MMA210, Higher Differential Calculus, Assignment 5, to be returned Friday, the last week.

Let \mathbb{T} be the unit circle in the plane (identified with the complex plane), with local co-ordinates defined as $(U, \theta), \theta : U(\subset \mathbb{R}) \to \mathbb{T}, \theta(\phi) = \exp(i\phi)$, where U is any interval with length less than 2π .

(1) Prove that η = dφ is well defined on T (Obs! θ is not defined on the whole of T) let k be an integer and g: T → T is the mapping z → z^k. Prove that ∫_T g*η = 2πk. If f: T → T is a smooth mapping and F: R → R be its lift to R, as in the problem of weeks 2-3, F(s + 2π) = F(s) + 2πk.

Prove that f and g are homopically equivalent. Prove that $\int_T f^* \eta = 2\pi k$.

(2) Consider the torus T^2 with local co-ordinates $(x^1, x^2) \mapsto (e^{ix^1}, e^{ix^2})$. Prove that dim $H^1(T^2) \ge 2$ (in fact, dim $H^1(T^2) = \mathbb{R}^2$, prove this, if you can!)