
Itanium™ Processor Floating-
point Software Assistance and
Floating-point Exception
Handling

January 2000

Order Number: 245415-001

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR
SAMPLE.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Itanium™ processor may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Copyright © Intel Corporation, 2000

*Third-party brands and names are the property of their respective owners.

iii

Contents
1 Introduction..1-1

1.1 Related Documents...1-2
1.2 Software Components Supporting Floating-point Exception Handling...............1-2

2 Software Assistance Faults and Traps on the Itanium™ Processor2-1

2.1 Architecturally Mandated SWA Faults..2-1
2.2 Itanium™ Processor-specific SWA Faults..2-1
2.3 Itanium™ Processor-specific SWA Traps ..2-1
2.4 Handling Floating-point Exceptions..2-2

3 Conditions Causing, and Responses to, Floating-point Exceptions................................3-1

3.1 The Floating-point Status Register...3-3
3.2 The Interruption Status Register ..3-3
3.3 Floating-point Exception Priority...3-4
3.4 Conditions Causing Floating-point Exceptions on the Itanium™ Processor3-9
3.5 Response to SWA Faults ...3-14
3.6 Response to Invalid Faults ...3-20
3.7 Valid Operations with NaNs ...3-22
3.8 Response to Divide-by-Zero Faults..3-23
3.9 Response to Denormal Faults..3-24
3.10 Response to SWA Traps..3-24
3.11 Response to Overflow Traps..3-25
3.12 Response to Underflow Traps..3-26
3.13 Response to Inexact Traps ..3-27
3.14 Examples..3-28

4 Architecturally Mandated Floating-point Software Assistance ..4-1

4.1 Conditions that Require Architecturally Mandated SWA....................................4-1
4.1.1 Architecturally Mandated SWA Conditions for Divide4-1
4.1.2 Architecturally Mandated SWA Conditions for Square Root4-3
4.1.3 Floating-point Traps Raised by the SWA Handler for

Architecturally Mandated SWA Faults...4-4
4.2 Algorithms for SWA Faults for Floating-point Divide ..4-5
4.3 Frequency Estimation of the Architecturally Mandated SWA Faults for

Floating-point Divide...4-17
4.4 Algorithms for SWA Faults for Floating-point Square Root4-19
4.5 Frequency Estimation of the Architecturally Mandated SWA Faults for

Floating-point Square Root ..4-21

5 Architecturally Mandated Pseudo-SWA Requests for
Parallel Computations ...5-1

5.1 Architecturally Mandated Pseudo-SWA Conditions for Parallel
Floating-point Divide...5-1

5.2 Frequency Estimation of the Architecturally Mandated Pseudo-SWA
Faults for Parallel Floating-point Divide..5-4

5.3 Architecturally Mandated Pseudo-SWA Conditions for Parallel
Floating-point Square Root ..5-4

5.4 Frequency Estimation of the Architecturally Mandated Pseudo-SWA
Faults for Parallel Floating-point Square Root ...5-7

iv

6 Examples ..6-1

6.1 Examples of Itanium™ Processor-specific Software Assistance Requests6-1
6.1.1 Itanium™ Processor-specific Software Assistance Faults6-1
6.1.2 Itanium™ Processor-specific Software Assistance Traps.....................6-5
6.1.3 Sample Code for Examples of Itanium™ Processor-specific

Software Assistance Faults and Traps..6-8
6.2 Examples of IA-64 Architecturally Mandated Software Assistance Requests .6-11

7 Implementation of the IA-64 Floating-point Emulation Library ..7-1

7.1 EFI Floating-point SWA Driver ...7-1
7.1.1 EFI Drivers ..7-1
7.1.2 FP SWA EFI Driver ...7-2
7.1.3 OS Loader / OS Initialization Requirements..7-4

7.2 Floating-point SWA Handler API - API for the IA-64 Floating-point
Emulation Library ...7-5

7.3 Integration with the Operating System ...7-11

8 References..8-1

Figures

1-1 Flow of Control for IA-64 Floating-point Exceptions 1-3
3-1 Floating-point Status Register (AR40) ... 3-3
3-2 Interruption Status Register Code (ISR.code) from ISR (CR17) 3-4
3-3 Exception Priority for Itanium™ Processor Floating-point Faults 3-6
3-4 Exception Priority for Itanium™ Processor Floating-point Traps

Generated by a Hardware Initiated Computation of the Result.................... 3-7
3-5 Exception Priority for Itanium™ Processor Floating-point Traps

Generated by a Software Initiated Computation of the Result 3-8
3-6 Flow of Control for Handling a SWA Fault Raised by a Divide

Operation, Followed by an Underflow Trap.. 3-28
3-7 Flow of Control for Handling a Double Fault (V high, SWA

Fault low), Raised by an IA-64 Parallel Instruction 3-29
3-8 Flow of Control for Handling a Fault in the High Half (V high),

and a Trap in the Low Half (U low) of an IA-64 Parallel Instruction 3-30
3-9 Flow of Control for Handling a Fault in the High Half (V high),

and a SWA Trap in the Low Half of an IA-64 Parallel Instruction............... 3-31
4-1 Architecturally Mandated SWA Conditions for frcpa 4-5
4-2 Architecturally Mandated SWA Condition for frsqrta 4-19

v

Tables

3-1 Itanium™ Processor Arithmetic Instructions and Floating-point
Exceptions which may be Raised... 3-1

3-2 Conditions that Determine Occurrence of Floating-point Exceptions........... 3-9
3-3 Response of the IA-64 Arithmetic Instructions to SWA Faults 3-14
3-4 Masked Response of the IA-64 Arithmetic Instructions to Invalid

Exceptions (listed in decreasing order of their priority)3-21
3-5 Result of Floating-point Arithmetic Instructions for QNaN Input(s),

in the Absence of Floating-point Exceptions .. 3-23
3-6 Masked Response of the IA-64 Arithmetic Instructions to

Divide-by-Zero Exceptions ... 3-23
3-7 Response of the IA-64 Arithmetic Instructions to Itanium™

Processor-specific SWA Traps... 3-24
3-8 Response of the IA-64 Arithmetic Instructions to Overflow Exceptions 3-25
3-9 Response of the IA-64 Arithmetic Instructions to Underflow Exceptions ... 3-26
3-10 Response of the IA-64 Arithmetic Instructions to Inexact Exceptions 3-27

vi

1-1

Introduction 1

This document describes the details regarding Floating-point Software Assistance exceptions (FP
SWA requests) in particular, and floating-point exceptions in general on the Itanium™ processor,
the first implementation of the IA-64 architecture. The document is useful to operating system
writers and compiler writers, besides being useful to anyone who wants to obtain a better
understanding of floating-point exceptions in the IA-64 architecture. Chapter 1 through Chapter 3
contain the general background information, while Chapter 4 through Chapter 7 are more focused,
and go into a lower level of detail. Chapter 7 gives the information necessary in integrating the FP
SWA Handler (the FP SWA EFI driver) with the operating system.

Chapter 1 contains the introduction and describes the software components of an operating system
supporting floating-point exception handling.

Chapter 2 describes the Software Assistance (SWA) traps and faults on the Itanium processor, and

Chapter 3 lists the conditions causing floating-point exceptions, the floating-point exception
priorities (distinguishing between exceptions raised [signaled] directly by the hardware and
exceptions raised by the software), and specifies the response of the various Itanium processor
instructions to floating-point exceptions - for both disabled (masked) and enabled (unmasked)
exceptions.

Chapter 4 discusses the IA-64 architecturally mandated Software Assistance requests, which can
be raised only by the divide and square root reciprocal approximation instructions (frcpa and
frsqrta). The floating-point divide and square root operations (as well as other operations based on
them, such as remainder, or integer divide and remainder) are implemented in software in the
IA-64 architecture. The starting point which is provided by the reciprocal approximation
instructions is followed by instructions that implement Newton-Raphson based or similar
algorithms for divide and square root or their derivatives. Software assistance is required when the
reciprocal approximation instructions implemented in hardware are not able to provide an initial
value sufficient for the software algorithms to determine the IEEE correct results for divide or
square root. Alternate algorithms are used when such requests are made by the hardware. The
frequency of occurrence for software assistance requests is estimated in Section 4.3 and
Section 4.5.

Chapter 5 examines the architecturally mandated Pseudo-Software Assistance requests,
characteristic for the parallel divide and square root reciprocal approximation instructions. These
requests are raised in situations similar to those for the scalar divide and square root reciprocal
approximation instructions, but instead of leading to a SWA fault or trap, the output predicate of
the parallel reciprocal approximation instruction is cleared. The frequency of occurrence for the
pseudo-software assistance requests is estimated in Section 5.2 and Section 5.4.

Chapter 6 gives examples of software assistance requests. Examples of Itanium processor specific
SWA requests are given first, followed by IA-64 architecturally mandated requests.

Chapter 7 describes the implementation of the software component that handles software
assistance requests - the IA-64 Floating-point Emulation Library, and specifies the API that allows
this library supported by Intel to be shared by various operating systems. The IA-64 Floating-point
Emulation Library (which has the role of a Floating-point SWA Handler) is implemented as an EFI
(Extensible Firmware Interface) driver.

Chapter 8 contains the references used in the text.

