of
Delaunay triangulation due to Rippa [47].

Theorem 13 Let T be a Delaunay triangulation of the set V. Let f : V —
R be any function. Assume that T is a triangulation of the conver hull of
V' with vertex set V. Then

D(f,T) <D(f,T").
If D(f,T)=D(f,T*) then Lemma 13 can be used to analyze the struc-
ture of f and the relationship between 7 and 7*. For an example of this see

the proof of Theorem 17.

To give the proof of the theorem we need some lemmas. We give the
following classical result for the convenience of the reader.

Lemma 6 (Ptolemy’s First Theorem) Suppose ABCD is a quadrilat-
eral inscribed in a circle. Then

(A, Cl| - [[B, D]| = |[A, B]| - [I[C, D]| + [[4, D]| - [[B, C]|.
Proor: We will use the following identity by Euler. Let a,b,c,d € C. Then
(d—a)(b—c)+ (d—b)(c—a)+ (d—c)(a—b) =0.
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We remark that if a, b, ¢, d lie on a line and are sequentially ordered then
la—c|-lb—d=la—d|-|b—c|+|a—=0] |c—d|.

We may assume that the circumcircle of the quadrilateral goes through the

origin and that the origin is outside the quadrilateral. Setting

1 1 1 1

— o h=— — d= =

AT BT oD

yields the lemma. O]

a =

Lemma 7 Suppose ABCD s a strictly conver quadrilateral. Then
with equality if and only if the vertices fall on a circle.

PROOF: Assume that C' lies outside the closed disk A, whose boundary
contains A, B and D. Let C’ be the intersection between 0A and [4, C].

Select a coordinate system such that C” falls at the origin and C' falls on
the positive z-axis. For z > 0, let P = (z,0) and set

Let 6 and &' be the angles APD and AC'D. Also let ¢ and ¢’ be the angles
APB and AC'B. Then

0<0<0’<g, 0<¢<¢'<g.

Now if £ > 0 then

% = |[A, B]| cosf + |[A, D]| cos ¢ — |[B, D]|

> [[A, B]|cos ¢’ + |[A, D]|cos ¢' — [[B, D]| = 0

since the angles ABD and ADB equal #' and ¢’ respectively. Since f(0) =0
the lemma follows. O
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Lemma 8 Let T be a triangle with vertices A, B,C' and denote by A, Cp,
the midpoints of [A, B] and [B, C]. Let wa and wc be the closed disks centered
at Ap, and Cy, and passing through B. Denote by S the closed sector with
aper B determined by T. Then

wAﬂwCﬂS cT.

PROOF: We note that w4 [ dwe consists of exactly two points B and Q.
Let @, be the midpoint of [B, @]. Let L,, be the line through A,, and C,,.

Then L,, intersects [B, Q] perpendicularly at @,,. If L denotes the line
through @ that is parallel to L,, then A and C' lie on L. Let H be the closed
half plane determined by L that contains B. Then

wAﬂwcmSCH.
wAmwcﬂSCHﬂSzT.

Hence

If @ is the vertex of a polygon I' we let w(Q)) denote the closed disk
whose boundary goes through @ and its immediate neighbors. Also, R(Q)
will denote the radius of w(Q).

Lemma 9 Let ABCD be a strictly convex quadrilateral. Assume that C &
w(A). Then

min(R(A), R(C)) < min(R(B), R(D)). (1)
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PROOF: For a vertex P we let zp denote the center of w(P). For two points
P and @ we let Apg be the closed disk that has [P, Q)] as a diameter.

From the assumptions follows that A ¢ w(C') but w(B) and w(D) contain
all vertices.

Assume that (1) is false, say
R(B) < min(R(A), R(C)).

Let L be the line through [A, B] and let H = Hy g be the closed half plane
determined by L that contains C'. Let H_ be the complement of H. We now
claim that

HABﬂ n CAAB (2)

If z4 or zp belong to H_ then (2) is obvious. If z4 and zp both were in Hy p
then clearly Hy p(\w(B) C Hap(\w(A). However C € Hy [ \w(B) but
C & Hyp[\w(A) so this is impossible. Hence (2) follows.

Let Hp ¢ be the closed half plane that contains A and has the line through
[B, C] as its boundary. By the same argument we have

HBan ﬂ CABC’ (3)

Hence D € Ay () Ap,c. From the Lemma 8 follows that D belongs to the
triangle ABC', which violates the assumption that ABCD is strictly convex.
By this contradiction (3) follows. O

Lemma 10 Let ABCD be a strictly convex quadrilateral. Assume that C ¢
w(A). Then

max(R(A), R(C)) < max(R(B), R(D)). (4)

PROOF: Notice that A ¢ w(C). We shall argue by contradiction. Assume
that the conclusion fails with, say,

R(A) > max(R(B), R(D)).
For a vertex P let zp denote the center of w(P). Let L be the line through
[A, B] and denote by Hp the closed half plane determined by L that contains
C. We claim that z4 ¢ Hpg. For if z4 € Hp then Hg(w(B) C Hg(w(A)
by the assumption that R(A) > R(B). This is impossible since C' ¢ w(A).
Hence z4 € Hy, where Hy is the complement of Hp.

By the same argument it follows that z4 € H[, where H, is the plane
determined by the line through [A, D] that does not contain C. Hence z4 €
Hyz () Hp, which is impossible. O
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Lemma 11 Let f be linear in the triangle ABC. Assume f(A) =1, f(B) =

f(C)=0. Then
B,C]P2
V12 dedy = B A1
R o

where |ABC| is the area of the triangle.

PROOF: Letting h be the height of the triangle from the vertex A one has
1
that |V f| = 7 Hence

2, o _ |ABC| _[[B,C]| _ |[B,C]?
//ABC‘W‘ drdy = = Ton T ajaBol

d

Lemma 12 Let ABCD be a strictly conver quadrilateral. Let T; be the
triangulation of ABCD with triangles ABC and ADC'. Let Ty be the tri-
angulation of ABCD with triangles ABD and BDC'. Let S = {A,B,C, D}
and suppose f : S — R satisfies f(B) = f(C) = f(D) = 0.

