Solution, Exam 2016-03-17, MMA 100 Topology

1. Prove or disprove the following claims for general topological spaces: (a) A continuous
injective mapping f : X — Y maps open sets U C X to open sets f(U) C Y. (b) Any
connected component of a topological space X is open.

(a). False. Counter example: Let f : R — R, f(x) = sinz, U = (0,47) is open and its
image f(U) = [—1, 1] is not open.

(b). False. Consider the set Q of rational numbers equipped with the Euclidean topology.
Its connected components are the singletons {r}, none of them is open.

2. Suppose C' C X is a compact subset of a Haussdorff space X . Prove that C' is closed.
— See the text book for the proof.

3. Let A and B be the following subsets of the Euclidean plan E?: A = {(x,n) € R%z €
R,n=1,2,---},and B = {(x,nz) € R} x € R,n =1,2,---}. Let X (respectively Y)
be the identification space of the plane R? with the subset A being identified with the origin
o = (0,0) (respectively B identified with o) and the rest of the points are themselvs. Prove

that X and Y are not homeomorphic. Does there exist an injective continous map from Y
to X?

Proof: X is Haussdorff where as Y is not, therefore they are not homeomorphic. Generally,
if some equivalence class [z] in a topological space Z is not closed and has a limit point,
then Z/~ is not Haussdorff. Let’s give a concrete proof. Take the class [a] = [(0,1)] € ¥
of a = (0,1). Then [a] = a is identified with itself. Any neighborhood V" of [a] € Y is
represented by a neighborhood U in E? of (0, 1) € E2, V = [U], which then contains a point
(£,1) for n sufficiently large, namely V' contains then the point [(£,1)] = [o], since (£, 1)
is identified with o. This proves that Y is not Haussdorff. To prove that X is Haussdorff we
let [p] # [q], [p], [¢] € X. Suppose none of them is [0], i.e. they are not on the lines y = n.
Then we can choose disjoint neighborhoods U, and U, of p and q respectively in E? such
that they have no intersection with the lines y = n. Then [U,| = U, and [U,] = U, are in
disjoint neighborhood of [p] and [¢] in X. Suppose [p] = [0o] = A and [q] # [0], i.e. ¢ & A.
Then A is a closed set in the Euclidean space E2, we can choose a neighborhood U, of ¢ in
[E? and V' of A such that U, NV = (. Thus [U,] = U, and [V] = V are neighborhoods of
l¢] and [o], and [U,] N [V] = 0.

4. Let X = {z = (v1,29,73,74) € EX;z # 0,2124 — 2273 = 0} be equipped with the
subspace topology of [E*. Prove that X is path-connected.
Proof: The set X can be interpreted as the set of pairs of parallell vectors u = (z1,x2)

and v = (x3,24) which are not vanishing simultaneously.) We fix a reference point e; =
(1,0,0,0). Let x = (21, x2, 3, 74) = (u,v) be a general point.



Case 1: u = (x1,22) # 0. We can first join z to a point y = (y1, y2, Y3, y4) where (y1, yo)
is a point on the unit circle. Indeed t — t(x1,x9, x3,x4) for t in the segment between 1
and m is an arc joining x to y with (y;,y2) = ﬁ is a point on the unit circle S'. Thus
(y3,94) = c(y1,ys) for some c. Now the circle S' is path-connected so there is a path
u(t),t € [0,1] joining (1,0) to (y1,y2), u(0) = (1,0), u(1) = (y1,y2), consequently

t— (u(t), ctu(t)) € X

is a path joining e; = (1,0,0,0) to (u(1),cu(1)) = (y1, Y2, Ys, Ya)-
Case 2: u = (x1,x9) = 0. Then v = (x3,24) # 0. We can make a path switching u and v.
Indeed

t > (tws, txy, (1 —t)xs, (1 —t)xy), te€]0,1]
is a curve in X joining (0,0, z3, z4) to the point (z3, x4, 0,0). This then reduces the Case 1
above.

5. Prove that the orthogonal group O(3) is isomorphic to SO(3) x Z, as topological groups.
Is O(2) isomorphic to SO(2) x Zs as groups? (Recall Zy = {£1}.)

Proof. Observe that the diagonal matrix —/ is in the center of O(3). So the map
h:0O(3) = SO(3) x Zy; g — ((det g)g, det g)
with inverse map
Rt SOB3) x {£1} = O3);  (g,%1) = (£1)g

is a group isomorphism and a topological homeomorphism since det g is continous.

However O(2) is not isomorphic to SO(2) x Z, since the center O(2) is the group {£1}
and SO(2) x Zs has center Zy X Zs.

6. Let Z3 = {6’%2”, k =0, 1,2} be the cyclic group of order 3. Consider the action p of Z3 on
the torus T = S* x S' = {(21, 22) € C2;|z1| = |25| = 1} defined by p(e3%™) : (21, 25) —
(5272, e~ 52 2,). Let X = T/Z; be the orbit space. Prove that X is homeomorphic to
a torus and describe the induced group homomorphism p,m(T) = Z? — m(X) = Z? of
the natural projection p : ' — X. (Hint: Use the homeomorphism (21, 25) + (21, 2122) to
“trivialize” the action)

Solution: Consider the map h : T +— T, (21, 22) — (21, 2122) and the group action A of
Zs on T, A(e5%™) : (21, 25) — (€32™z, ). Then h is a homeomorphism and we have
h=' o X(g) o h = p(g) for g € Zs. Thus the orbit space of the action of p is homeomorphic
to the action of \, which is S'/Z3 x S! and is further homeomorphic to S' x S' = T The
induced homomorphism p, is Z? — Z* : (n,m) — (3n,m).



7. Formulate the definition that X is a covering space of X. Find all the path-connected
covering spaces X of the space P"~! x S, n > 3.

Solution: The fundamental group 7 (P"~! x S1) is Zy x Z. Any subgroup of Z, X Z is
of the form Zy x mZ, or {1} x mZ. In the first case the covering space is P"~! x S or
P! x R with the covering map (p, s) — (p,s™), or (p,x) — (p,e**. In the second
case the covering space is S"! x S or S*R with the covering map (p, s) — ([p], s™), or
(p,x) — ([p], e*™**, where p — [p] is the defining covering of P"~! by S~ 1.

8. Formulate the definition that two spaces X and Y have the same homotopy type. Prove that
two spaces with the same homotopy type have the isomorphic homotopy groups.

— See the text book for the proof.

8 problems, 24 point: 3 + 3 + 3 +3 +3 +3 +3+3. Grade limits: 12p for Godkénd (Pass), 18p for
Vil Godkind (Very Good). GZ



