Computer lab for MAN460

(version 20th April 2006, corrected 20 May)

Prerequisites

Matlab is rather user friendly, and to do the first exercises, it is enough to
write an m-file consisting of two lines, and then to give one matlab command
before plotting the solutions. This is described in the appendix to these notes.
You should also look in the matlab online manual to get more information
about the different commands.

The objectives of the lab

One objective is to demonstrate some interesting phenomena related to or-
dinary differential equations.

e Phase portraits for linear systems
e The influence of damping and forcing on a pendulum; resonance

The non-linear pendulum: how does the frequency depend on the initial
values?

Stiff problems, with fast and slow components.
e The Hopf bifurcation
e Stability and instability

The lab also aims at demonstrating phenomena that are related to the nu-
merical calculation. In particular there is a discussion of implicit methods.

Finally, it also give an opportunity to become more comfortable with using
matlab as a tool.

Lab tasks

1. Let A be a 2 x 2 — matrix and x a solution to the system
J(t) = A-a(t), teR.

The trajectory {z(t) : t € R} is an ellipse, or else it approaches 0 or co, when
t — o0. The trajectory may be a spiral or a straight line. The shape of
the trajectory depends the the matrix A and the initial values. Demonstrate
different possibilities!

2. Study the differential equation
y'(t) + ay' (t) + wiy(t) = kcos(wt), tER,
for different values of o, k > 0 and wy,w > 0, and discuss the results.

Some interesting questions and phenomena are

e What happens if a = 0, and w = 0 (resonance)?

e How does the friction coefficient @ > 0 influence the amplitude and the
period in the case k = 07

e How does the period evolve if k # 0 and
a)a=0 b) a # 07

e Does there exist something which is similar to the resonance effect if
a#07?
3. Compare the solutions to the pendulum equation,
y'(t) +sin(y(t)) =0, teER,
and the linear equation (for the “spring pendulum”)
2'(t) +x(t) =0, teR.

Take the initial values 3'(0) = 2/(0) = 0 and y(0) = z(0) = « for different «.
It is interesting to investigate how the frequency (or the period) depend on
the initial value a.

4. The solution to an initial value problem may depend in a very sensitive
way on the initial values. The following system provides an example:

2"(t) = —sin(x(t)) — 0.22'(t) + 0.52 cos(0.666t), teR.

It is interesting to study the solution on the interval [200,350], where the
initial conditions (at time 0 (!)) are

a) (—0.0883;0.8), (—0.0885;0.8) (—0.0888;0.8).

The differential equation describes a certain kind of pendulum with an exter-
nal force. The appendix explains how to make a movie showing the motion
of the pendulum.

5. Plot the phase portrait to the Volterra — Lotka model for a predator prey
system. Is it possible to control the system by killing a given number of
predators at a given instant of time?

The Volterra — Lotka model is

() = ax(t) — bx(t)y(t)
y(t) = —cy(t) + du(t)y(t)

6. The Hopf bifurcation: the system of ordinary differential equations

o = a=m(o - LI,

o = oo (1- 29,

14y ()2

gives an approximate description of a chemical reaction; o and 3 are param-
eters.

et 3a 25
Q
b=~
If 8 > f3., then the amplitudes of the solution decreases, and the trajectories

are spirals that converge to some point.

If 3 < (3. then the solutions are oscillatory, and the trajectories converge to a
closed trajectory. The parameter value where the solution changes character
is called a bifurcation point, and in this case it is a so called Hopf bifurcation.

Suitable parameters for studying the system are e.g.
yl(O) :0, yg(O) :2, OStSQO, a=10

and # = 2 and § = 4. The critical parameter, §. = 3.5 is of particular
interest.

