Exercises, Week 4. (Ex. 1 and 4 are assignments, to be submitted by Wednes. Dec 12.)

(1) (REVISED. THE EARLIER FORMULATION IS NOT CORRECT). (a) Prove that there exists an mean ψ on $l^{\infty}(\mathbb{Z})$ (i.e. positive functional such that $\psi(1) =$ 1) which is invariant under the reflection $R : (x_n) \to (x_{-n})$ and shift T : $(x_n) \to (x_{n+1})$. (Hint: Let ϕ be a Banach limit on $l^{\infty}(\mathbb{N})$. Consider the following operator $A : l^{\infty}(\mathbb{Z}) \to l^{\infty}(\mathbb{N})$,

$$(Ax)_n = \frac{1}{2n+1} \sum_{|j| \le n} x_j, \quad n = 0, 1, 2, \dots$$

(b) Consider the subspace $l_{lim}^{\infty}(\mathbb{Z})$ of sequences $x = (x_n)_{-\infty}^{\infty}$ such that both $\lim_{n \to \pm \infty} x_n$ exist. Define the linear functional λ on $l_{lim}^{\infty}(\mathbb{Z})$ by

$$\nu(x) = \frac{1}{2} \lim_{n \to \infty} (x_n + x_{-n}).$$

Extend λ to a linear functional Λ on $l^{\infty}(\mathbb{Z})$. Is Λ reflection invariant? translation invariant? If not, can you redefine it by pre-composing a bounded map on $l^{\infty}(\mathbb{Z})$ to make it both translation and reflection invariant? (See the proof of Banach-limit construction on $l^{\infty}(\mathbb{N})$.)

- (2) Make a statement on the relation between w^* -closed sets and norm-closed sets in X^* , i.e. decide whether (1) w^* -closedness implies norm-closedness or vice versa. Prove your statement and provide a counter example for the converse of your statement.
- (3) (a) Let {x_j}ⁿ₁ be linearly independent vectors in a normed vector space X and c₁, ..., c_n ∈ C. Prove that there exists f ∈ X*, such that f(x_j) = 0. (b) Let {x_j}ⁿ₁ be as above. Prove that the subspace Y = {φ ∈ X*, φ(x_j) = 0, j = 1, ..., n} is closed subspace of X* (in both w* and norm topology) and prove that there is a decomposition X* = Y+Cⁿ.
- (4) Let $1 \le p \le \infty$. Consider the following subspace of l^p : $Y = \{x : \sum_n x_n = 0\}$. (Here $\sum_n x_n$ is defined in its orginal meaning, namely $\lim_{N\to\infty} \sum_0^N x_n$ exists, so that $\sum_n |x_n|$ might diverge.)
 - (a) Prove that Y is a dense subspace of l^p , for 1 .
 - (b) Let p = 1. Prove Y is a closed subspace.
 - (c) Let $p = \infty$. Is Y dense? Is Y closed?