MMA210, Advanced Differential Analysis

Assignment 4, turn in: Course-week 7

1. Let $f:\mathbb{R}^d\to\mathbb{R}$ be a differentiable function. Consider the set

$$S_C = \{ x \in \mathbb{R}^d : f(x) = C \}.$$

The set of C, for which S_C is nonempty, is an interval.

- (a) Prove that the set Σ of C, for which $\nabla f = 0$ for all $x \in S_C$, is a closed set of measure zero.
- (b) Prove that for $C \notin \Sigma$, S_C is an n-1 dimensional orientable manifold. Find some conditions on f for S_C to be compact.
- (c) Prove that the volume (area) form on S_C is given by

$$\omega = \|\nabla f\|^{-1} (\partial_1 f dx^2 \wedge \dots \wedge dx^{d-1} - \dots + (-1)^d \partial_d f dx^1 \wedge \dots \wedge dx^{d-1}).$$

- (d) Derive a formula that describes the relation between the volume of the unit ball in \mathbb{R}^d and the unit sphere (use the question above and Stokes' theorem)
- 2. Show that the Möbius band in \mathbb{R}^3 cannot be represented as $S \cap U$ where S is the level-set of some smooth function and U is an open set in \mathbb{R}^3