7. Use the explicit Euler method to solve the equation

Y0 = —sty(t) + 2 — 5, y() =1,

on the interval [1,25]. Chose the step-lengths h = 0.19, h = .21 and h = 0.4.
Compare the result with the exact solution

y(t) = %

Appendix A: Solution of IVPs with MATLAB

First we give som explicit, rather simple, examples, and then we explain how
to treat problems with parameters.
Example 1

You can do the following in order to get the solution to the initial value
problem

on the interval [0, 5]:
1 Skriv en file som heter a.m.
(the only requirement for the filname is that it ends with .m.

The file should contain the following line

function bp=a(t,x)

bp=-x;

2 Save the file

3 Use the following matlab commands:

>> [t,x]=oded45(0a, [0 5],1);
>> plot(t,x)

This shows you the solution.

Some comments to the command

[t,x]=0de45(@a, [0 5],1);

1. If a is the name of the function, then the file should be called a.m,
and the name of the function is sent to the first argument of ode45

with @a. If you use an old version of matlab, then you should write
[t,x]=0de45(’a’, [0 5],1);

2. [0, 5] is the interval where we want to compute the solution z(¢). Thus
one writes [7 12] if one wants to compute the solution over the in-
terval [7,12]. Here matlab choses how to divide the interval into sub
intervals to obtain the desired accuracy of the solution, and the vector
t will contain all the discretizatio points that matlab has choosen. It
is possible to replace [0 5] by e.g. 0:0.1:5 if one wants to decide the
discretization points. This may be useful in order to make nice plots
of the solution.

3. The intial value (in this case 1) is given as the third argument to ode45.
For a system of equations, this must be a column vector.

9,9

4. By removing ”;” one obtains more detailes. So, for example, by writing

>> [t,x]=ode45(’a’, [0 5],1)

one obtains a list of all ¢-values chosen by matlab, and the correspond-
ing values of z(t). For this example we get

t =
0
0.0502
0.1005
0.1507

and

1.0000
0.9510
0.9044
0.8601

which means that z(0) = 1.0000; x(0.0502) = 0.9510; x(0.1005) =
0.9044; x(0.1507) = 0.8601; ...

Example 2 If, for some reason, one would wish to compare the solution in
Example 1 with

z(t)?
1+ 12

7' (t) = — cos*(t) sin(), x(0) =1.

one procedes as in the previous example. It may not be very interesting to
compare the two solutions, but it is instructive from the point of view of
matlab.

1 Create a file b.m with the content

function bp=b(t,x)
bp=-cos(t) .*cos(t) .*sin(x.*x./(1+t.*t));

2 Use the following matlab commands:

>> [t,x]=o0ded45(@b, [0 5],1);
>> plot(t,x)

Now z contains the solution to this equation. To compare with the solution
from the previous example, you can proceed as follows:

>> hold on;
the command hold on keeps the previous graph when a new one is drawn
g

>> [t,x]=ode45(’a’, [0 5],1);
>> plot(t,x,’r’)

Now the solutions to Example 1 and Example 2 are shown in the same graph.
You should consult the manual pages to learn more about the numerous
options for the command plot. One of the more useful commands is axis,
and another one is title.

The command hold off is the opposite of hold on.

Example 3 In this example we consider a system of ode’s. Consider

() = baxi(t) + 2xa(t),
zy(t) = sin(z(1)),

1’1(3) = 4, .1'2<3) = 2,
on the interval [3,4]. To find the solution you may proceed as follows.

1 Create a file with the name c.m and which contains the lines

function bp=c(t,x)
bp=[5*x(1)+2*x(2) ;sin(x(1))];

(note that bp should be a column vector!)

2 Use the matlab command
>> [t,x]=o0de45(Qc, [3 4], [4;2]);

Matlab then computes the solutions x; and x5. The only difference with the
two first examples is that the initial value is a (column) vector;

[4;2] corresponds to the initial value x1(3) = 4, z5(3) = 2.

There are different options for plotting the result:

>> plot(t,x(:,1))

This would show the first component, x1, of the solution, and similarly
>> plot(t,x(:,2))

shows the second component.