1. If all vertices A, B,C and D fall on a circle then
D(f,T) = D(f,Ta)-
2. If C ¢ w(A) and R(A) < min(R(B), R(D)) then
D(f,T) <D(f, Ta)-
PROOF: Let a = £ f(A). Then

[B,C]? I[C,D]IQ)
IABC| " JACD)]

DU, T7) = o?(

and )
2 |[B, D]|

By Lemma 7
14, €[ - [[B, D]| < [[B, C - |[A, D] + [[A, B]| - [[C, D].
Dividing by |[4, B]| - |[4,C]| - |[A, D]| gives

18,0 __ IBC . [I6D]
14, BII - 1[4, DI| — |[A, Bl - [[A, €] [[4, ][ - [[4, D]
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or 9
(B, D]

[A, B]| - |[4, D]| - |[B, D]|
Bopr e.op
— |[4, B][ - |[A, Cll - |[B, C]| - [[A, C[ - |[A, D]| - [[C, D]
For any triangle it is well-known that the product of its sides equals the area
times the radius of the circumcircle times 4. Hence

[B,D]|> _ R(4)|[B,C]” R(4) |[C, D]
|ABD| = R(B) |ABC| " R(D) |ACD)|

with equality if and only if the vertices fall on a circle. Consequently 1. is
immediate and for 2. we notice

[B,D]* |[B,C]*  IC,D]f
ABD| ~ [ABC| T |ACD

from the assumption R(A) < min(R(B), R(D)). O

Lemma 13 Let ABCD be a strictly conver quadrilateral. Assume that the
triangles ABD and BCD form a Delaunay triangulation T. Let T* be the
triangulation ABC and ADC'. Suppose that f : {A,B,C,D} — R. Then

D(f, T) <D(f, T").
If D(f,T) =D(f, T*) then fr- is linear or the vertices fall on a circle.

PROOF: We may assume that R(A) < R(C). Let h : R> — R be the
linear function that equals f on {B,C, D}. Set S ={A, B,C, D} and define
9:S5 = Rbyg(4) = f(A) — h(A) and g(B) = g(C) = g(D) = 0. Let p
and ¢ denote the piecewise linear extensions of ¢ determined by 7 and T*
respectively. Then

=// |www@spm7ﬂ=// Val? dady
ABCD ABCD

by the previous lemma. However

mﬁﬂ—D@Tw=/Aw;ww+mF—wm+mﬂmw

SZ// <V(p—1¢q),Vh > dzdy
ABCD

:/ (p —q—da—// (p—q)Ahdzdy =0
8(ABCD) ABCD

since h is harmonic in R? and p = ¢ on the boundary of ABCD. U

30



PROOF: (Proof of Theorem 13) The theorem is a direct consequence of the
flip algorithm. O

For a triangle 7" let R(7) denote the radius of its circumcircle. For a
triangulation 7 we now set

Ruax(T) = max{R(T) : T € T}
and

Runin(T) = min{R(T) : T € T}.

We now have the interesting result that these functionals are minimized
by Delaunay triangulations. For the functional Ry, (7) see [3].

Theorem 14 Let T be a Delaunay triangulation of the set S. Assume that
T* is a triangulation of the convexr hull of S with verter set S. Then

Ruin(T) < Rinin(T7) (5)
and
Rmax(T) S Rmax(T*)' (6)

PROOF: The theorem is a direct consequence of Lemma 9, Lemma 10 and
the flip algorithm. O

For a triangulation 7 we let R(7) denote the vector one gets by sorting
the collection {R(T) : T € T} in increasing order. Notice that Ry, (7)
and Rpm.x(7) coincide with the first and last element in R(7). We have the
following sharpening of Theorem 14. If x = {z;} , and y = {y;}, are two
sequences then we say that x <y ifx; <y; for 1 <i<n.

Theorem 15 Let T be a Delaunay triangulation of the set S. Assume that
T* is a triangulation of the convex hull of S with vertex set S. Then

R(T) < R(T™). (7)

PROOF: Suppose 7** is derived from 7* by an edge swap of a strictly convex
quadrilateral. Since {R(T) : T € T**} is derived from {R(T): T € T*} by
decreasing two elements it follows that {R(T) : T € T*} < {R(T) : T €
T*}. The theorem is a direct consequence of the flip algorithm. Il
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Suppose ® : R" — R is symmetric, i.e. for every permutation 7 of
{1,...,n} we have for all x € R"

@(:1:1, [P ,xn) = @(xw(l), . ,mw(n)).
If 7 is a triangulation and if ® is symmetric we set
Or(T) = (R(TY),...,R(T,)),

where T7, ..., T, are the triangles in 7. Clearly ®g(7) is well-defined. We
now let Ag, denote the class of all symmetric functions ® such that if
0 < x <y then ®(x) < d(y).

Theorem 16 Let T be a Delaunay triangulation of the set S. Assume that
T* is a triangulation of the conver hull of S with vertex set S. Then

Pr(T) < @r(T7) (8)
for all ® € Agy,.
PRrROOF: The result is an obvious consequence from Theorem 15. O
Notice that max{z;}, min{z;}, ¥;z;, ¥;2?, I;z; and {/IL;z; all belong to
the class Agym-
We shall now study the area of piecewise linear surfaces. Let 7 be a

triangulation with vertex set S. Assume f : S — R and let fr denote the
piecewise linear extension to | J., that is linear on each T' € 7. Set

A(f,T) = Srer / / VIV Edady,

Notice that A(f, 7) is the area of the graph of f7.

Theorem 17 Let T be a Delaunay triangulation of the set S. Let f : S — R
be any function. Then there is a positive number ¢ = €(f) such that if
le| < €y and if T* is a triangulation of the convex hull of S with vertex set S
then

A(ef,T) < Alef, T").

To prove the theorem we need the following lemma.
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Lemma 14 Let T,T* be as above. If D(f,T) = D(f,T*) then A(f,T) =
D(f,T").

