MMA210, Advanced Differential Analysis

Assignment 3, turn in: Course-week 5

- 1. Let V and W be two vector spaces with bases $\mathcal{E} = \{e_1, \ldots, e_d\}$ and $\mathcal{F} = \{f_1, \ldots, f_l\}$. Let $\{e_1^*, \ldots, e_d^*, \{f_1^*, \ldots, f_l^*\}$ be the dual bases in the dual spaces V^*, W^* . Let $T: V \to W$ be a linear transformation, who's representation in the bases \mathcal{E}, \mathcal{E} is given by the matrix A. Derive the formula for the action of the mapping T^* on the element $f_{i_1}^* \land \cdots \land f_{i_k}^*$ as a sum of elements $e_{j_1}^* \land \cdots \land e_{j_k}^*$.
- 2. Find a 2-form ω on \mathbb{R}^{2d} so that $\omega^d = dx_1 \wedge \cdots \wedge dx_{2d}$.