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Solution. Exam in MMA 100 Topology, 7.5 HEC.

1. Prove or disprove the following claims: Let X be a topological space and A, B C X. (a)
(AN B)? = A°N B°, where C° stands for the set of inner points of C. (b) f(A%) = (f(A))°
for any continuous function f : R — R and subset A C R.

Solution. (a) True. Proof: A°NB° C A, A°NB° C B,thus A°’NB° C ANB. But A°NB°
is open, so A° N B° C (AN B)° by definition. Now if x € (AN B)°thenx € AN B, and
there exists a neighborhood NV such that N C AN B, namely N C A, N C B, consequently
x € A° x € B°, and further x € A° N BO.

(b) False. Counter example: f(x) = 1, the constant function. Then f(R°) = f(R) = 1 and
f(R)? =0.

2. Suppose X is a compact topological space and f : X — R is a map (i.e. a continuous
function). Prove that there exist 2o, ;1 € X, such that f(zo) < f(z) < f(z) forallz € X.

Proof. f : X — R is continuous and X is compact, so is f(X) C R a compact subset of
R. A compact subset in R is closed and bounded, so sup f(X) and inf f(X) exist and are
in f(X). Namely there exists zo, z; € X such that f(x¢) = inf f(X), f(z1) = sup f(X),
equivalently f(x¢) < f(z) < f(xy) forall z € X.

3. Suppose (X, d) is a metric space and fix zp € X and § > 0. Prove that there exist a
continous function f : X ~ [0, 1], such that f(z) = 1 for d(z,z9) < 0 and f(x) = 0 for
d(z,xg) > 296.

Proof. Consider the subset A U B where
A={x € X;d(z,z9) <0}, B={xre X;d(x,xy) >25}.

Then A and B are closed and AN B =0. Letg: AUB — [0,1],g=1onAandg =0
on B. g is continuous and 0 < g < 1. It follows from Tietze extension theorem that there
exists f : X — [0, 1] extending g.

4. Let R? be the Euclidean space with the standard basis {e;, ez, e3}. Let X = {(u,v) €
R3 x R3; (u, v, e3) forms a basis of R*}. Prove that X has two path-connected components.

Proof. Observe first that the 3 x 3-matrix (u,v,e3) is a basis iff the matrix (u,v, e3)
. . . A0
has determinant non-zero, the matrix (u,v,e3) is of the form (u,v,e3) = . 1 and

det(u,v,e3) = det A. Each 2 x 2-matrix A can be written as A = OP where O is an



orthogonal matrix and P is an upper triangular matrix with positive diagonal elements,

e pia
P= 0 e
nected to the identify I = (e, e5) if det O = 1 or to (es, e1) if det O = —1. This proves the

claim.

. Now each P can be connected to / by a path and each O can be con-

. Let 0 < r1,72 < 1 be two fixed real numbers. Consider the following action of Z on the
torus T? = T' x T = {(e%1,¢%2),0 < 0,,0, < 27}.

n c Z . (67,'91’ ei@g) — (ei91+inr17 ei92+in7‘2).

(a) Find ry, 75 so that the orbit space T?/Z is Haussdorff. (b) Find ry, 7, so that any orbit
(et €i%2)] = Z(e', ¢2) of Z is dense in T2.

Proof. We write 71 = 2mxy, 79 = 27x,. (a) Recall that x is irrational iff {e?™*} is dense
on the unit circle. Thus the orbit space space is Hausdorff iff both z; and x5 are rational.

(b) If {1, x9, 1} generate a three dimensional space over Q, in other words, z; and x5 are
not related by 1 = pxy + ¢, nor x5 = px; + ¢ for some rational numbers p and ¢, then the
orbit subgroup Z (1, xo) + Zey + Zey is dense in R?, equivalently the set {({nz}, {nxs})}
is dense in the unit square /2, also equivalently the above action of Z is dense on the torus.
(This is part of the Kronecker’s theorem. No proof is required for the answer.)

. Let S = {c € C;|c| = 1} be the circle in C and S* = {(c1,c3) € C?;|e1)? + |cof? = 1}
be the Euclidean 3-sphere in C2. Consider the following action of the cyclic group Z,, =
{e¥n j=0,--- ,n—1}on S x S3, e¥u : (¢,c1,¢) = (2™ e, €™ ney, €™ cy). Find

the fundamental group of the orbit space S x S3/Z,,.

Solution. Call 7 the action. We take a homeomorphism of S x S® to "trivialize" the action
Tof Z, Let f:SxS®— S x83 (c,q) — (c,c"q). Then the action f o7 o f~!is
e = e>™% : (c,q) — (ec, q). Thus the quotient space is S x S°/Z, = (S/Z,) x S°, and the
fundamental group is (S/Z,) x m(S?) =Z x 1 = Z.

. Let P° be the projective space of lines [z,y] = R(xy, 22, T3, Y1, Y2, y3) in RS, where z =
(71, 22,%3),y = (y1,Y2,y3). Let X = {[z,y] € P5;z |/ y}. Find the fundamental group of
X. (Here z |/ y means that z is not parallel to y; the zero vector is considered parallel to
any vector.)

Sol: (This is somewhat related to Problem 4 above). It follows from the definition above
that [z,y] € X if and only if x # Ay and y # Az, in particular x # 0,y # 0. Hence
X ={[z,y] € PP;x,y € R® {x,y} is linear independent}. Now by the Gram-Schmidt
orthogonalization procedure each pair (x,y), viewed as 3 X 2-matrix, can be written as
(x,y) = (u,v)A where (u, v) is a pair of orthonormal vectors and A is 2 x 2 upper-diagonal



matrix with positive diagonal elements. The set of matrices A with the above property
is homotopy to the single set {I,} of identity matrix (see the lecture notes), thus X is
homotopy equivalent to the set

{[u,v] € P°;u,v € R? (u,v) is orthonormal },
which is further more the set
Y/Zy, Y ={(u,v) € S*x S* (u,v) is orthogonal },
where Z, is acting on Y by (u,v) — =+(u,v), namely it is double-covered by Y. We

determine first 7(Y).

The set Y is identified with the group SO(3) by the correspondence (u,v,u X v). Thus
W(Y) = ZQ.

Consider next the injective group homomorphism 7 (Y) — m(Y/Zs) induced by the
covering, viewed as a subgroup inclusion. The coset space (Y /Zy)/m1(Y) has cardi-
nality 2 since it’s a double cover. Hence m(Y/Z5) has m(Y) = Z, as a normal sub-
group and (Y /Zy) = Z4 or Zs X Zs. Finally the simple curve in Y from (e, es) to
(—e1, —es) induces a non-trivial loop in Y/Z, whose square is the element —1 in m1(Y).
Thus 1 (Y/ZQ) = Z4.

8. Formulate and prove the Brouwer fixed point theorem for mappings of the closed unit disc.

See the textbook.

8 problems, 24 points = 8 x 3.  Grade limits: 12p for Godkénd (Pass), 18p for Vil Godkéind
(Very Good). GZ