PROOF: From Lemma 13 it follows that if we carry out an edge swap in a
strictly convex quadrilateral @) in the flip algorithm then f7. must be linear
in ). Hence the area is unchanged which establishes the lemma. O

PrOOF: (Proof of Theorem 17) We will argue by contradiction. Assume the
conclusion of the theorem fails. Since there are only finitely many triangula-
tions with vertex set S there exists ¢; — 0 such that

A(ﬁjf, T) > A(ija T*)
Since
Alef, T) = Alef, T*) = 3D, T) = DS, T) + (),

it follows that D(f,7) > D(f,T*). However from Theorem 13 we have
D(f,T)=D(f, T*). Hence A(ef,T) = A(ef, T*) by Lemma 14. 0

An interesting problem here is to construct a polynomial time algorithm
for finding piecewise linear interpolating surface of least area.

For a triangle T let 6,in(7T) denote the smallest angle of T. If 7T is a
triangulation we set

Opnin(T) = min{0pn (T) : T € T }.

Lemma 15 Let ABCD be a strictly convex quadrilateral. Assume that the
triangles ABD and BCD form a Delaunay triangulation T. Let T* be the
triangulation ABC and ADC. Then

Gmin(T) 2 Gmin(T*)
with equality if and only if the vertices all fall on a circle.

ProoF: Let {a;}}, and {3;}7_, be the angles in 7 and 7* that are pairwise
opposite the same side.
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Let a,b,c,d denote the interior angles of the polygon at the vertices
A, B,C, D. Notice that a = B + 4 50 @ > Opin (T*). Similarly ¢ > 6,0 (7).
If the vertices fall on a circle then o; = 3; for 1 <i < 4. Hence

emin(T) = emin(T*)
in this case.

Assume now that the vertices do not fall on a circle. Set 6* = 0,,;, (7). If
0* € {a, c} then we are done by the above inequalities. If 6* € {a,..., a4},
say 0* = «j, we have the following. Let C* be the intersection between
the circumcircle to ABD and the line segment [A,C]. Let {57}, be the
angles in the polygon ABC*D that correspond to the 3;:s. Then 37 > (3, so
0* > 51 > Omin(TF)- d

Theorem 18 Let T be a Delaunay triangulation of the set S. Assume that
T* is a triangulation of the conver hull of S with verter set S. Then

omin (T) 2 emin (T*) -

PrROOF: The theorem is a direct consequence of Lemma 15 and the flip
algorithm. O

A reference for the previous theorem is [34].

For a triangulation 7 we let ©(7) = {6;(T)} denote the collection of all
triangles in 7 sorted in increasing order. If 7; and 75 are two triangulations
with the same number of triangles then we say that ©(73) is lexicographi-
cally greater than O(7;) if there is an integer m such that

HJ(B) = 0](71) for j <m

and

O (T2) > O (T1)-

Corollary 1 Let T,7T™* be two triangulations as in Theorem 18. If T* is not
a Delaunay triangulation then ©(T) is lexicographically greater than O(T™).
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PRroOF: It follows from Lemma 15 that the flip algorithm makes the angle
sequence lexicographically greater. O

A reference for the previous result is [35].

4.4 Farthest Delaunay Triangulations

A farthest Delaunay triangulation is characterized by the property that the
circumcircle of each triangle contains the vertex set of the triangulation. This
is only possible if the vertices are the extreme points of their convex hull.
More precisely we have the following definition.

Definition 1 Assume that S is the set of vertices of a strictly conver poly-
gon. Let T be a triangulation of conv(S) with vertex set S. T is called a
farthest Delaunay triangulation is S C A(T) for allT € T, where A(T)
denotes the closed disk whose boundary contains the vertices of T.

Let f(z) = |z*, z € R? and let S; = {(p, f(p)) : p € S}. Let {F;} be the
faces of the upper part of the convex hull of S;. Triangulating the projection
of each of the faces F; yields a farthest Delaunay triangulation.

Let R be a strictly convex quadrilateral and assume that the vertices of R
do not lie on a circle. Then R has exactly two triangulations — one being the
Delaunay triangulation and the other the farthest Delaunay triangulation.

We shall now describe the analogue of the flip algorithm for farthest
Delaunay triangulations.

Let 7 be a triangulation and assume that e is the diagonal of a strictly
convex quadrilateral R formed by two triangles in 7 with a common edge
e. Assume that the vertices of R are not cocircular. The reversed flip
algorithm consists of making a diagonal swap to obtain the farthest Delau-
nay triangulation of R. The flip algorithm consists of selecting the Delaunay
triangulation of R.

Theorem 19 Let S be the vertexr set of a strictly conver polygon and let T
be any triangulation of conv(S) with vertex set S. Applying the reversed flip
algorithm to T terminates in a farthest Delaunay triangulation of S.

PRrROOF: Let R(T) denote the radii of the circumcircles of the triangles in
T sorted in increasing order. If 77 is a triangulation obtained by applying
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the reversed flip algorithm then R(7) < R(7") and at least two components
differ. Hence the algorithm must terminate.

We shall now prove that if the reversed flip algorithm has terminated
with a triangulation 7* then 7* is a farthest Delaunay triangulation. Let
N be the number of elements in S. The result is obvious if N < 4. For T
a triangle let A(T') be the closed disk whose boundary contains the vertices
of T. Suppose that there exists a Ty € 7* such that for some p € S we
have p ¢ A(T}). Let e be an edge of Tj that separates p from Ty. Let H be
the closed half plane determined by e that contains p. Set S* = S H and
T*={TeT*:T C H}. Since S* has fewer elements than S it follows
by the induction assumption that 7** is a farthest Delaunay triangulation
of S*. Let Ty € T** be the triangle that has e as an edge. Then R =T, |J T}
is strictly convex. Since p € A(T}) but p & A(Ty) we have that the vertices
of R are not on a circle. Also Ty C A(Ty) and Int(7y)(H = (0. This is
impossible. 0

Using our previous notation we have the following properties of farthest
Delaunay triangulations.

