Solutions to the first homework

1. From Hein’s book

2.3.6 It is straightforward that /1 —z = y iff z = y/1+y. Hence f has an inverse y — y/1+y
and hence is a bijection. Similarly ¢ has an inverse y — 1/1 + y and so is a bijection.

2.3.10 a. We can tell only that g is surjective. b. We can tell only that f is injective.

2.3.11 a. See Hein, page 783. b. Let g be injective. Suppose a1,a2 € A and a1 # as. In
this case g(ar) # g(az), which implies (g(ar), h(a1)) # (9(az), h(a2)), i.e. flar) # f(az).
Hence f is injective. Example: A = {1,2,3},B = {a,b} and C = {¢,d}. If g = {1 —
a,2 — a,3 = b} and h = {1 — ¢,2 — d,3 — d}, then neither g nor h is injective.
However, f is indeed injective.

2. If f: X - Y is a function from X to Y and A, B are subsets of X show that f(AN B) C
f(A) N f(B). Give an example where we have f(AN B) # f(A) N f(B). Show however that,
if f is injective then we have f(AN B) = f(A) N f(B).

Solution: y € f(ANB) = 3z € AﬂBf( ) = dz € A.f(z) = y&3z € B.f(z) =
y = y € f(A) N f(B). Example: = {1},B = { } and f(1) = f(2) = a. Further,
y € f(A)N f(B) = Jx; € A, x5 € B. f(:vl) = f(xzq) = y. If f is injective, then x; = x9 and

r1 € ANB. ThusyEf(AﬂB).

3. What are the elements of
X ={(4,B) | ACBCE}

for E = {1}? For E = {1,2}? In general, if | E| = n show that

n
|X| = Zo<k<n ( . ) 2k

by using a suitable partition X, 0 < k < n of X. Is there a simpler way to write | X|?

Solution: For E = {1} we have
= {((D,(Z)), (@,E), (E’E)}
and for E = {1,2} we have
X ={(0,0),(0,{1}), (@,{2}), (0, B), ({1}, {1}), {1}, B), ({2}, {2}), ({2}, B), (B, E)}.
If we take X = {(A4,B) € X | |B| = k}. It is clear that Xj’s are a partition of X for

0 < k < n. Furthermore, there are ") choices for B , and for each choice of B 2* choices

k

of A in building an element of Xj. Hence | Xy| = ( Z ) 2k and so

n
| X| = 2| Xg| = So<k<n ( L ) 2k

By the binomial theorem, this can be written simply as |X| = 3".



4. Let A ={1,...,8}. Remark that there exists a partition of A in four subsets A, As, A3, A4
such that |4;| = 2 and the sum of elements of each A4; is 9. Deduce that if we take 5 elements
ai,as,as,as,as of A then we can find ¢ < j such that a; +a; = 9.

Solution: We take A; = {i,9 — i}. By the pigeon-hole principle, two of the five elements
ai,a2,03,0a4,as are in the same Ay. If we write these elements a; and a; we have a;,a; € Ay
and by construction a; +a; = 9.

5. (More difficult, and not required for points) We recall that (Z/2Z,0,+) is the commutative
group of integers modulo 2, where z = y (mod.2) iff 2 divides z — y. Let U be a set. If A® B
is the symmetric difference on pow(U) show that xaep(z) = xa(x) + xB(x) (Mmod.2) and
deduce a new proof that the operation @ is commutative and associative. Notice then that
r €A D... 0D A, iff z belongs to an odd number of A;.

Let now (V, E) be a non oriented graph, that is V is a set and E is a set of pairs {z,y} of
elements in V. If ey, ..., e, form a path

e1 = {zo,z1}, e2 ={r1,22},..., €n = {Tp_1,2n}

prove that e; & ...e, = {z9,z,} if 2o # z, and e1 & ... e, =  if zyg = x,. Deduce from
all this a proof of one direction of Euler’s theorem: if there is an FKulerian circuit then each
degree has to be even, and if there is an Eulerian path between two vertices then these two
vertices are the only one with an odd degree.

Solution: One can see xagp(z) = xa(z) + xB(Z) (Mod 2) by studying the four cases
determined by whether x € A and z € B. Operation @ is commutative and associative
because so is + (mod 2).

If there is a Eulerian circuit then e; @ ...e, = 0, which implies that each of the z;’s belongs
to an even number of e;’s. Thus, each vertice’ degree has to be even. Similarly, if there is
a Kulerian path between two vertices then these two vertices are the only ones with an odd
degree.