Introduction

1-2

1.1 Related Documents

The IA-64 floating-point architecture and operations are discussed in several other documents.
Information contained in these sources is useful, or helpful when reading the present document.The
main source of information is the Intel IA-64 Architecture Software Developer’s Guide [1].
Information specific to the Intel architecture can also be found in [2].

The recommended source for reference information on floating-point exceptions is the IEEE
Standard 754-1985 for Binary Floating-point Computations [3].

1.2 Software Components Supporting Floating-point
Exception Handling

Floating-point exception handling in the IA-64 architecture has new features compared to IA-32
[2]. First, the IA-64 floating-point architecture is more complex than that of previous Intel
processors. There are new instructions, some with three input operands, static precision modes (e.g.
in fma.s), static rounding modes (e.g. in fcvt.fx.trunc), and new floating-point formats and
computation models. Second, the necessity for software assistance (SWA) is new in the Intel
Architecture, and augments the floating-point exception handling mechanism. Third, the IA-64
architecture also has the ability to handle new parallel floating-point instructions. On the other
hand, the IA-64 architecture has extended floating-point capabilities, both in performance and in
accuracy.

When a floating-point exception occurs, the hardware saves a minimal amount of processor state
information in interruption control registers (only the registers of interest for floating-point
exceptions are listed): IPSR (CR16 - Interruption Processor Status Register), ISR (CR17 -
Interruption Status Register), IIP (CR19 - Interruption Instruction Bundle Pointer), IIPA (CR22 -
Interruption Instruction Previous Address), and IFS (CR23 - Interruption Function State). The
information in IIP, IPSR, and IFS is saved only if PSR.ic is set to 1. The information in IIPA is
saved only if PSR.ic was 1 prior to the interruption. Finally, ISR is saved regardless of the value of
PSR.ic.

A branch to the interruption vector (Floating-point Fault Vector 0x5c00 or Floating-point Trap
Vector 0x5d00) and then to a low-level OS handler allows saving more of the processor state, and
propagates handling of the task higher in the operating system.

On any platform based on an IA-64 processor, two system-level components are used in
floating-point exception handling: the operating system kernel floating-point trap handler, and the
IA-64 Floating-point Emulation Library (FP SWA Handler). The kernel floating-point trap handler
has the role to save state information not saved by the processor, and then to invoke the appropriate
exception handler: the FP SWA Handler for FP SWA requests, or the FP SWA handler and then a
user-level floating-point exception handler for other unmasked (enabled) floating-point exceptions.

Figure 1-1 depicts the control flow that occurs when an application running on an IA-64 processor
causes a floating-point exception condition.

The IA-64 Floating-point Emulation Library (implemented as an EFI driver invoked by the OS
kernel) is capable of emulating any floating-point instruction defined by the architecture. It handles
the cases that require software assistance — situations that the hardware cannot handle, which fall
into the three categories presented in the next subsection.

1-3

Introduction

Figure 1-1. Flow of Control for IA-64 Floating-point Exceptions

Note: Using the IEEE Floating-point Exception Filter is optional.
000832

IEEE
Floating-point

Filter
or

Alternate
Filter

OS Kernel

IA-64
Floating-point

Emulation
Library

(SWA Handler)

Application
Code

User
Exception
Handler

Introduction

1-4

2-1

Software Assistance Faults and Traps
on the Itanium™ Processor 2

The three categories of Software Assistance exceptions: IA-64 architecturally mandated SWA
faults, Itanium processor specific SWA faults, and Itanium™ processor specific SWA traps, are
presented next.

2.1 IA-64 Architecturally Mandated SWA Faults

The architecturally mandated SWA faults occur for the scalar reciprocal approximation
instructions, frcpa and frsqrta, when their input operands are such that they potentially prevent
generation of the correct results by the iterative software algorithms that are employed for divide
and square root. Alternate algorithms are implemented in the IA-64 Floating-point Emulation
Library to provide the correct results in such situations.

In the case of the Itanium processor specific SWA exceptions (Section 2.2 and Section 2.3 below),
the SWA fault or trap can be caused by both scalar or parallel instructions. The architecturally
mandated SWA faults are caused only by scalar instructions (frcpa and frsqrta). The parallel
counterparts of the reciprocal approximation instructions, fprcpa and fprsqrta just clear their output
predicate (in situations in which the scalar instructions would raise SWA faults), expecting this to
cause alternate algorithms to be executed in order to perform the parallel divide or square root
operations.

2.2 Itanium™ Processor Specific SWA Faults

SWA faults are allowed in the IA-64 architecture for virtually any reason. The architecturally
allowed SWA faults that occur on the Itanium processor are referred to as Itanium processor
specific SWA faults, and they arise when floating-point instructions consume denormalized or
unnormal operands. If the denormal exceptions are disabled (masked), the SWA fault is resolved
by the IA-64 Floating-point Emulation Library (the SWA handler). If the denormal exceptions are
enabled (unmasked), the SWA fault is converted to a denormal fault by the IA-64 Floating-point
Emulation Library, and it is propagated through the OS kernel to the user level (a denormal fault
exception handler must have been registered to handle it). As SWA faults may be raised for any
reason in an IA-64 Architecture implementation in general, the IA-64 Floating-point Emulation
Library was designed and implemented to be able to provide the correct result for any IA-64
floating-point arithmetic instruction, and for any values of the input operands.

2.3 Itanium™ Processor Specific SWA Traps

SWA traps are allowed in the IA-64 architecture when:

• Tiny results are generated and the underflow traps are disabled.

• Huge results are generated and the overflow traps are disabled.

• Inexact results are generated and the inexact traps are disabled.

Software Assistance Faults and Traps on the Itanium™ Processor

2-2

Note that tiny numbers have non-zero values, but less in absolute value than the smallest positive
normal floating-point number. Huge numbers have values larger in absolute value than the largest
positive normal floating-point number. The result of a floating-point operation is evaluated for
tininess or hugeness after rounding to the destination precision, but assuming an unbounded
exponent (“first IEEE rounding”), and before the second rounding that takes into account the
limited exponent range (“second IEEE rounding”). Note though that these two rounding steps are
hypothetical, and that the hardware only performs the IEEE rounding in one step (combining the
two steps outlined above). Breaking it into two steps just helps understanding the way numeric
results are generated. For tiny results, rounding will require denormalization, i.e. shifting the
significand to the right, while incrementing the exponent in order to bring it into the range allowed
by the format, followed by rounding to the destination precision. This has to be carried out on the
infinitely precise result, and the rounded result may be zero, a denormal, or the smallest normal
number representable in the destination format, with the appropriate sign (which means that the
first rounding step is not necessary in this case). If the result is huge, the second rounding will
modify it either to the largest normal floating-point number representable in the destination format,
or to infinity (with the appropriate sign).

The Itanium processor specific SWA traps occur only when tiny results are generated, the
underflow traps are disabled, and the flush-to-zero mode is not enabled.

2.4 Handling Floating-point Exceptions

When a SWA request occurs, an instruction bundle is read, the excepting instruction is decoded, its
input or output operands are read, a result is generated, and the processor state is modified by the
software.

The IA-64 Floating-point Emulation Library provides a result only for SWA faults and traps.
Exceptions are the cases when a SWA fault or trap generates a new floating-point exception, e.g.
for an Itanium processor specific SWA faults, when the denormal exceptions are enabled (in which
case the result is provided by a user handler for denormal exceptions). The library is invoked
though for all the enabled (unmasked) floating-point exceptions (SWA or not).Three situations are
possible.

The first possibility is for the emulation library to recognize a SWA fault or a SWA trap. It starts
processing it, and if a result can be generated, it is passed back to the kernel floating-point trap
handler, which in turn has to resume the thread that raised the exception.

The second possibility is for the emulation library to recognize an unmasked floating-point
exception other than a SWA fault or trap, or to have to raise a new floating-point exception that
occurs during the process of generating a result for the SWA fault or trap. This information is then
returned to the kernel trap handler, which will have to propagate the exception to a user level
floating-point exception handler.

The third possibility is for the emulation library to not recognize a floating-point fault or trap when
called by the OS kernel (this may include the case when incorrect parameters were passed to it). In
this situation, it returns to the OS kernel a value indicating failure, plus additional diagnostic
information.

At the user level, the floating-point exception can be handled by a user handler directly, or by a
filter function (usually an IEEE floating-point exception filter) that invokes a user handler.

The first function of an IEEE Floating-point Exception Filter is to transform the interruption
information to a format that is easier to understand and handle by the user, and to invoke a user
handler for the exception. The user provided result, and possibly other changes are propagated
back into the processor state if execution is continued (in some programming environments, the

2-3

Software Assistance Faults and Traps on the Itanium™ Processor

user has up to three options: to continue execution, to execute some cleanup code and exit, or to
continue searching for another handler).