Theorem 20 Let S be the vertex set of a strictly convex polygon. Let a,b €
S, a # b, and assume there is a closed disk B such that S C B and a,b € 0B.
Then there is a farthest Delaunay triangulation T of S such that |a,b] is an
edge of T. Assume there is a closed disk A such that S C A and a,b,c € 0A.
Then the triangle with vertices a, b, c is a triangle in some farthest Delaunay
triangulation of S.

Theorem 21 Let S be the vertex set of a strictly convex polygon. Let T be a
farthest Delaunay triangulation of S. Let T* be any triangulation of conv(S)
with vertex set S. Then the following holds:

1. Rmax(T*) < Rmax(T).
2. Ryin(T*) < Ruyin(T)-
3. R(T*) < R(T).

4. If ® € Agymy then
Oi(T™) < Dr(T).

5. If f S — R is any function then
D(f,T*) <D(f, 7).
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6. emin(T) S Hmin(T*)-
7. ©(T*) is lexicographically greater than ©(T).

4.5 General Properties of Voronoi Diagrams

The Voronoi diagram is a basic structure for the understanding of point sets
in a metric space. It is a natural tool for analyzing the geometric distribution
and internal relations of data points. Here is the general definition. Let S
be a finite set of points in a metric space X with metric §. Set

Vs(p) ={z € X : 6(z,p) < min{é(z,q) : ¢ € S\ {p}}},

i.e. Vs(p) is the set of points = that are not closer to any other point in S
than to p. We call Vs(p) the Voronoi cell associated to p.

Proposition 3 The Voronoi cells have the following properties:
1. pe Vs(p) forallpe S
2. UpES Vs(p) = X
3. If x € Vs(p) ( Vs(q) then 6(z,p) = o0(z,q).

We call the collection of all Voronoi cells the Voronoi diagram of S.
As an indication of its usefulness, the Voronoi diagrams has independently
been ”discovered” in many fields, for a discussion of this see [2] and [40], in
particular pp 6 — 10 in [40].

There are several natural extensions. For instance, we can associate to
every subset Y C S, Y # (), the generalized Voronoi cell Vs(Y) by letting

Vs(Y)={zeX:for all peY and all g€ S\Y d(z,p) <d(z,q)}

That is Vs(Y') is the locus of all points z such that each point in Y is at
least as close to z as to any point in S\ Y. Of course, it may happen that
Vs(Y) is empty. The Voronoi diagram is of order £ if it is the collection of
all (non-empty) generalized Voronoi cells of subsets of S with k£ elements.

Recently, there has been an interest in a still more general construction.
Let Eq, Es, ..., Exn be N closed subsets of X and let

dip(z) = inf{d(z,y) : y € Ex}.
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We consider the cells defined by

{z € X : di(z) <min{d,(z) : j # k}}.

For more about this see [40].

4.6 Classical Voronoi Diagrams in the Euclidean Plane

We shall in this section let S C R? be a finite set of points that is not
included in any line. In particular, S has at least three elements. In this case
the Voronoi cell

Vs(p) = {z € R?: |z — p| < min{|z — ¢| : ¢ € S\ {p}}}
is a possibly unbounded polygonal domain. Therefore Vs(p) is often called

the Voronoi polygon associated to p.

Let p and ¢ be two distinct points in R? and let b(p, q¢) be the line that
perpendicularly bisects the line segment [p,¢q]. We call b(p, q) the bisector
to p and ¢q. The bisector divides the plane into two half planes and we denote
by H(p, q) that closed half plane that contains p.

Proposition 4 For all p € S we have that

 Hpa),

€5\ {p}
and
U Vs(p) =
peS
Ifp,q e S, p#q, then
Int(Vs(p)) () Int(Vs(q)) = 0.

Vs(p) is a closed conver polygonal domain with non-empty interior. More-
over, Vs(p) is unbounded if and only if p € S dconv(S).

Proor: If p € S() Int(conv(S)) then there is a triangle T" with vertices in
ext(S) such that p € Int(7). It is easily seen that

= () Hpo

g€ext(T)

is bounded. Hence Vs(p) is bounded in this case, which easily yields the
proposition. O
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We call the edges of the Voronoi polygons for Voronoi edges. We will
say that a Voronoi edge e is generated by p,q € S'ife = Vs(p) [\ Vs(q). The
vertices of the Voronoi polygons are called Voronoi vertices. The following
proposition is an immediate consequence of Proposition 4.

Proposition 5 All Voronoi edges are half lines or bounded line segments.
Let the Voronoi edge e be generated by p and q. Then e is bounded if and
only if

[p, q] ﬂ Int(conv(S)) # 0.

Moreover, e is unbounded if and only if

[p, q] C O(conv(S)).

Proposition 6 Let p € S and let ¢ € S\ {p} be the point in S\ {p} that is
closest to p. Then p and q generate a Voronoi edge.

PROOF: Let n = Z% It is enough to show that [p,7n] does not intersect

any Voronoi edge generated by p and some w € S\ {p,q}. If 5, € [p,7n]
belongs to the Voronoi edge generated by p and some w € S\ {p, ¢} then

[P~ wl Ip—ql
<lp=nnl<lp=nl= .
5 P = 1| < [p =7 5
Since ¢ was closest to p we must have [p — w| = |p — q| = |p — 7m|- Hence
1 = Nm, Which is impossible because w # gq. 0

Let Qs be the collection of all Voronoi vertices for S. Since the Voronoi
polygons are convex, at least three Voronoi edges meet at any Voronoi vertex.

Proposition 7 For g € Qg let A, be the mazimal closed disk A centered at
q such that Int(A) (S =0. Then 0A,(S has at least three elements.

PROOF: For q € Qg let
V*(q) ={p € S:Vs(p) has a vertex at g¢}.

If p1,p2 € V*(q) share an edge then |¢ — p1| = |¢ — p2|. Let r be the common
value of {|p —¢| : p € V*(¢)}. Pick py € 0A,()S. From the definition of
Vs(po) follows that ¢ € Vs(pp), i.e. pp € V*(q). Hence 0A, (S = V*(q) and
since V*(q) has at least three elements we are done. 4
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For ¢ € Qg let V& (g) be the points p € S for which Vs(p) has a vertex at
q. We denote by Ws(q) the closed convex hull of V& (q).

