Exercises, Week 5. (Ex. 1 and 3 are assignments, to be submitted by Wedn. Dec 19.)

(1) (cf Riesz-Thorin) Consider the spaces $L^p[0,1]$ with the Lebesgue measure. Let $1 \le q_0 < q_1, t \in (0,1)$, and $q = q(q_0,q_1,t)$ be determined by $\frac{1}{q} = \frac{(1-t)}{q_0} + \frac{t}{q_1}$. The Riesz-Thorin theorem states that $L^{q_0} \cap L^{q_1}$ is a subspace of L^q .

(a) Is $L^{q_0} \cap L^{q_1}$ a closed subspace of L^q ? The Riesz-Thorin inequality states that $\|f\|_q \leq \|f\|_{q_0}^{1-t} \|f\|_{q_1}^t$. Is that possible to get an estimate $\|f\|_{q_0}^{1-t} \|f\|_{q_1}^t \leq C\|f\|_q$?

(b) For finite dimensional l^p -spaces (\mathbb{R}^n, l^p) , find an an estimate $||f||_{q_0}^{1-t} ||f||_{q_1}^t \leq C ||f||_q$ with optimal C.

(2) (Ameanable groups) (a) Prove that the Heisenberg group

$$H(\mathbb{Z}) = \{ \begin{vmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{vmatrix}, a, b, c \in \mathbb{Z} \}$$

is ameanable, the group operation being the matrix product.

- (3) Consider the space $X = l^{\infty}([1, \infty))$ and its subspace $Y = C_{lim}([1, \infty))$ of continous functions f(x) such that $\lim_{x\to\infty} f(x)$ exists. (OBS! $C_{lim}([1, \infty))$ replacing $l^{\infty}([1, \infty))$ which was not properly defined, or one has to redefine $\lim_{x\to\infty} f(x)$ using ess-sup and ess-inf on $[x, \infty)$ and take their limit.) Define $\lim_{x\to\infty} on Y$ and state a Banach limit theorem for X by using Hahn-Banach theorem and the "Cesaro" average $T : f \to \frac{1}{x} \int_{1}^{x} f(t) dt$.
- (4) (Topologies on space of operators B(H).) On the space B(H) of bounded operators on a Hilbert space H there are three natural topologies defined by the semi-norms, ||A B|| (operator norm topology), ||Ax Bx||, x ∈ H (strong topology), and |⟨Ax Bx, y⟩|, x, y ∈ H (weak topology). Provide examples to show that they are not equivalent.
- (5) Work out details that the tri-nary series $\sum_{n=1}^{\infty} \frac{x_n}{3^n}$ defines a continuous map from the totally disconnected set $\prod_{1}^{\infty} \{0, 2\}$ onto the Cantor set.
- (6) Ex. 2.50 and Ex. 8.32 (on equidistributions) in the book of Einsiedler and Ward.