The second function of the filter is to hide the complexities of the parallel instructions from the
user. If a floating-point fault occurs for example in the high half of a parallel floating-point
instruction, and there is a user handler provided for that case, the parallel instruction is split into
two scalar instructions. The result for the high half comes from the user handler, while the low half
is re-executed. The two results are combined back into a parallel result, and execution can
continue. More complicated cases are those when two faults and/or traps occur in the same
instruction (the model used can be extended to more than 2-way parallel instructions). Note that
usage of the IEEE Floating-point Exception Filter is not compulsory - the user may choose to
handle enabled floating-point exceptions differently. A filter can be provided just as a convenient
way to solve such situations. Still, at least a filter with reduced functionality is necessary in order to
ensure full compliance with the IEEE-754 Standard requirements [6] regarding values to be passed
to a user handler when a floating-point exception occurs (e.g. scaling of the hardware generated
result when an overflow or underflow exception is raised has to be performed by the filter
function).

The next chapter describes the IA-64 instructions that are capable of raising floating-point
exceptions, and the conditions under which these exceptions may occur. The following chapters
will focus almost exclusively on SWA exceptions, but the reason for presenting all the
floating-point exceptions in the beginning is that SWA requests are floating-point exceptions
themselves (even though not user visible), and because they can be combined with, or immediately
followed by other floating-point exceptions.

Software Assistance Faults and Traps on the Itanium™ Processor

2-4

3-1

Conditions Causing, and Responses to,
Floating-point Exceptions 3

The Itanium processor arithmetic instructions, most of which can cause floating-point exceptions,
are listed in Table 3-1 (the only arithmetic instruction that cannot raise floating-point exceptions is
fcvt.xf, which converts a signed integer value to register file floating-point format).

Table 3-1. Itanium™ Processor Floating-point Arithmetic Instructions and Floating-point
Exceptions which may be Raised

FP Instructions Exceptions

Faults Traps

fma V, D, SWA O, U, I, SWA

fnorm V, D, SWA O, U, I, SWA

fpma V, D, SWA O, U, I, SWA

fms V, D, SWA O, U, I, SWA

fpms V, D, SWA O, U, I, SWA

fnma V, D, SWA O, U, I, SWA

fpnma V, D, SWA O, U, I, SWA

fmax V, D, SWA

fpmax V, D, SWA

fmin V, D, SWA

fpmin V, D, SWA

famax V, D, SWA

fpamax V, D, SWA

famin V, D, SWA

fpamin V, D, SWA

fcmp V, D, SWA

fpcmp V, D, SWA

fcvt.fx V, D, SWA I

fpcvt.fx V, D, SWA I

fcvt.xf

frcpa V, Z, D, SWA O,U,I a

a. The traps indicated for frcpa and frsqrta cannot be generated directly by the hardware, but they can be raised
by the IA-64 Floating-point Emulation Library, following a SWA fault for these instructions.

fprcpa V, Z, D, SWA

frsqrta V, D, SWA I a

fprsqrta V, D, SWA

Conditions Causing, and Responses to, Floating-point Exceptions

3-2

Among the instructions that are pseudo-ops, only fnorm is included, as it requires special attention.
It is important to know that

fnorm.pc.sf f1 = f3

is equivalent to

fma.pc.sf f1 = f3, F1, F0

where F1 contains +1.0, F0 contains +0.0, and f1 and f3 are any other floating-point registers (f3
can also be F1 or F0). It is not equivalent to an fma instruction using another combination of
registers, e.g.

fma.pc.sf f1 = F1, f3, F0

For example, assuming that the denormal exceptions are disabled, the instruction above would
raise a SWA fault for any unnormal operand with a non-zero exponent, while the former
(equivalent to an fnorm) would not. The instruction

fma.pc.sf f1 = f3, F1, F0

will raise a SWA fault only if f3 is unnormal and its biased exponent in floating-point register file
format is 0, or if f3 is unnormal and the denormal faults are enabled (the same holds for fms.pc.sf f1
= f3, F1, F0 and fnma.pc.sf f1 = f3, F1, F0). By contrast,

fma.pc.sf f1 = F1, f3, F0

will raise a SWA fault if f3 is unnormal (regardless of its exponent, or of the denormal exceptions
being disabled or not).

As noted, the similar statements hold for fms and fnma, i.e. the fms and fnma instructions follow the
same conventions for software assistance as fma. For example,

fms.pc.sf f1 = f3, F1, F0

acts like an fnorm.

The other pseudo-ops that are not included in the list above are fadd, fcvt.xuf, fmpy (pseudo-ops of
fma), fnmpy (pseudo-op of fnma), fpmpy (pseudo-op of fpma), fpnmpy (pseudo-op of fpnma), and
fsub (pseudo-op of fms). Their floating-point exception behavior follows that of the instructions
they are derived from, with one exception: if fma, fms, fnma, fpma, fpms, or fpnma raise a SWA
fault and f2 is F0 (as in fma.pc.sf f1 = f3, f4, F0), then the add operation in the multiply-add has to
be skipped (the result has to be the IEEE result for a multiply operations, and if the product f3 * f4
is 0.0 in absolute value, then adding or subtracting 0.0 might change the sign of the result).

Note that only Invalid (V), Divide-by-Zero (Z), Overflow (O), Underflow (U), and Inexact (I) are
IEEE exceptions. Denormal/Unnormal (D) exceptions are specific to the IA-32 architecture and to
the IA-64 architecture, and SWA faults and traps are IA-64 specific. Note also that the invalid
exceptions, identified by “V” here might be denoted by “I” in other documents, and the inexact
exceptions identified by “I”, might be denoted by “P” (for “precision”).

In the following, references will often be made to the Floating-point Status Register, or FPSR
(Application Register 40), and to the Interrupt Status Register code, or ISR code (the ISR is
Control Register 17). Their definitions are included here too (but complete descriptions are given
in [1]).

3-3

Conditions Causing, and Responses to, Floating-point Exceptions

3.1 The Floating-point Status Register

The Floating-point Status Register (Application Register 40) contains the dynamic control and
status information for floating-point operations. There is one main set of control and status
information (FPSR.sf0) and three alternate sets (FPSR.sf1, FPSR.sf2, and FPSR.sf3). The FPSR
layout is shown in Figure 3-1.

Control bits 0 through 5 contain mask bits for floating-point exceptions (invalid, denormal,
divide-by-zero, overflow, underflow, and inexact). If a mask bit is set, it disables the corresponding
exceptions regardless of the status field being used.

Each of the four status fields contains seven control bits (ftz - flush-to-zero, wre - widest range
exponent, pc - 2 bits for precision control, rc - 2 bits for rounding control, td - traps disabled [this
bit is reserved in status field 0]), and six status flags (invalid, denormal, divide-by-zero, overflow,
underflow, and inexact). Provided the underflow exceptions are disabled, the flush-to-zero mode
(ftz = 1) causes tiny results to be truncated to the correctly signed zero, and the status flags for
underflow and inexact exceptions to be set. The widest range exponent bit, wre, when set, specifies
that the 17-bit exponent range will be used for floating-point calculations. The pc field specifies the
dynamic precision for floating-point calculations (pc = 00 for 24-bit significands, pc = 10 for 53-bit
significands, and pc = 11 for 64-bit significands). The rc field determines the rounding mode (rc =
00 for rounding to nearest, rc = 01 for rounding to negative infinity, rc = 10 for rounding to
positive infinity, and rc = 11 for rounding to zero). When set, the td bit (applicable only to status
fields 1, 2, and 3), disables the invalid, denormal, divide-by-zero, overflow, underflow, and inexact
exceptions for floating-point operations using the corresponding status field. For status field 0, or
when td = 0 for status fields 1, 2, or 3, control bits 0 through 5 in the FPSR determine which
floating-point exceptions are masked.

3.2 The Interruption Status Register

The Interruption Status Register (Control Register 17) receives information related to the nature of
an interruption. Its lower 16 bits contain the ISR code, providing additional information specific to
the current interruption. For unmasked floating-point exceptions, the ISR code contains the only
indication for the cause of the interruption.

Figure 3-2 (a) shows the ISR code for floating-point faults. Only the lower eight bits are defined.
Bits 0 through 3 (V - invalid operation, D - denormal operand, Z - divide-by-zero, SWA - software
assistance) refer to floating-point faults raised by scalar instructions, or by the high order

Figure 3-1. Floating-point Status Register (AR40)

000833

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

i u o z d v td rc pc wre ftzi u o z d v

td rc pc wre ftzi u o z d v res rc pc wre ftzi u o z d v i u o z d v

td rc pc wre ftz

Status Field 1 Status Field 0 Traps

Reserved Status Field 3 Status Field 2

Conditions Causing, and Responses to, Floating-point Exceptions

3-4

components of parallel (SIMD - Single Instruction, Multiple Data stream) instructions. Bits 4
through 7 (V, D, Z, SWA) refer to floating-point faults raised by the low order components of
parallel instructions.

Figure 3-2 (b) shows the ISR code for floating-point traps. Bit 0 (FP TRAP) is always 1, indicating
a floating-point trap. Bit 3 (SS) indicates a single-step trap. Bits 7 through 10 (O - overflow, U -
underflow, I - inexact, FPA) refer to floating-point traps raised by the low order components of
parallel instructions. Bits 11 through 14 (O, U, I, FPA) refer to floating-point traps raised by scalar
instructions, or by the high order components of parallel instructions. The FPA bit indicates that
the significand is larger in absolute value than the significand of the infinitely precise result. Note
that there is no bit in the ISR code to indicate the occurrence of a SWA trap. There is no ambiguity
though - the SWA handler can detect this situation by examining the ISR code bits for traps and the
FPSR exception bits that mask/unmask floating-point exceptions.