Theorem 22 We have that

U Ws(q) = conv(S). 9)

9€Qs

If 1,92 € Qs with g1 # qo then
Int(Ws(q1)) ﬂInt(Ws(Qz)) = 0. (10)

Moreover, V§(q) is contained in a circle centered at q.

PROOF: Let A, be the maximal disk centered at ¢ for which Int(A,) [ S = 0.
If ¢ € Qs then Vg (q) C 0A, by Proposition 7. Hence Ws(q) C A, () conv(S).

We shall now establish (10). Let ¢, ¢ € Qs with g1 # go. If
Int(A,, ) NInt(A,,) = 0 then (10) follows trivially. Assume now that

Int(Ag) () Int(A,) # 0.

Neither A, nor A, is contained in the other. Hence 0A, ()04, consists
of two points z; and z9. Let [ be the line through 2z; and z5. Then [ separates
g1 and ¢, and let H; be the closed half plane determined by [ such that
¢; € H,;. Clearly Int(H;)(Int(Hy) = 0. Clearly V&(qi)(Int(A,,) = 0.
Since V¢ (q1) C Ay, if follows that

Vi(q) C Ay, \ (IntA,,) C Hi.
Similarly
Vs (g2) C Ho.
Hence Ws(q1) C Hy and Wg(qe) C Hs, which yields (10).
Let X =, o, Ws(q). Clearly X C conv(S) but assume X # conv(S).
Hence there is a non-empty disk B such that B C conv(S) but X (X = 0.
Let | be any line such that [(\B # 0, [[\S = 0 but (" Int(Ws(v)) # 0

for some v € Qs. Let z be any point in B[l and let w € [[|X be a
point that is closest to z. Then w € Wg(g;) for some ¢; € Qs. In addition,

INInt(Ws(q1)) # O and w belongs to a unique edge [p1, p2] of Ws(gq:). Of
course pi,py € 5.
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Let e be the Voronoi edge that crosses [pi,ps]. Then ¢; is an end point
of e. Furthermore, e is generated by p; and p,. Let [; be the line through p;
and po. Let p3 € V& (q1) be different from both p; and pe. Then I; separates
x and p3 so [p1, p2] () Int(conv(S)) # (. From Proposition 7 we have that
e must be bounded. Let ¢» be the end point of e that is different from g;.
Now p1,p2 € Vi(gz). Hence w € Int(Ws(q1) [\ Ws(g2)), so w € IntX. This
contradicts the definition of w, which yields the theorem. O

Triangulating each Wg(q) gives now a Delaunay triangulation.

Corollary 2 Let T be a triangulation of conv(S) with vertex set S such that
each T € T is contained in some Ws(q), ¢ € Qs. Then T is a Delaunay
triangulation for S.

PrROOF: Immediate consequence of Theorem 22. U

For p € R? let h, be the half space
{(z,y) :z€R*yeR and y>2<z,p>—[p|’}.

Then the boundary of h, is the tangent plane to the paraboloid y = |z|? at
x = p. Let 7 : R® — R? be the projection that sends (z,y) into z. An
easy computation shows that z € w(0h, [ hy) if and only if |z —p| < |z —¢].
Hence we have the following method for constructing the Voronoi diagram
in R2.

Proposition 8 Let hg be the polyhedron

hs = () hy.

peS

Then the Voronoi polygons for S are the projections of the faces of hs.

4.7 Pattern Recognition and Subgraphs of Delaunay
Triangulations

For pattern recognition one has developed several graphs associated to a point
set. We will in this section describe some of these and their relationships to
Delaunay triangulations.
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Throughout this section we let S denote a finite point set in R? that is
not contained in a line. In particular, there are at least three points in S.

Setting f(z) = |z[?, = € R?, we let Sy = {(p, f(p)) : p € S} be the lift of
S. Denote by Lg the lower part of the convex hull of Sy, see section 4.1. We
let DG(S) be the Delaunay graph of S, i.e. the graph with vertex set S
and pq is an edge in DG(S) if and only if (p, f(p)) and (¢, f(gq)) are the end
points of an edge of Lg. Notice that DG(S) is a subgraph of the skeleton of
any Delaunay triangulation.

Let S be the vertex set of a convex polygon and let Us denote the upper
part of the convex hull of S;. We denote by F'DG(S) the farthest Delaunay
graph, i.e. the graph with vertex set S and p,q € S form an edge if and
only if (p, f(p)) and (g, f(q)) form an edge in Ug. For a general set S we let
FDG(S) denote FDG(ext(S)).

The Gabriel graph, see [23], [37] and [58], is used for defining adjacency
in point patterns. If p,q € S, p # ¢, then pqg is an edge in the Gabriel
graph GG(S) if and only if

Apq S\ {p.q}) = 0,

where A,, is the closed disk that has [p, ¢] as a diameter.

Theorem 23 The Gabriel graph GG(S) of S is a subgraph of the Delaunay
graph DG(S) of S.

PROOF: From Theorem 10 follows that every edge in GG(S) is the edge of
some triangle in some Delaunay triangulation of S. Assume that pq is an edge
in GG(S) but pq is not an edge in DG(S). Let T be a triangle in a Delaunay
triangulation of S such that [p,¢] is an edge of 7. Let A be the closest
disk whose boundary contains the vertices of 7. Then Int(A)(S = 0 and
A NS\ {p,q}) # 0. hence [p,q] is not a diameter of S. Let h,, h_ be the
two open half planes determined by the line through p and ¢. Since [p, ¢] does
not belong to DG(S) we must have A(\S(hs # 0 and A(\Sh- # 0.
Since A # A, we must have that A (A, or A h_ is contained in Int(A,,).
This contradiction establishes the theorem. U
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If p # q we let Ly, denote the lune
Ly, ={weR?: |w—p| ST}ﬂ{wER2 w —q| <},
where r = |p — ¢|.

