Exercises (Nos. 1 and 4 are assignments, to be submitted by Friday Nov 23.)

1. (Hilbert space vs Banach spaces) (1) Let H be a Hilbert space. Prove that $\|\cdot\|$ is additive for two vectors $v \neq 0$ and $w \neq 0$, i.e. $\|v + w\| = \|v\| + \|w\|$ iff v and w are in a ray, i.e. v = cw for some c > 0.

(2) Let $(\mathbb{R}^n, \|\cdot\|_{\infty})$ be equipped with the l^{∞} -norm and $\mathbb{E}^n = \mathbb{R}^n$ be the Euclidean space with the l^2 -norm. Define $T : \mathbb{E}^n \to (\mathbb{R}^n, \|\cdot\|_{\infty})$, by T0 = 0 and $T(x) = \frac{\|x\|_2}{\|x\|_{\infty}}x$, $x \neq 0$. Observe that $\|Tx\|_{\infty} = \|x\|_2$. Is T continuous? Can you find a **linear** isometry S, i.e. $\|Sx - Sy\|_{\infty} = \|x - y\|_2$ from \mathbb{E}^n to $(\mathbb{R}^n, \|\cdot\|_{\infty})$? Provide as simple arguments as possible.

(3) Observe that $l^2 \subset l^{\infty}$. Is the identify map $Id : l^2 \subset l^{\infty}$ bounded? Consider the same questions as in (2), i.e, is the operator $T : l^2 \to l^{\infty}, T(x) = \frac{\|x\|_2}{\|x\|_{\infty}}x$, continuous? Does there exists a linear isometry from l^2 onto l^{∞} ? (To understand whether l^2 and l^{∞} are isomorphic as Banach spaces is not a very easy question.)

- 2. Recall that the set of rational numbers in \mathbb{R} is a countable dense subset. Thus \mathbb{R}^n has also a countable sense subset since product of countable sets is countable. Prove that l^{∞} has no countable dense subset.
- (Convex sets, locally convex vector spaces; see Chapter 8) Unit ball in Banach spaces are special kind of convex sets. We describe how Banach norms on ℝⁿ can be described and constructed using convex sets.

We equipp \mathbb{R}^n with its underlying Euclidean norm and topology (as a reference, any other equivalent norm will work). Let $\|\cdot\|$ be a norm on \mathbb{R}^n .

(1) Check that the closed unit ball $B = B_1(0)$ satisfies the following property: (a) *B* is convex and bounded, (b) 0 is an inner point of *B*, (c) *B* is balanced, i.e. if $x \in B$ then $\lambda x \in B$ for all $|\lambda| \leq 1$, and (d)

$$||x|| = \inf\{t > 0; \frac{1}{t}x \in B\} = \inf\{t > 0; x \in tB\}.$$

(2) Suppose now B is a set in \mathbb{R}^n satisfying (a), (b), and (c). Prove that

$$||x||_B := \inf\{t > 0; x \in tB\}$$

defines a norm.

(3) (Minkowski sum of convex sets.) Let A and B be two convex sets in \mathbb{R}^n . The Minkowski sum A + B is defined as the set

$$A + B = \{a + b; a \in A, b \in B\}.$$

It is clear that A + B is also convex. Suppose A and B satisfies the conditions (a)-(b)-(c) above. Prove that A + B satisfies also the conditions. In particular it also defines a norm on \mathbb{R}^n . (Is that the norm $||x||_A + ||x||_B$?)

4. (This is to motivate the Banach-Steinhauss theorem.) Let g_n be the following functions on [0, 1], $n = 1, 2, \cdots$,

$$g_n(x) = \sum_{k=1}^n \frac{n}{k} \chi_{\left[\frac{2k}{2n+1}, \frac{2k+1}{2n+1}\right]},$$

where χ_A stands for the characteristic function of a set A. Define

$$T_n f = \int_0^1 f(x) g_n(x) dx$$

- (1) Prove that T_n is a bounded linear functional on C[0, 1].
- (2) Find the norm of T_n and prove that $\{||T_n||\}$ is unbounded.

(3) Find a function f so that $\{T_n f\}$ is divergent and one $f \neq 0$ such that $\{T_n f\}$ is convergent.

5. * (1) We observe that the "unit disc" in $(\mathbb{R}^2, \|\cdot\|_1)$ (and in $(\mathbb{R}^2, \|\cdot\|_\infty)$) is a square, and the norm in $\|\cdot\|_1$) is additive on each of the four quadrant. Prove that this is true for general norms obtained for convex polyhedra, namely if the unit disc in $(\mathbb{R}^2, \|\cdot\|)$ is a convex polyhedron then \mathbb{R}^2 is a union of cones where the norm on each cone is additive:

$$||x + y||_{\infty} = ||x||_{\infty} + ||y||_{\infty}$$

for x and y in a common cone.

(2) Suppose $(\mathbb{R}^2, \|\cdot\|)$ is equipped with a Banach norm such that the unit ball is a regular hexagon around the origin. The unit disc of its dual space $(\mathbb{R}^2, \|\cdot\|)$ (equipped with the defining norm) is also a convex polygon. Describe and draw the convex polygon. (Use the fact that a linear function $f(x) = a_1y_1 + a_2y_2$ is constant on lines orthogonal to the vector (y_1, y_2) , and use elementary geometric arguments.) Convince your self that the double dual $(V^*)^*$ of $V = (\mathbb{R}^2, \|\cdot\|)$ equals (i.e. isometric) to V.