3.3 Floating-point Exception Priority

The floating-point exception priority on the Itanium processor is the following:

1. NaTVal operand (not an exception, but handling this case has priority over floating-point
exceptions).

2. Software Assistance (SWA) Floating-point Exception fault, Itanium processor specific, when
one or more operands are unnormal (with the restrictions specified in Table 3-2 of
Section 3.4).

3. Invalid Operation (V) Floating-point Exception fault due to one or more operands being in an
unsupported format.

4. Invalid Operation (V) Floating-point Exception fault due to one or more operands that are
signaling NaN (SNaN) (or QNaN for certain types of floating-point compare).

5. QNaN operand (not an exception, but handling this case has priority over lower-priority
floating-point exceptions).

6. Invalid Operation (V) Floating-point Exception fault due to any reason other than those
mentioned above (e.g. when executing frcpa for 0/0, or frsqrta for -Inf).

7. Zero Divide (Z) Floating-point Exception fault.

8. Denormal/Unnormal Operand (D) Floating-point Exception fault.

Figure 3-2. Interruption Status Register Code (ISR.code) from ISR (CR17)

000834

RES

15

FPAH IH UH

14 13 12 11 10

OH FPAL IL

9 8 7 6 5

UL OL 0 0 0

4 3 2

SS 0

1 0

0
FP

Trap

RES

15 14 13 12 11 10 9 8 7 6 5

SWAL DL VL

4 3 2

ZH

1 0

DHRES RES RES RES RES RES RES ZL SWAH VH

(a) ISR Code for Floating-Point Faults

(b) ISR Code for Floating-Point Traps

3-5

Conditions Causing, and Responses to, Floating-point Exceptions

9. Software Assistance (SWA) Floating-point Exception fault, architecturally mandated (only for
frcpa and frsqrta, when the exponents of the input operands satisfy certain conditions - see
Chapter 4).

10. Software Assistance (SWA) Floating-point Exception trap: when an fma, fpma, fms, fpms,
fnma, or fpnma operation has a tiny result, the underflow exceptions are disabled, and the
flush-to-zero mode is not enabled.

11. Numeric Overflow (O) and Underflow (U) Floating-point Exception traps (inexactness can
also be indicated in the ISR.code field).

12. Inexact (I) Floating-point Exception trap.

This list reflects the fact that the IA-64 architecture asks for SWA faults that are not architecturally
mandated to be checked for prior to any other exceptions. For the Itanium processor though, these
SWA faults will not occur if any invalid or divide-by-zero faults are raised (besides NaTVal or
QNaN operands that do not cause invalid faults). Thus the “true” floating-point exception priority
on the Itanium processor is illustrated in Figure 3-3 for faults, and Figure 3-4 and Figure 3-5 for
traps. In both figures, the diamond shaped blocks are for decisions, the rectangular shaped blocks
represent intermediate states, and the rectangular shaped blocks with rounded corners represent
terminal states. The components represented with dotted lines correspond to software actions,
while the rest are carried out directly by the processor hardware.

Figure 3-3, Figure 3-4 and Figure 3-5 apply to scalar floating-point instructions. For parallel
instructions, two faults or two traps may occur simultaneously. In such cases, both faults or traps
are reflected through bits set in the ISR register or in the appropriate status field of the FPSR
register. Priorities are established on each half independently, but a fault in one half will have to be
handled before a trap in the other half.

Note that the FPSR status flags are not updated when an umasked fault occur, and no result is
provided to the exception handler. The status flags are updated on an unmasked trap (the exception
handler will see the modified status bits in the appropriate status field of the FPSR) and a result is
also provided to the exception handler. This is different from the IA-32 case, where status flags in
the status word are updated for both unmasked floating-point faults and unmasked floating-point
traps. In both cases of unmasked faults or traps, the cause of the exception is indicated by bits set in
the ISR code.

If two floating-point faults or traps of the same kind (unmasked or not) occur in the two halves of a
parallel instruction, the corresponding status flag in the FPSR can be viewed as a logical “OR” of
the two hypothetical status flags for the individual halves (thus if a status flag is set when the
exceptions are masked, one cannot tell whether the cause was in the low or in the high half of the
instruction). For unmasked exceptions raised by parallel instructions, the FPSR has to be viewed in
the same way, but the ISR code (as seen in Section 3.2 above) has separate sets of bits identifying
exceptions in the low and the high halves.

The flowchart in Figure 3-3 starts after the input operands have been read. It includes also the cases
of NaTVal and NaN operands (not exceptions, but fitting as priority among floating-point
exceptions). In this figure, “IEEE Response” does not apply literally to all the instructions, as not
all have their behavior specified in the IEEE standard. When this is the case, behavior following
the spirit of the standard is defined for each Itanium processor instruction. The flowchart in
Figure 3-3 ends with the computation of the result corresponding to the “first IEEE rounding” as
specified in the IEEE Standard 754-1985 [6] (again, this does not apply literally to all the
instructions), i.e. the result rounded to the destination precision, but with unbounded exponent.
Special cases worth mentioning are those when the result of the frcpa and frsqrta instructions is
computed in software following an Itanium processor specific SWA fault (in the leftmost of the
three final states marked “COMPUTE RESULT” in Figure 3-3): if any input argument is unnormal
and the mathematical conditions for the architecturally mandated SWA faults (see Table 3-2 of
Section 3.3) are not met, then only an 11-bit reciprocal approximation value is returned, that will

Conditions Causing, and Responses to, Floating-point Exceptions

3-6

allow computation by a compiler-inlined instruction sequence of the result for the divide or square
root operation.

There is one exception to the flowchart in Figure 3-3: the frsqrta and fprsqrta instructions applied
to a negative non-zero unnormal argument (this includes negative non-zero denormal values) does
not signal an invalid fault directly. Instead, an Itanium processor specific SWA fault is raised. If the
invalid exceptions are disabled (masked), the QNaN Indefinite value is returned. If the invalid
exceptions are enabled (unmasked), an invalid fault is raised.

Note that in the process of computing the result of an instruction (when no unmasked floating-point
fault exception occurs, or following a SWA fault), floating-point traps may be raised. This
computation may be initiated in hardware, or in software when it follows a SWA fault.

The flowchart in Figure 3-4 applies to the case when the result of the first IEEE rounding (as
shown in Figure 3-3) was computed in hardware. The result is tested for zero or infinity, and then
for tininess or hugeness. The result is tiny if its exponent satisfies e < emin, and it is huge if
e > emax. In Figure 3-4 (and Figure 3-5 too), assigning to an ISR bit (e.g. in “ISR.I ASSIGNED”)
means setting it to 0 or 1, as appropriate for the operation it refers to. Updating an FPSR bit (e.g. in

Figure 3-3. Exception Priority for Itanium™ Processor Floating-point Faults

000835

IEEE RESPONSE
FPSR.SFX.V = 1
FPSR.SFX.Z = 1

FPSR.SFX.D = 1
COMPUTE RESULT
(FIRST IEEE RND)

COMPUTE RESULT
(FIRST IEEE RND)

DENORMAL/
UNNORMAL OPD?

ARCHITECTURALLY
MANDATED SWA?

ZERO DIVIDE?

INV OP?
(ANY OTHER CAUSE)

QNAN OPERAND?

INV/OP?
(UNSUPP/NAN)

NATVAL OPERAND?

COMPUTE RESULT
(FIRST IEEE RND)

DENORMAL EXC
ENABLED?

DIV-BY-ZERO EXC
ENABLED?

INVALID EXC
ENABLED?

IEEE RESPONSE
FPSR.SFX.Z = 1
FPSR.SFX.V = 1

NATVAL
RESPONSE

QNAN RESPONSE
FP FAULT
(V FAULT)
ISR.V = 1

FP FAULT
(Z FAULT)
ISR.Z = 1

FP FAULT
(SWA FAULT,

ITANIUM™ SPECIFIC)
ISR.SWA = 1

FP FAULT
(D FAULT)
ISR.D = 1

FP FAULT
(SWA FAULT)
ISR.SWA = 1

YES

NO

YES

YES

YES

YES

YES

YES

YES YES

YES

NO

NO

NO

NO

NO

NONO

NO

NO

3-7

Conditions Causing, and Responses to, Floating-point Exceptions

“FPSR.SFX.I UPDATED”) means performing a logical OR between the old value of the status
flag bit in the user status field of the FPSR, and the value of the status flag (e.g the inexact status
flag bit) for the current operation.

If the computation of the result of the first IEEE rounding operation shown in Figure 3-3 was
performed in software (following a floating-point SWA fault), then the exception priority for
floating-point traps is that depicted in Figure 3-5.

In both Figure 3-4 and Figure 3-5, the “second IEEE rounding” has as a result a value rounded to
the destination precision and with bounded exponent range. Special cases of the second IEEE
rounding can be those when the result is the correctly signed zero, denormal, smallest normal
floating-point value, largest normal floating-point value, or infinity. The second IEEE rounding
(for the instructions where this is applicable) starts with the result of the first IEEE rounding (plus a
few additional bits of information - rounding mode, and round and sticky bits from the first IEEE
rounding), and is not based on the values of the input operands.