We can now define the relative neighbourhood graph RNG(S) of
the set S. For reference see [57] and [56]. If p,q € S then pq is an edge of
RNG(S) if and only if

Int(Ly,) (]S = 0.
Since Ay, C Ly, and Ay, \ {p, ¢} C Int(L,,) we have the following result.

Theorem 24 The relative neighbourhood graph RNG(S) is a subgraph of
the Gabriel graph GG(S).

A Euclidean minimum spanning tree of S, the set of such graphs is
denoted by EMST(S), is a tree having the vertex set S and for which the
sum of the length of all edges attains the minimum over all trees having the
vertex set S. See [25] and [48].

Theorem 25 An edge of an Fuclidean minimum spanning tree for S is an
edge of RNG(S).

PRrROOF: We will argue by contradiction. Assume pgq is an edge of a Euclidean
spanning tree G that is not an edge of RNG(S). Removing the edge pg from
G splits G into two subtrees G; and Gy, say p is in G; and ¢ is in G5. Our
assumption means that there is a w € Int(L,,) () S. We may without loss
of generality assume that w € G;. We now get a connected graph G35 by
taking the union of G; and G5 with the edge wq. Since the total length of
the edges in Gj3 is smaller than the total length of the edges in G' we get a
contradiction. d

The above subgraphs of the Delaunay triangulation are all undirected. We
shall now introduce a directed graph of S, the nearest neighbour graph
NNG(S), by letting pg, p # ¢, be an edge if and only if

Ip— gl = min{|p — w[: w € S\ {p}}.
For reference see [33], [50] and [43].
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Theorem 26 Letp,q € S, p# q. If pg is an edge in NNG(S) then pq is an
edge in RNG(S). If there is no other edge in NNG(S) having initial vertex
p then pq is an edge of every EMST(S).

PROOF: The first statement is obvious. We shall now prove the second part.
Assume to the contrary that pg is not an edge of a Euclidean spanning tree
G. Let (G; be the graph one gets by adding pg as an edge to G. Then G,
has a cycle I' that contains pq. Hence there is a w € S\ {p, ¢} such that pw
is an edge of G that is on I'. Let G5 be the graph one gets by removing the
edge pw from G;. Then G4 is a spanning tree for S. Since the edge pq is
shorter than pw we have that the total length of the edges in G5 is smaller
than that of G. We get a contradiction. O

We next quote a remarkable result from [29].

Theorem 27 Let T be a Delaunay triangulation of S. For p,q € S let
D(p,q) denote the length of the shortest chain of edges of T connecting p
and q. Then

D(p,q) < Clp— 4,

2T

R 2.42.
3cos(%)

where C =

For a proof see [29].

We shall now describe a generalization of the convex hull of S. This gen-
eralization leads to a one-parametric family of subdivisions which intuitively
connects the “crude” and “fine” shape of S.

The generalization of the convex hull is based on the notion of a—disks
with o any real number. This is

1
1. closed disks of radii — if a > 0;
Q
2. closed half planes if o = 0;
. N
3. the complements of closed disks of radii —— if a < 0.
Q
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We now define the a—hull of S as the intersection of all a—disks that contain
S. We denote the a—hull of S by Hull,(S). We will use the convention that
Hull,(S) is the entire plane if S is not contained in any a—disk. We have the
following result.

Proposition 9 If oy < ay then Hull,, (S) C Hull,, (S5).

PROOF: Assume A, is an as—disk that contains S. Since A, is the intersec-
tion of all o;—disks that contain A, we have that

Hullal (S) C AQ.

Taking the intersection of all ap—disks that contain S yields the proposition.
O

We shall now introduce the notion of a-shape. A general reference for
a-shape is [20] and [19] chapter 13.2.6.

We say that a point p € S is a-extreme if for all sufficiently small € > 0
there is an (a + €)-disk B, such that S C B,y and S()0Bste = {p}
Assume now that p,q € S, p # q. We will say that an a-disk B, leans on
the ordered pair (p,q) if p,q € 0B, and an infinitesimal movement of B,
normal to and towards the left of the vector ¢ — p puts p and ¢ outside B,.

Furthermore the ordered pair (p,q) is said to be a-exposed if for all
sufficiently small € > 0 there is an (a + €)-disk By, such that S C B,y and
B, leans on (p, q).

Let [,, denote the line through p and ¢ that is directed from p to g. We
note that (p, ¢) is 0-extreme if and only if [p, ¢] is an edge of conv(S) and no
point of S lies to the right of /.
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Proposition 10 Suppose p,q € S, p # q. Then the following holds:

1.

There is a real number A, such that p is a-extreme if and only if o <
A,.

Suppose (p,q) is a-exposed for some o. Then there are real numbers
A,q and By such that (p,q) is a-exposed if and only if Apy < o < By,

If (p,q) is a-exposed then both p and q are a-extreme.

If &« > 0 and p is a-extreme then there is a w € S\ {p} such that (p, w)
18 a-exposed.

PROOF: We now give the arguments for the statements in the order they are
stated.

1.

Let I, be the set of all o such that p is c-extreme. Clearly I, is bounded
from above and I, # (. By elementary geometry we see that if § € I,
then there is an € > 0 such that (—oo, 5+ €) C I,,.

. Let I,, be the set of all « such that (p, g) is a-exposed. By assumption

I, # 0. Clearly I, is a bounded set. Let I3, be the set of p € R such
that there is a p-disk B, with S C B, and B, leans on (p,¢). Assume
oy < ag and ay, oy € I,,. By elementary geometry we have that if e > 0
is small enough then [oq, s + €) is contained in I,,. Hence I, is an
interval. Let Ay, = inf I, and By, = sup I,. Clearly (Ayy, Byg) C I,
Hence Apq € Ipg 50 Ipg = [Apg, Bpg)-

This is an immediate consequence of the definition of a—exposed.

