
Exercises (1 and 4 are assignments, the deadline for submitting the
solution is Friday Nov 16.

1. ∗ (Finite dimensional Banach spaces.) (1) Consider the space lp(Rn) = Rn,
1 ≤ p ≤ ∞, equipped with the norm

‖x‖pp =
n∑
i=1

|xi|p,

‖x‖ = ‖x‖2 being the standard Euclidean norm. Find estimates for the constants
c = c(n) and C = C(n) such that

c‖x‖ ≤ ‖x‖p ≤ C‖x‖, x ∈ Rn.

Is c(n) → ∞, C(n) → ∞, as n → ∞? (It’s difficult to find the exact value of
c(n) and C(n), but you can still answer this question.)

(2) ∗ Consider now the space lp = lp(N), 1 ≤ p ≤ ∞,

‖x‖pp =
∞∑
i=0

|xi|p.

For which pairs of (p, q), is the identity map I : x → x a bounded operator
I : lp → lq?

2. (Non-compactness of the unit ball in an infinite-dimensional Banach space. See
the textbook for the slightly abstract proof.) (1) Let 0 < ε < 1 be a fixed number.
Let V be a Banach space and W ( V a finite-dimensional vector subspace in V .
Prove that there exists a unit vector v /∈ W , ‖v‖ = 1, and 1 ≥ dist(v,W ) ≥ 1

1+ε
.

(2) Construct a sequences of infinite sequence of unit vectors {vn} such that
1 ≥ dist(vn+1,Wn) ≥ 1

1+ε
, , ‖vn+1‖ = 1. In particular vn has no convergent

subsequences.

3. (Sp-norm of matrices). Consider Rn = (Rn, ‖ · ‖) the Euclidenn spaces and
Mmn(R) of real matrices T , m ≤ n and linear maps from Rn → Rm. Recall
Linear Algebra that T tT is a m × m symmetric matrix (and TT t is a n × n-
symmetric matrix) and T tT ≥ 0 (resp. TT t ≥ 0). As symmetric matrix TT t

is diagonalizable and has nonnegative eigenvalues, multiplicity counted, λ =
(λ1, · · · , λm) : λ1 ≥ λ2 ≥ · · ·λm ≥ 0. We define the Sp-norm (similar to
lp-norm) as

‖T‖p = ‖λ‖lp

Prove that ‖T‖∞ is the matrix-norm of T : Rn → Rm and ‖T‖2 is a Hilbert-
space norm, i.e. obtained from an inner product. (All ‖T‖p are also norms,
1 ≤ p ≤ ∞, but requires some effort to prove.)
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4. ∗ Let c > 0 and T be the following matrix

T =

1 c

0 1

 .
(1) Find the norm of T as a map T : (R2, ‖ · ‖2)→ (R2, ‖ · ‖p), 1 ≤ p ≤ ∞. (2)
Find the norm ‖T‖ of T : (R2, ‖ · ‖∞)→ (R2, ‖ · ‖p).

5. (Examples of unbounded linear functionals defined on dense subspace of Banach
spaces). Consider the subspace D of l∞(N) consisting of sequences x = (xn)
with finite supports, i.e., xn = 0 for n sufficiently large (depending on x). Let
λ : D → R, λ(x) =

∑
n xn. Prove that (1) D is dense in l∞(N) (in particular D

is not a Banach space sinc e D 6= l∞(N)). (2) λ is unbounded on D and can not
be extended to l∞(N).

6. (Examples of unbounded linear functionals). Most linear functions on a Banach
space X (not on a dense subspace) are continuous, i.e bounded. Indeed, it is
rather difficult to construct unbounded linear functionals which are defined on
the whole space X .

(1) Use Zorn’s lemma (that any partially ordered set has a maximal element)
to proof the following claim: On any vector space X there is a linear basis
B = {bα}, in the sense that any x ∈ X is a linear combination x =

∑
xαbα of

B (all coefficient being zero except finitely many). (This is also called Hamel’s
basis.)

(2) Let X = l∞(N). Let {en} be the “standard basis” vector. Clearly {en} is
not a linear basis of X = l∞(N), so there is a Hamel’s basis {bα} containing
the “standard basis” vectors {en}. Let bα0 be any fixed basis vector not in {en}.
Any vector x ∈ X can be written as x =

∑
α xαbα, and we define λ : x 7→ xα0 .

Prove that λ is unbounded.
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