Figure 3-4. Exception Priority for Itanium™ Processor Floating-point Traps Generated by a
Hardware Initiated Computation of the Result

000836

INEXACT EXC
ENABLED?

RESULT IS INEXACT?

RESULT IS TINY
OR HUGE?

RESULT IS ZERO
OR INFINITY?

UNDERFLOW EXC
ENABLED?

FP TRAP (U TRAP)
ISR.U = 1
ISR.I ASSIGNED
ISR.FPA ASSIGNED
FPSR.SFX.U = 1
FPSR.SFX.I UPDATED

FPSR.SFX.I = 1

FP TRAP (I TRAP)
ISR.I = 1

ISR.FPA ASSIGNED

YES

NO

TINY

YES

YES

YES

NOT TINY, NOT HUGE

NO

NO

OVERFLOW EXC
ENABLED?

HUGE

FP TRAP (O TRAP)
ISR.O = 1
ISR.I ASSIGNED
ISR.FPA ASSIGNED
FPSR.SFX.O = 1
FPSR.SFX.I UPDATED

COMPUTE RESULT
(SECOND IEEE RND)

FTZ = 1?

YES

|RESULT| = 0,
FPSR.SFX.U = 1
FPSR.SFX.I = 1

NO|RESULT| = MAXFP
OR INFINITY

(SECOND IEEE RND)
FPSR.SFX.O = 1

YES

NO

RETURN
RESULT

RETURN
RESULT

NO

RETURN
RESULT

FP TRAP (SWA TRAP)
ISR.U = 1
ISR.I ASSIGNED
FPSR.SFX.U UPDATED
FPSR.SFX.I UPDATED

|RESULT| = 0,
DENORMAL, OR MINFP

(SECOND IEEE RND)

RESULT IS INEXACT?

RETURN
RESULT

YESFPSR.SFX.U = 1
FPSR.SFX.I = 1

NO

FP TRAP (I TRAP)
ISR.I = 1

ISR.FPA ASSIGNED

YES

NO

INEXACT EXC
ENABLED?

RETURN
RESULT

Conditions Causing, and Responses to, Floating-point Exceptions

3-8

For SWA traps, unmasked underflow traps, and unmasked overflow traps, the exception handler
(the IA-64 Floating-point Emulation Library for SWA traps, or a user handler otherwise) receives
the result after the first IEEE rounding, with exponent truncated to 17 bits. For unmasked inexact
traps, the exception handler receives the result after the second IEEE rounding (which can include
the special cases of a correctly signed zero, denormal, smallest normal floating-point number,
largest floating-point number, or infinity).

Note that if an enabled floating-point fault is taken, no status flag is updated in the FPSR, and no
result is provided to the exception handler. If an enabled floating-point trap is taken, the
appropriate status flags are updated in the FPSR, and a result is provided to the exception handler.
(The way the status flags are being set is different from the IA-32 behavior, where status flags are
updated in the status word on any enabled floating-point exception.) In both cases (enabled faults
or traps), the cause of the exception is indicated by bits set in the ISR code.

Figure 3-5. Exception Priority for Itanium™ Processor Floating-point Traps Generated by a
Software Initiated Computation of the Result

000837

RESULT IS INEXACT?

RESULT IS TINY
OR HUGE?

RESULT IS ZERO
OR INFINITY?

UNDERFLOW EXC
ENABLED?

FP TRAP (U TRAP)
ISR.U = 1
ISR.I ASSIGNED
ISR.FPA ASSIGNED
FPSR.SFX.U = 1
FPSR.SFX.I UPDATED

FPSR.SFX.I = 1

FP TRAP (I TRAP)
ISR.I = 1

ISR.FPA ASSIGNED

YES

NO

TINY

YES

YES

NO

NOT TINY, NOT HUGE

NO

NO

OVERFLOW EXC
ENABLED?

HUGE

FP TRAP (O TRAP)
ISR.O = 1
ISR.I ASSIGNED
ISR.FPA ASSIGNED
FPSR.SFX.O = 1
FPSR.SFX.I UPDATED

COMPUTE RESULT
(SECOND IEEE RND)

FTZ = 1?
|RESULT| = 0

FPSR.SFX.U = 1
FPSR.SFX.I = 1

YES

NO

|RESULT| = MAXFP
OR INFINITY

FPSR.SFX.O = 1
FPSR.SFX.I = 1

(SECOND IEEE RND)

YES

NO

INEXACT EXC
ENABLED?

RETURN
RESULT

RETURN
RESULT

YES

RETURN
RESULT

RESULT IS
INEXACT

FPSR.SFX.U = 1
FPSR.SFX.I = 1

YES

NO

RETURN
RESULT

|RESULT| = 0,
DENORMAL, OR MINFP

(SECOND IEEE RND)

3-9

Conditions Causing, and Responses to, Floating-point Exceptions

3.4 Conditions Causing Floating-point Exceptions on
the Itanium™ Processor

The conditions under which floating-point exceptions occur for each Itanium processor arithmetic
instruction are listed in Table 3-2 below. This table applies to both disabled and enabled
exceptions. Note that SWA requests (faults or traps) are always “enabled” - there is no way to
disable them. It is assumed that NaTVal values are filtered in advance. It is also assumed
throughout this document that the qualifying predicate of any instruction being discussed is set to
1. For both disabled and enabled exceptions, the response is as specified by, or in the spirit of the
IEEE Standard 754-1985 for Binary Floating-point Computations [3] (but note that the standard
does not specify the behavior for certain operations such as fused multiply-add or min and max).

Note also that for parallel instructions, the single precision format does not allow for unsupported
operands.

Note: In Table 3-2, exceptions, and the conditions causing them, are listed in the decreasing order of
priority. For parallel instructions, it will be considered from now on that the low part is evaluated
first, followed by the high part (this is just a convention, and is not imposed by the architecture).

Table 3-2. Conditions that Determine Occurrence of Floating-point Exceptions

Floating-point Instruction Exception Condition

fma.pc.sf f1 = f3, f4, f2
fms.pc.sf f1 = f3, f4, f2
fnma.pc.sf f1 = f3, f4, f2

SWA fault, Itanium™
processor specific

Any unnormal operand, and no operand is unsupported, and no
operand is a NaN, and the operation does not lead to (Inf -Inf), (-Inf +
Inf), Inf * 0, Inf * (-0), -Inf * 0,
-Inf * (-0), 0 * Inf, -0 * Inf, 0 * (-Inf),
or -0 * (-Inf)

V Any unsupported operand, or any SNaN operand, or no NaN
operand and the operation leads to (Inf -Inf), (-Inf + Inf), Inf * 0, Inf *
(-0),
-Inf * 0, -Inf * (-0),
0 * Inf, -0 * Inf, 0 * (-Inf), or -0 * (-Inf)

D Any unnormal operand (not raised directly by the hardware, but
following an Itanium processor specific SWA fault)

SWA trap, Itanium
processor specific

Result tiny, the underflow traps are disabled, and the flush-to-zero
mode is not enabled

O Result huge

U Result tiny if underflow exceptions are enabled; result tiny and
inexact if the underflow exceptions are disabled; the latter case will
occur directly from the hardware only if the flush-to-zero mode is
enabled, otherwise it would have already generated a SWA trap

I Result inexact

fnorm.pc.sf f1 = f3 SWA fault, Itanium
processor specific

Unnormal operand, and (biased exponent in floating-point register
file format is 0 or denormal exceptions are enabled), and the operand
is not unsupported, and the operand is not a NaN. Note that in
floating-point register file format, an unnormal with a biased exponent
of 0 is equivalent to the same unnormal with the biased exponent of
0xc001 (0xc001 = 0xffff - 0x3ffe), which corresponds to an unbiased
decimal exponent of -16382, the minimum value for 15-bit exponents

V Unsupported operand, or SNaN operand

D Unnormal operand (not raised directly by the hardware, but following
an Itanium processor specific SWA fault)

SWA Trap, Itanium
processor specific

Result tiny, the underflow traps are disabled, and the flush-to-zero
mode is not enabled

Conditions Causing, and Responses to, Floating-point Exceptions

3-10

O Result huge

U Result tiny if underflow exceptions are enabled; result tiny and
inexact if they are disabled; the latter case will occur directly from the
hardware only if the flush-to-zero mode is enabled, otherwise it would
have already generated a SWA trap

I Result inexact

fpma.pc.sf f1 = f3, f4, f2
fpms.pc.sf f1 = f3, f4, f2
fpnma.pc.sf f1 = f3, f4, f2

SWA fault, Itanium
processor specific

Any denormal operand, and no operand is a NaN, and the operation
does not lead to (+Inf - Inf), (-Inf + Inf), Inf * 0, Inf * (-0),
-Inf * 0, -Inf * (-0), 0 * Inf, -0 * Inf,
0 * (-Inf), or -0 * (-Inf)

V Any SNaN operand, or no NaN operand and the operation leads to
(-Inf + Inf),
(-Inf + Inf), Inf * 0, Inf * (-0), -Inf * 0,
-Inf * (-0), 0 * Inf, -0 * Inf, 0 * (-Inf), or
-0 * (-Inf)