. Since the result is obvious for o« = 0 we will assume o > 0. Let B be the

smallest closed disk such that S C B and p € 0B. Pick p* € 0B such
that [p, p*] is a diameter of B. Let A\ be the ray that originates in p and

1
passes through p*. Let @) be the circle with radius — and center p. If p
«
1
denotes the radius of B then p < —. Let py be the intersection between
Q

1

Q@ and A. Let A, be the disk centered at ¢ with radius —. Notice that
e

B C Ay-. In particular, S C Ay« and (S'\ {p}) 04, = 0.
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We have that p € 0A, for all ¢ € . Starting at ¢ = p* we now move
¢ in the counter clockwise direction along @ until (S'\ {p}) 94, # 0.
Again let ¢ denote this point on @ and set E = (S \ {p}) (A, Let
w € E be the furthest from p. Since S C A, it is easily seen that (p, w)
is a—exposed.

d

Let S, be the points p € S such that for some g € S we have that (p, q)
or (¢,p) is a—exposed. We define the a—graph EG,(S) as the graph on S,
such that p,q € S, form an edge if and only if (p, q) or (¢, p) is a—exposed.

Theorem 28 Let o € R and assume e is an edge in EG,(S). If a > 0 then
e is an edge in FDG(S). If a < 0 then e is an edge of DG(S).

PRrROOF: This is an immediate consequence of Theorem 20 and Theorem 10.
O
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5 Arrangements

Arrangements form one of the important structures in computational geom-
etry. We slightly touch on the notion of duality and use results on Schinzel-
Davenport sequences to prove the zone theorem.

5.1 Duality

We study two applications of geometric duality. The first one yields a fast
algorithm for computing the minimum area triangle from among n points
in the plane, see [12]. The second one gives a preprocessing algorithm for
answering “ray-shooting” queries quickly, see [11].

Min-Area Triangles

To find the minimum area triangle, we first focus our attention on the
problem of finding a min area triangle that has two fixed points P; and P;
chosen as the “base” of the triangle. Our task reduces to finding for each
pair of points, P; and P;, the point P, whose normal distance to the line
through P; and P; is the least. Say the line ¢ through P;P; has slope m and
y intercept c. For all lines having slope m, through other points, the line
through P, has y intercept nearest to c. Call its intercept ¢’. (This follows
from the fact that the normal distance between the lines is proportional to
their y intercepts.)

In the dual, this line will be the first point vertically below (above) the
point of intersection of the duals of P; and P;. This intersection point will
have coordinates, (m, '), and the line closest to this, and vertically below
(above), is the dual of P, passing through the point (m, ¢').

To compute point P, for every pair of points P;P;, we construct the
arrangement of the dual graph. While constructing the arrangement, we
keep track of which line is immediately below which point. This can can
easily be done while constructing the arrangement itself. (Recall that in the
proof of the zone theorem, we do a “walk” around each face that the new line
is incident to. While doing this weak we can perform the required updates.)
This gives us all the information we need. To compute the min area triangle,
we minimize over all P; and P;, which can be done in O(n?) time, where n
is the number of points.
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Ray-Shooting

Given a simple polygon P of n vertices, we wish to preprocess this polygon
to answer ray-shooting queries of the following form: given a query point
g € P and a direction ci: which is the first edge of the polygon that is hit
when we shoot a ray from ¢? We will show that these queries can be answered
in O(log®n) time. (Chazelle and Guibas provide a more complex O(logn)
query time algorithm as well.)

The main idea is to decompose the polygon into a “hierarchy” of polygons.
We use the “polygon-cutting theorem” of Chazelle’s to do this. The polygon
cutting theorem states that every simple polygon with n vertices (n > 3)
contains a diagonal such that adding the diagonal, partitions the polygon
into two polygons P; and P,, with each P, having at most %n vertices.

We now construct a tree using this decomposition. The vertices of this
tree correspond to polygons. The root corresponds to the polygon P. We
apply the polygon cutting theorem to P, and the children of this vertex
correspond to polygons P, and P, respectively. We now apply the polygon
cutting theorem recursively to each node, until the corresponding polygon
is a triangle. Observe that the height of this tree is O(logn), since we are
reducing the size of the polygons by a constant factor at each step. For
any polygon P, let P(e) denote the diagonal that is used to decompose the
polygon. We assume that each node in the tree has the diagonal information
available.

The polygon cutting theorem can be proved using the fact that the dual
of the triangulation is a tree, and we can prove that each such tree (vertices
with degree at most 3) always contains an edge that partitions the tree into
smaller trees with at most %n vertices.

We solve the query hit(P, q,cf) as follows. We assume that ¢ € P. If
g € P, then the only way the ray can exit the polygon from §P, is if it
crosses edge P(e) without crossing any polygon boundary of P;.

Step 1. (Assume that ¢ € Py.) If the ray from point ¢ with direction d does
not intersect edge P(e), then recursively solve hit(P,q,d).

Step 2. If the ray appears to pierce p(e) at point p, then we have to check if
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the ray is able to reach P(e) from ¢. If so, we recursively solve hit(Ps,p,d)
else we recursively solve hit(P, g, d).

We still need to check if the ray from ¢ reaches P(e). We do this by shooting
a ray from p towards ¢. If the ray reaches ¢, then the ray from ¢ must reach
P(e). Compute o = reach(Py, p, —d) — if the segment po contains ¢ then the
ray from ¢ in direction d reaches p, otherwise it crosses the boundary at an
earlier point. This reduces the problem to another ray shooting query. Why
is this query any easier to solve?

We will show that such queries are simpler, since they are being shot from
a particular edge on the boundary of P;, namely the edge P(e). Chazelle
and Guibas make use of a duality transformation that establishes a corre-
spondence between points (on a two sided plane) and rays.

Any ray 7; shot from P(e) becomes a point p; in dual space. We decom-
pose the dual space into “regions” with the property that if two rays r; and
o from P(e) hit the same edge €’ (perhaps at different places) then the points
p1 and p, are in the same “region”. Moreover, they prove that this region is
convez. The main idea is that any query ray 7’ shot from edge P(e) can be
transformed into a point p', and by doing a point-location query in O(logn)
time, we can determine the edge that ray 7’ hits (based on the region it falls
into). Once we know the edge, it is easy to compute the intersection point.
This takes O(logn) time.

