Datum: 970617 Klockan: 8.45-13.45

Telefonvakt: Anette Wiberg 0740-479626 (minicall)

Inga Hjälpmedel

Tentamensskrivning in Diskret Matematik

The questions can be answered in English or in Swedish.

- 1. On the set $\mathbf{N} \times \mathbf{N}$ define the relation $(a,b) \leq (c,d)$ iff $a \leq c$ and $b \leq d$. Show that this defines a reflexive antisymmetric and transitive relation. How many elements (a,b) satisfy $(a,b) \leq (2,3)$? In general how many elements (a,b) satisfy $(a,b) \leq (p,q)$? Show that the relation (a,b) < (c,d) defined as usual by $(a,b) \leq (c,d)$ and $(a,b) \neq (c,d)$ is well-founded.
- 2. Let E be the set of infinite subsets X of $\mathbb N$ such that the complement $\mathbb N-X$ of X is also infinite. Give an example of an element of E. We define the relation X < Y on E by: $X \subseteq Y$ and $X \neq Y$. Show that < is not well-founded by giving an example of an infinite chain $X_0 > X_1 > X_2 \dots$
- 3. Give the definition of a *countable* set and the proof that the set $\{0,1\}^{\mathbb{N}}$ is not countable.
- 4. Find how many (i) functions (ii) one-to-one functions (iii) onto functions (iv) bijections there are from X to Y in these cases; in each case, justify your answer:
 - $X = \{1, 2\}, Y = \{1, 2\},$
 - $\bullet \ \ X=\{1,2,3,4,5\}, \ \ Y=\{1,2\},$
 - $X = \{1, 2\}, Y = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- 5. Classify each of the following propositions as a tautology, a contradiction or neither. Justify your claims by using truth tables or otherwise.
 - (a) $\neg P \rightarrow P$,
- (b) $((P \to Q) \to P) \to P$, (c) $P \lor (P \to Q)$,
- (d) $(P \lor Q) \to (P \land Q)$,

and finally

- (e) $((P \lor Q) \land (Q \lor R) \land (R \lor P)) \rightarrow ((P \land Q) \lor (Q \land R) \lor (R \land P)).$
- 6. In a boolean algebra, prove the following equivalence
 - (1) $a = b \iff (a \land b') \lor (a' \land b) = 0$
 - $(2) \quad a \wedge b \leq c \vee d \Longleftrightarrow a \wedge c' \leq b' \vee d.$
- 7. Apply the unification algorithm on the following pair of terms, with $C_3 = \{f\}$, $C_1 = \{g\}$ (C_n is the set of function symbols of arity n):
 - (a) f(g(y), g(x), g(z)) and f(g(x), g(z), g(g(y))),
 - (b) f(f(z,z,x),y,x) and f(y,y,z).

8. Let (a_n) and (b_n) be two sequences satisfying $a_0 = b_0 = 1$ and

$$a_{n+1} - b_n = 0$$

$$b_{n+1} - a_n - b_n = 0.$$

Find a recurrence equation for (a_n) of the form $a_{n+2} = Aa_{n+1} + Ba_n$. Give a closed form formula for a_n and b_n .

- 9. Which one of these formulae are valid? In each case, motivate your answer:
 - (a) $[\neg \forall x \ P(x)] \Rightarrow [\forall x \neg P(x)],$
 - (b) $[\exists x \neg P(x)] \Rightarrow [\neg \exists x \ P(x)],$
 - (c) $[\neg \exists x \ P(x)] \Rightarrow [\forall x \neg P(x)].$