D Any denormal operand (not raised directly by the hardware, but
following an Itanium processor specific SWA fault)

SWA trap, Itanium
processor specific

Result tiny, the underflow traps are disabled, and the flush-to-zero
mode is not enabled

O Result huge

U Result tiny if underflow exceptions are enabled; result tiny and
inexact if they are disabled; the latter case will occur directly from the
hardware only if the flush-to-zero mode is enabled, otherwise it would
have already generated a SWA trap

I Result inexact

fmax.sf f1 = f2, f3
fmin.sf f1 = f2, f3
famax.sf f1 = f2, f3
famin.sf f1 = f2, f3

SWA Fault, Itanium
processor specific

Any unnormal operand, and no operand is unsupported, and no
operand is a NaN

V Any unsupported operand, or any NaN operand

D Any unnormal operand (not raised directly by the hardware, but
following an Itanium processor specific SWA fault)

fpmax.sf f1 = f2, f3
fpmin.sf f1 = f2, f3
fpamax.sf f1 = f2, f3
fpamin.sf f1 = f2, f3

SWA Fault, Itanium
processor specific

Any denormal operand, and no operand is a NaN

V Any NaN operand

D Any denormal operand (not raised directly by the hardware, but
following an Itanium processor specific SWA fault)

fcmp.frel.fctype.sf p1, p2 = f2, f3 SWA Fault, Itanium
processor specific

Any unnormal operand, and no operand is unsupported, and no
operand is a NaN

V Any unsupported operand, or any SNaN operand, or (any QNaN
operand if ‘frel’ is one of lt, le, nlt, nle)

D Any unnormal operand (not raised directly by the hardware, but
following an Itanium processor specific SWA fault)

fpcmp.frel.sf f1 = f2, f3 SWA Fault, Itanium
processor specific

Any denormal operand, and no operand is a NaN

V Any SNaN operand, or (any QNaN operand if ‘frel’ is one of lt, le, nlt,
nle)

Table 3-2. Conditions that Determine Occurrence of Floating-point Exceptions (Cont’d)

Floating-point Instruction Exception Condition

3-11

Conditions Causing, and Responses to, Floating-point Exceptions

D Any denormal operand (not raised directly by the hardware, but
following an Itanium processor specific SWA fault)

fcvt.fx.sf f1 = f2
fcvt.fxu.sf f1 = f2
fcvt.fx.trunc.sf f1 = f2
fcvt.fxu.trunc.sf f1 = f2

SWA Fault, Itanium
processor specific

Unnormal operand, and the operand is not unsupported, and the
operand is not a NaN

V Unsupported operand, or NaN operand, or input is too large in
absolute value

D Unnormal operand (not raised directly by the hardware, but following
an Itanium processor specific SWA fault)

I Result inexact

fpcvt.fx.sf f1 = f2
fpcvt.fxu.sf f1 = f2
fpcvt.fx.trunc.sf f1 = f2
fpcvt.fxu.trunc.sf f1 = f2

SWA Fault, Itanium
processor specific

Denormal operand, and the operand is not a NaN

V Any NaN operand, or any input is too large in absolute value

D Any denormal operand (not raised directly by the hardware, but
following an Itanium processor specific SWA fault)

I Result inexact

frcpa.sf f1, p2 = f2, f3 SWA fault, Itanium
processor specific

any unnormal operand, and no operand is unsupported, and no
operand is a NaN, and the operation is not Inf/Inf, and it is not
[pseudo]0/[pseudo]0, and it is not (non-zero normal)/[pseudo]0, and it
is not (non-pseudo 0 unnormal)/[pseudo]0 (with any combination of
signs; the square brackets indicate an optional component)

V Any unsupported operand, or any SNaN operand, or the operation is
Inf/Inf, or it is [pseudo]0/[pseudo]0
(with any combination of signs)

Z Operation is (non-zero normal)/[pseudo]0, or (non-pseudo 0
unnormal)/[pseudo]0 (with any combination of signs)

D Any unnormal operand (not raised directly by the hardware, but
following an Itanium processor specific SWA fault)

SWA fault, arch.
mandated

For floating-point register file format, if

eb ≤ emin - 1, or eb ≥ emax - 2,
or ea - eb ≥ emax, or ea - eb ≤ emin + 1, or ea ≤ emin + N - 1 (N = 64 is
the significand precision)

O Result huge; this can only occur after processing an architecturally
mandated SWA fault (not directly raised by the hardware), when the
result of the divide operation is provided by the SWA handler for
frcpa, and the output predicate is cleared

U Result tiny if underflow exceptions are enabled; result tiny and
inexact if underflow exceptions are disabled; this can only occur after
processing an architecturally mandated SWA fault (not directly raised
by the hardware), when the result of the divide operation is provided
by the SWA handler for frcpa, and the output predicate is cleared

I Result inexact; this can only occur after processing an architecturally
mandated SWA fault (not directly raised by the hardware), when the
result of the divide operation is provided by the SWA handler for
frcpa, and the output predicate is cleared

fprcpa.sf f1, p2 = f2, f3 SWA fault, Itanium
processor specific

Any denormal operand, and no operand is a NaN, and the operation
is not Inf/Inf, and it is not 0/0, and it is not (non-zero normal)/0 (with
any combination of signs)

Table 3-2. Conditions that Determine Occurrence of Floating-point Exceptions (Cont’d)

Floating-point Instruction Exception Condition

Conditions Causing, and Responses to, Floating-point Exceptions

3-12

Note that Table 3-2 has a separate entry for fnorm, that emphasizes the conditions leading to
floating-point exceptions, and the differences between fma and fnorm in raising Itanium processor
specific SWA faults. For other purposes, fnorm behaves like a pseudo-op of fma.

If an enabled exception (V, Z, D, O, U, I) is raised, the result is provided by the corresponding user
handler (provided execution of the application program containing the excepting instruction is
continued). For Software Assistance cases, the result is the IEEE mandated one, unless an enabled
IEEE exception is raised as a result of the computation. The user then provides the result, via a user

V Any SNaN operand, or the operation is Inf/Inf, or 0/0 (with any
combination of signs)

Z Operation is non-zero normal/0, or denormal/0 (with any combination
of signs)

D Any denormal operand (not raised directly by the hardware, but
following an Itanium processor specific SWA fault)

Note that if eb ≤ emin - 1, or eb ≥ emax - 2, or

ea - eb ≥ emax, or ea - eb ≤ emin + 1, or

ea ≤ emin + N - 1 and no SWA, invalid, divide-by-zero, or denormal
exception occurs, then fprcpa clears the output predicate and returns
the best possible approximations in the floating-point output register
(see Section 5.1) (N = 24 is the significand precision)

frsqrta.sf f1, p2 = f3 SWA fault, Itanium
processor specific

Unnormal operand (positive or negative), and the operand is not
unsupported, and the operand is not a NaN, and the operand is not
-Inf, and (the operand is not strictly negative normal or it is a
pseudo-zero) Note: the last condition allows negative pseudo-zeros
to raise a SWA request

V Operand is unsupported, or the operand is SNaN , or the operand is
-Inf, or (the operand is strictly negative finite and it is not a
pseudo-zero) [‘strictly negative’ excludes -0.0]; note that if the
operand is a non-zero negative unnormal (or denormal), the invalid
fault is not raised directly by the hardware, but it follows an Itanium
processor specific SWA fault

D Unnormal operand, strictly positive (not raised directly by the
hardware, but following an Itanium processor specific SWA fault)

SWA fault, arch.
mandated

for floating-point register file format, if

ea ≤ emin + N - 1 (N = 64 is the significand precision)

I Result inexact; this can only occur after processing an architecturally
mandated SWA fault (not directly raised by the hardware), when the
result of the square root operation is provided by the SWA handler,
and the output predicate is cleared

fprsqrta.sf f1, p2 = f3 SWA fault, Itanium
processor specific

Denormal operand (negative or positive), and the operand is not a
NaN, the operand is not -Inf, and the operand is not a strictly
negative normal floating-point number

V Operand is SNaN , or the operand is -Inf, or the operand is strictly
negative finite; note that if the operand is a non-zero negative
denormal, the invalid fault is not raised directly by the hardware, but it
follows an Itanium processor specific SWA fault

D Denormal operand, strictly positive (not raised directly by the
hardware, but following an Itanium processor specific SWA fault

Note that if ea ≤ emin + N - 1 and no SWA, invalid, or denormal
exception occurs, then fprsqrta clears the output predicate and
returns the best possible approximation in the floating-point output
register (see also 5.3) (N = 24 is the significand precision)

Table 3-2. Conditions that Determine Occurrence of Floating-point Exceptions (Cont’d)

Floating-point Instruction Exception Condition

3-13

Conditions Causing, and Responses to, Floating-point Exceptions

exception handler (again, if the application program containing the excepting instruction is
continued).

If the SWA exception handler is invoked or a user floating-point exception handler is reached after
an enabled exception has been raised, the indication regarding the cause of the exception is
contained in the ISR code (the 16 least-significant bits of the ISR register). There are different
interruption vectors for floating-point exception faults and for floating-point exception traps. The
FPSR register is changed by the excepting instruction before the handler is invoked to update status
flags only for floating-point traps (SWA trap, overflow, underflow, or inexact). The handler may
make other changes to the FPSR, which will become effective when execution of the application
program that caused the exception is resumed.