The command

>> plot(x(:,1),x(:,2))

plots the trajectory {(z;(t),z2(t)) : 3 <t <4} C R

The time evolution of the two components of the solution can also be plotted
together in the same graph, e.g. with the command

>> plot(t,x(:,1),t,x(:,2),’r’)

Some comments about ode-solvers in matlab

e There is a large number of ode-solvers that from the point of view
of the user work in the same way: ode45, ode23, odell3, odelbs,
ode23s, ode23t, ode23tb. These methods are all described in the
matlab help pages. Some of these are particularly suitable for so-called
stiff differential equations. A stiff system of ode’s is one where there
are very different time-scales involved. For example, if you want to
make a model that accurately keeps track of the influence of the moon
on the pendulum of your grand father clock, then there are two very
disparate time-scales: the month (or at least the day), and the period
of the pendulum, say a second.

e With the command

[t,y] = ode4b5(@f, [t0,t1],y0)

the vector t will contain the time-points where matlab chose to evaluate
the solution, and y will contain the solution evaluated at these points.
If instead you give the command

sol = ode45(e@f, [t0,t1],y0)

then matlab returns a structure, sol, that contains all information.
This structure may be fed into the function deval to get easy access
of the result. An example is the following (taken from the matlab help

pages)

sol = ode45(@f, [0 20],[2 0]);

x = linspace(0,20,100);
y = deval(sol,x,1);
plot(x,y);

Here, in the first line, ode45 solves the system defined in a function
f.m and puts the result in the structure sol.

In the second line a vector with 100 elements, such that x(1) = 0,
x(100)=20, and all the other are evenly distributed so that they are
endpoints in 99 intervals (one point more than the number of intervals
is needed).

The third line extracts the first component of the solution to the system,
evaluated at all the points of x.

Finally the result is plotted.

Note that this is a more convenient (and efficient) way of obtaining the
solution exactly in the desired points, than to give a longer vector in-
stead of [t0,t1] to define the interval where the solution is computed.

One can supply more arguments to the ode solvers, and the full de-
scription is given in the help pages. For example, one can write

[T,Y] = solver(odefun,tspan,y0,options,pl,p2...)

The new arguments are options and pl, p2,.... The options argu-
ment can be used for changing the desired accuracy of the method,
putting limits on the step size, on the number of function evaluations
et.c. The argument is created by a function called odeset, which is
described in the help pages. The arguments pl, p2,... are used to
pass arguments to the function defining the differential equation. To
supply (two) user defined arguments without supplying an options ar-
gument, one can write

[T,Y] = solver(odefun,tspan,y0,’’,pl,p2)

So, for example, if one wishes to solve

Yy = ayy — agy’?
y(0) 1,

then one could create a file f.m with the following lines:

function yp = f(t,y,al,a2)
yp = alxy - a2xy.*y;

10

(please note the difference between “x” and “.x”!)

Then the call

[T,Y] = solver(ef,[0,10],1.0,’7,13.5,27)

would give the solution corresponding to the parameter values a; = 13.5
and ay = 27.0. In this way it is easy to change parameters without
having to rewrite the code. And it also makes it possible to compute
whole families of solutions corresponding to different parameters values
by using loops.

Note In the previous version of the lab description the same is achieved

using so-called global variables. Global variables are, however, rather
dangerous to use, and the method described here is preferable.

Example 4 Here is an example on how to make a movie ... it starts off as
in example 3. In the second step we solved the ode:

sol = ode45(@c, [0 20],[2 0]1);
x = linspace(0,20,500);
y = deval(sol,x,1);

Now we want to plot this so as to make a movie:

tail_length = 10; % do experiments with this

for j=1:500-tail_length+1;
plot(x(j:j+tail_length-1),y(j:j+tail_length-1),’red’))
axis([-2,2,-2,2]); % this is to fix the size of the plotting area
F(j) = getframe;

end

Now you will already have seen all the images for the movie, but you can
play it again without having to redo the calculation:

movie(F)

11