The entire algorithm takes O(log®n) time, since we start at the root of
the polygon tree, and proceed down the tree doing a point location query
at each level. The tree has O(logn) levels, and each point location takes
O(logn) time. Further data structure tricks are used to reduce the query
time to O(logn).

5.2 Davenport-Schinzel Sequences

A Davenport-Schinzel sequence is a sequence U = (u1, ... ,Uuy,) constructed
over an alphabet of size n. We define a Davenport-Schinzel sequence of
order s as follows (referred to as DS(n,s)). There are two conditions that
these sequences are required to satisfy.

1. u; # u;y for each 7 < m.

2. There do not exist s+ 2 indices 1 <41 < i < ... < 1540 < m such that
Uiy = Ujy = Ujy = ... =0
Uiy = Uiy = Ujg = ... =0

and a # b.
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This means that the presence of long alternations of any pair of distinct
symbols in Davenport-Schinzel sequences are forbidden. As an example we
see that 122341 is not a DS sequence since 2 occurs consecutively, and that
14234132 is a DS sequence of order 3, but not of order 2, since there is an
alternating subsequence 1...2...1...2.

Let As(n) be the length of a longest DS(n, s) sequence. We are interested
in deriving good upper bounds on As(n), as function of n. These sequences are
interesting since they can be used to derive upper bounds on the complexity
of lower envelopes of line segments, lower envelopes of more general functions,
as well as obtaining an alternate proof of the zone theorem. They are very
often used to obtain simpler proofs of the complexity of various combinatorial
structures as well. In short, they are very useful! For the origin of this notion
see [15] and [16].

We first give some results for A\s(n) for s = 1,2, 3.
Lemma 16 )\ (n) =n

PROOF: We note that (1,2,...,n) is a DS(1,n)-sequence so A;(n) > n. To
prove the reverse inequality let U be a DS(1, n)-sequence. U cannot take the
form (...a...b...a...) for any a # b and therefore the elements in U must
be distinct. Hence |U| < n. O

Lemma 17 \(n) =2n—1

PrRoOOF: Wenote that (1,2,...,n—1,n,n—1,...,2,1)isa DS(2, n)-sequence
so0 Ag(n) > 2n — 1. The reverse inequality is proved by induction. The case
n = 1 is obvious. Assume the statement is true for n — 1 and let U be a
DS(2,n)-sequence (over the alphabet consisting of 1,2,...n). VLOG? we
can assume that the leftmost occurrence of i is to the left of j iff* i < j.
This implies that there can be only one occurrence of n in U otherwise there
must be a subsequence of the form (i,...,n,...,i,... ,n) which is forbid-
den. Remove the single occurrence of n, and if the symbols adjacent to n
are the same remove also one of these from U. The resulting sequence is a
DS(2,n — 1)-sequence and it is one or two elements shorter than U. The
induction hypothesis yields |U| <2(n —1) —1+4+2=2n—1. O

Lemma 18 A3(n) < 2n(1 + logn)

3VLOG="without loss of generality”
4iff="if and only if”
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ProOOF: We prove this by induction. Let a be the least frequently occurring
character in the sequence. An upper bound on the number of times it occurs
is ’\37(”) Deleting all copies of a yields a sequence that can potentially have
consecutive characters. However, at most 2 such consecutive characters are
generated (one each, from the first and last occurrence of a). Otherwise, the
sequence has the form ...a...bab...a... and is not a DS sequence or order
3. The remaining sequence is a DS(n — 1, 3) sequence of length Az(n — 1).
Hence, an upper bound on A\3(n) is A3(n—1) + )‘ST(n) + 2. Simplifying, we get
(1=1/n)A3(n) < A3(n—1) + 2.

This is the same as )‘37(") < % + % Expanding the recurrence gives

the upper bound. O

Zone Theorem

We now study some applications of these sequences. The first application
is to obtain a new proof of the zone theorem.

Let ¢ be the new line that is being inserted. We would like to prove that
the total complexity of the faces that ¢ intersects is O(n). We do this as
follows. Assume /£ is horizontal. We will show that the complexity of the
portion of the faces “above” / is 4n. Assume no two lines are parallel. With
this assumption the highest vertex on any face is unique (since no other line
is horizontal). As we traverse the faces in clockwise order, we output the line
number each edge belongs to. Lines are labelled with distinct numbers. We
create two sequences, a left edge sequence and a right edge sequence. For
the edges before the highest point in the clockwise traversal of a face, the
line numbers are appended to the left sequence (LS), and the edges after the
highest point in the traversal, the line numbers are appended to the right
sequence (RS).

We claim that each list is DS(n, 2) sequence. The first condition is easy to
establish. The second condition is established by a “picture-proof”. Consider
the right sequence. If it contains a...b...a then it cannot contain b again.
Make a picture!
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This proves that the total complexity of the faces above £ is at most 4n.
This gives us a bound of about 8n. Since the lines that cross ¢ were counted
twice, we can reduce this to 6n. However, the tight upper bound is %n

Closest Pair/Nearest Neighbors of Moving Points

Let P be set of n points in the plane that are moving along predefined
trajectories. Let x;(t) and y;(t) denote the position of point p; at time t.
Assume that these functions are polynomials of a fixed degree s. We fix our
attention on point p;, and let g;;(¢) be the square of the distance from p; to p;
at time ¢. Clearly, g;; is a polynomial of degree 2s. Let G;(t) = min;; ¢;;(¢).
The function G;(t) is a minima of n — 1 functions. Each pair of functions
gi; and g;; pairwise intersect in at most 2s points, since that is the degree of
the polynomial defining them. We now claim that the number of intersection
points on the lower envelope is at most Ays(n — 1). This is because if two
functions appear 2s + 2 times alternately on the lower envelope is at most
Ags(n — 1). This is because if two functions appear 2s + 2 times alternately
on the lower envelope, then they must have 2s + 1 intersection points. This
is an upper bound on the number of times the nearest neighbor of p; can
change.
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