If any of the conditions shown in the last column of Table 3-2 is met for IEEE exceptions (V, Z, O,
U, I) when the corresponding exception is disabled, then the appropriate FPSR flags are set (as
specified by the IEEE-754 Standard for Binary Floating-point Computations [3]), and the result is
the IEEE mandated one. A special case occurs for underflow: the U flag in the FPSR is set only if
the result is both tiny and inexact, while an enabled underflow exception is raised if the result is
merely tiny. Tininess is established after rounding to the destination precision, but with unbounded
exponent, i.e. after the first IEEE rounding (the result of which, if non-zero, will be normalized if
possible). Inexactness is established either after the first IEEE rounding (once the result is inexact
at this stage it will not become exact through a second rounding), or after the second IEEE
rounding, to the destination precision and a bounded exponent. This second and final result will be
different from the first one only if the result is tiny and significant bits are lost through
denormalization, or if the result is huge (then the delivered result is infinity or the largest
floating-point value in the destination format, depending on the rounding mode).

Note that if a denormal/unnormal operand is encountered, and the denormal exceptions are
disabled, a SWA fault is raised and the result will be provided by the SWA fault handler (the IA-64
Floating-point Emulation Library). The same holds for architecturally mandated SWA faults or for
SWA traps.

An explanation is required for the denormal and underflow exceptions. In Table 3-2, “any
unnormal operand” or “any denormal operand” (with the specified restrictions on the other
operands), leads to a SWA (Software Assistance) fault. The same condition, “any unnormal
operand” or “any denormal operand”, is specified for denormal exceptions. In the Itanium
processor implementation, the hardware never raises a denormal exception for these conditions,
raising instead a SWA fault. If the denormal exceptions are disabled, the SWA handler (the IA-64
Floating-point Emulation Library) returns the result. If the denormal exceptions are enabled, the
SWA handler just returns an exception code modified from SWA fault to denormal exception, and
the OS kernel trap handler will have to invoke the corresponding (user registered) exception
handler.

A similar situation exists for underflow exceptions, when one of the fma, fnorm, fms, fnma, fpma,
fpms, or fpnma instructions has a tiny result. An underflow trap will be taken if the “result is tiny”
(see Table 3-2) and the underflow traps are enabled. If the underflow traps are disabled and the
result is tiny, a SWA trap will be raised instead. In this case, if the result is tiny but exact, the U flag
will not be set in the FPSR (it will preserve its previous value). If the result is tiny and inexact, both
U and I flags will be set in the FPSR. If the I traps are enabled, the inexact trap will be taken (raised
from within the SWA trap handler).

The next subsections specify the masked (disabled) and the unmasked (enabled) responses of the
Itanium processor (and IA-64 in general) arithmetic instructions to floating-point exceptions, in the
order: SWA faults, V, Z, D, SWA traps, O, U, I. In each case, it is assumed that an enabled
floating-point exception of higher priority does not occur. The masked and the unmasked response
are placed in the same table as in the simpler cases. Note that the meaning of “updated” and
“assigned” is the same as in Section 3.3 (“sticky” status bits are “updated” by a logical OR; other
state bits are “assigned” a value of 0 or 1).

Conditions Causing, and Responses to, Floating-point Exceptions

3-14

3.5 Response to SWA Faults

Table 3-3 lists the actions performed by the IA-64 Floating-point Emulation Library in response to
a SWA fault. The emulation library is invoked by the operating system kernel, reached in this case
via the floating-point fault vector.

if the denormal exceptions are enabled
clear the SWA bit and set the D bit in the ISR code

raise a denormal exception

else

compute the infinitely precise result rounded to the destination precision,

with unbounded exponent (first IEEE rounding)

if the result is huge
if the overflow exceptions are enabled

clear the SWA bit, set the O bit and assign the I and fpa

bits in the ISR code
set the D and O bits, and update the I bit in FPSR.sfx

truncate the exponent of the result to 17 bits

raise an overflow exception

else

calculate the IEEE mandated result, according to the

rounding mode (a correctly signed infinity or largest

normal floating-point number) (second IEEE rounding)

if the inexact exceptions are enabled

clear the SWA bit, set the I bit, and assign the fpa

bit in the ISR code

set the D, O, and I bits in FPSR.sfx

raise an inexact exception

else

set the D, O and I bits in FPSR.sfx

return the IEEE mandated result

endif

endif

else if the result is tiny

if the underflow exceptions are enabled

clear the SWA bit, set the U bit, and assign the I and fpa

bits in the ISR code

set the D bit, and update the U and I bits in FPSR.sfx

truncate the exponent of the result to 17 bits

raise an underflow exception

else

if the ftz mode is disabled

denormalize the result (a correctly signed zero,

denormal, or smallest normal is obtained) (second

IEEE rounding)

if the result is inexact

Table 3-3. Response of the IA-64 Arithmetic Instructions to SWA Faults

Floating-point Instruction Exception

fma.pc.sf f1 = f3, f4, f2
fms.pc.sf f1 = f3, f4, f2
fnma.pc.sf f1 = f3, f4, f2
fpma.pc.sf f1 = f3, f4, f2
fpms.pc.sf f1 = f3, f4, f2
fpnma.pc.sf f1 = f3, f4, f2

SWA fault,
Itanium processor
specific

3-15

Conditions Causing, and Responses to, Floating-point Exceptions

if the inexact exceptions are enabled

clear the SWA bit, set the I bit, and

assign the fpa bit in the ISR

code

set the D, U, and I bits in FPSR.sfx

raise an inexact exception

else

set the D, U and I bits in FPSR.sfx

return the result

endif

else

set the D bit in FPSR.sfx

return the result

endif

else

set the result to the correctly signed zero

if the inexact exceptions are enabled

clear the SWA bit, set the I bit, and clear

the fpa bit in the ISR code

set the D, U, and I bits in FPSR.sfx

raise an inexact exception

else

set the D, U and I bits in FPSR.sfx

return the result

endif

endif

endif

else

compute the result rounded to the destination precision,

with bounded exponent range (second IEEE rounding)

if the result is inexact

if the inexact exceptions are enabled

clear the SWA bit, set the I bit, and assign the

fpa bit in the ISR code

set the D and I bits in FPSR.sfx

raise an inexact exception

else

set the D and I bits in FPSR.sfx

return the result

endif

else

set the D bit in FPSR.sfx

return the result

endif

endif

endif

if the denormal exceptions are enabled

fmax.sf f1 = f2, f3
fmin.sf f1 = f2, f3
famax.sf f1 = f2, f3
famin.sf f1 = f2, f3
fpmax.sf f1 = f2, f3
fpmin.sf f1 = f2, f3
fpamax.sf f1 = f2, f3
fpamin.sf f1 = f2, f3

SWA Fault,
Itanium processor
specific

Conditions Causing, and Responses to, Floating-point Exceptions

3-16

clear the SWA bit and set the D bit in the ISR code

raise a denormal exception

else

compute the result (equal to one of the two inputs)

set the D bit in FPSR.sfx

return result

endif

if the denormal exceptions are enabled

clear the SWA bit and set the D bit in the ISR code

raise a denormal exception

else

compute the result predicates

set the D bit in FPSR.sfx

return result

endif

if the denormal exceptions are enabled

clear the SWA bit and set the D bit in the ISR code

raise a denormal exception

else

compute the result

if the result is inexact

if the inexact exceptions are enabled

clear the SWA bit, set the I bit, and clear the

fpa bit in the ISR code

set the D and I bits in FPSR.sfx

raise an inexact exception

else

set the D and I bits in FPSR.sfx

return the result

endif

else

set the D bit in FPSR.sfx

return the result

endif

endif

if any input operand is unnormal and the denormal exceptions are enabled

clear the SWA bit and set the D bit in the ISR code

fcmp.frel.fctype.sf p1, p2 = f2, f3
fpcmp.frel.sf f1 = f2, f3

SWA fault,
Itanium processor
specific

fcvt.fx.sf f1 = f2
fcvt.fxu.sf f1 = f2
fcvt.fx.trunc.sf f1 = f2

fcvt.fxu.trunc.sf f1 = f2
fpcvt.fx.sf f1 = f2
fpcvt.fxu.sf f1 = f2
fpcvt.fx.trunc.sf f1 = f2
fpcvt.fxu.trunc.sf f1 = f2

SWA fault,
Itanium processor
specific

frcpa.sf f1, p2 = f2, f3 SWA fault,
Itanium processor
specific or arch.
mandated

3-17

Conditions Causing, and Responses to, Floating-point Exceptions

raise a denormal exception

else

if any input operand is unnormal, set the D bit in FPSR.sfx

if this is (an architecturally mandated SWA fault) or (an Itanium processor

specific SWA fault and the mathematical conditions for an

architecturally mandated SWA fault are met)

compute the infinitely precise result for the divide operation

rounded to the destination precision, with unbounded

exponent (first IEEE rounding)

if the result is huge

if the overflow exceptions are enabled

clear the SWA bit, set the O and assign the I and

fpa bits in the ISR code

set the O bit, and update the I and fpa bits in

FPSR.sfx

truncate the exponent of the result to 17 bits

raise an overflow exception

else

calculate the IEEE mandated result according to the

rounding mode (a correctly signed infinity or

largest normal floating-point number)

(second IEEE rounding)

if the inexact exceptions are enabled

clear the SWA bit, set the I bit, and assign

the fpa bit in the ISR code

set the O and I bits in FPSR.sfx

raise an inexact exception

else

set the O and I bits in FPSR.sfx

return the IEEE mandated result and a clear

output predicate

endif

endif

else if the result is tiny

if the underflow exceptions are enabled

clear the SWA bit, set the U bit, and assign the

I and fpa bits in the ISR code

update the U, I and fpa bits in FPSR.sfx

truncate the exponent of the result to 17 bits

raise an underflow exception

else

if the ftz mode is disabled

denormalize the result (a correctly signed

zero, denormal, or smallest normal is

obtained) (second IEEE rounding)

if the result is inexact

if the inexact exceptions are enabled

clear the SWA bit, set I bit,

and assign the fpa bit

in the ISR code

set the U and I bits in

FPSR.sfx

raise an inexact exception

else

set the U and I bits in

FPSR.sfx

Conditions Causing, and Responses to, Floating-point Exceptions

3-18

return the result and a clear

output predicate

endif

else

return the result and a clear output

predicate

endif

else

set the result to the correctly signed zero

if the inexact exceptions are enabled

clear the SWA bit, set the I bit, and

assign the fpa bit in the ISR

code

set the U and I bits in FPSR.sfx

raise an inexact exception

else

set U and I bits in FPSR.sfx

return the result and a clear output

predicate

endif

endif

endif

else

compute the result rounded to the destination precision,

with bounded exponent range (second IEEE rounding)

if the result is inexact

if the inexact exceptions are enabled

clear the SWA bit, set the I bit, and assign

the fpa bit in the ISR code

set the I bit in FPSR.sfx

raise an inexact exception

else

set the I bit in FPSR.sfx

return the result and a clear output

predicate

endif

else

return the result and a clear output predicate

endif

endif

else (if this is an Itanium processor specific SWA fault and the

mathematical conditions for an architecturally mandated SWA fault

are not met)

return the 11-bit table approximation for the inverse of the

denominator (second argument), and an output predicate set

to 1

endif

endif

if the denormal exceptions are enabled

clear the SWA bit and set the D bit in the ISR code

raise a denormal exception

fprcpa.sf f1, p2 = f2, f3 SWA fault,
Itanium processor
specific

3-19

Conditions Causing, and Responses to, Floating-point Exceptions

else

set the D bit in FPSR.sfx

return the 11-bit table approximation for the inverse of the denominator

(which may range from zero to infinity) and a clear output predicate

endif

In situations similar to those that lead to an architecturally mandated SWA fault for frcpa (this does
not exclude cases with denormal input operands covered above), the fprcpa instruction will instead
clear the output predicate, and will set the value of the output floating-point register as shown
below (assume a/b is to be computed):

if eb ≤ emin - 1
result = Inf, with the sign of the denominator

else if eb ≥ emax - 2
result = 0, with the sign of the denominator

else if ea - eb ≥ emax or ea - eb ≤ emin + 1 or ea ≤ emin + N - 1
result = 11-bit table approximation for the inverse of b

if the invalid exceptions are enabled and the input operand is a strictly negative

 unnormal

clear the SWA bit and set the V bit in the ISR code

raise an invalid exception

else if the input operand is a strictly positive unnormal and the

 denormal exceptions are enabled

clear the SWA bit and set the D bit in the ISR code

raise a denormal exception

else if the input operand is unnormal set the D bit in FPSR.sfx

if an architecturally mandated SWA fault or an Itanium processor specific

SWA fault and the mathematical condition for an architecturally

mandated SWA fault is met

compute the infinitely precise result for the square root operation

rounded to the destination precision, with unbounded

exponent (first IEEE rounding)

compute the result rounded to the destination precision,

with bounded exponent range (second IEEE rounding)

if the inexact traps are disabled or the result is exact

if the result is inexact

set the I bit in FPSR.sfx

endif

return the result and a clear output predicate

else (if the result is inexact and the inexact traps are enabled)

clear the SWA bit, set the I bit, and assign the fpa bit in

the ISR code

set the I bit in FPSR.sfx

raise an inexact exception

endif

else if an Itanium processor specific SWA fault and the mathematical

condition for an architecturally mandated SWA fault is not met

return the 11-bit table approximation for the inverse of the square

root of the input argument and an output predicate set to 1

endif

endif

frsqrta.sf f1, p2 = f3 SWA fault,
Itanium processor
specific or arch.
mandated

Conditions Causing, and Responses to, Floating-point Exceptions

3-20

if the invalid exceptions are enabled and the input operand is a strictly negative

 denormal

clear the SWA bit and set the V bit in the ISR code

raise an invalid exception

else if the denormal exceptions are enabled

clear the SWA bit and set the D bit in the ISR code

raise a denormal exception

else

set the D bit in FPSR.sfx

return the 11-bit table approximation for the inverse of the square root

of the input argument and a clear output predicate

endif

Note: In situations similar to those that lead to an architecturally mandated SWA fault for frsqrta (this
does not exclude cases with a denormal input operand covered above), the fprsqrta instruction will
instead clear the output predicate, and will set the value of the output floating-point register as
shown below (assume sqrt (a) is to be computed):

if ea ≤ emin + N - 1
result = 11-bit table approximation for the inverse of sqrt(a)

3.6 Response to Invalid Faults

The IEEE-754 Standard for Binary Floating-point Computations [3] does not specify uniquely the
value of the result when an invalid exception is raised in case one of the operands is a signaling
NaN, and the invalid exceptions are disabled. In addition, the IA-64 assembly instructions do not
match exactly the operations described in the standard. Table 3-4 covers this and other cases,
specifying the masked response of the IA-64 arithmetic instructions to invalid exceptions. The
notation Q(fn) in Table 3-4 signifies a ‘‘quieted’’ NaN, assuming that the floating-point register fn
contains a signaling NaN (this means changing the second most significant bit in the significand of
the NaN in fn from 0 to 1). QNaN Indefinite is the NaN having the 82-bit pattern of
0x3ffffc000000000000000, which applies for scalar instructions, and the 32-bit pattern of
0xffc00000 which applies for parallel instructions.

Table 3-4 lists the actions performed by the hardware as part of the masked response to an invalid
fault. In addition, the invalid exception status flag, V, is set in the appropriate status field of the
FPSR.

fprsqrta.sf f1, p2 = f3 SWA fault,
Itanium processor
specific

3-21

Conditions Causing, and Responses to, Floating-point Exceptions

Table 3-4. Masked Response of the IA-64 Arithmetic Instructions to Invalid Exceptions (listed
in decreasing order of their priority)

Floating-point Instruction Exception Condition and Result

fma.pc.sf f1 = f3, f4, f2
fms.pc.sf f1 = f3, f4, f2
fnma.pc.sf f1 = f3, f4, f2

V Any unsupported operand
f1 = QNaN Indefinite

Any SNaN operand
if f4 is SNaN, then f1 = Q (f4)
else if f2 is SNaN, then f1 = Q (f2)
else if f3 is SNaN,then f1 = Q (f3)

Operation leads to (-Inf + Inf), (+Inf -Inf),
Inf * 0, Inf * (-0), -Inf * 0, -Inf * (-0), 0 * Inf, -0 * Inf,
0 * (-Inf), or -0 * (-Inf)

f1 = QNaN Indefinite

fpma.pc.sf f1 = f3, f4, f2
fpms.pc.sf f1 = f3, f4, f2
fpnma.pc.sf f1 = f3, f4, f2

V Any SNaN operand
if f4 is SNaN, then f1 = Q (f4)
else if f2 is SNaN, then f1 = Q (f2)
else if f3 is SNaN, then f1 = Q (f3)

Operation leads to (-Inf + Inf), (+Inf -Inf),
Inf * 0, Inf * (-0), -Inf * 0, -Inf * (-0), 0 * Inf, -0 * Inf,
0 * (-Inf), or -0 * (-Inf)

f1 = QNaN Indefinite

fmax.sf f1 = f2, f3
fmin.sf f1 = f2, f3
famax.sf f1 = f2, f3
famin.sf f1 = f2, f3

V Any unsupported operand or any NaN operand
f1 = f3

fpmax.sf f1 = f2, f3
fpmin.sf f1 = f2, f3
fpamax.sf f1 = f2, f3
fpamin.sf f1 = f2, f3

V Any NaN operand
f1 = f3

fcmp.frel.fctype.sf p1, p2 = f2, f3 V Any unsupported operand
if ‘frel’ is unord, then p1, p2 = 1, 0
else p1, p2 = 0, 1

Any SNaN operand, or (any QNaN operand
and ‘frel’ is one of lt, le, nlt, nle)

if ‘frel’ is unord, then p1, p2 = 1, 0
else p1, p2 = 0, 1

fpcmp.frel.sf f1 = f2, f3 V Any SNaN operand, or (any QNaN operand if ‘frel’ is one of
lt, le, nlt, nle)

if ‘frel’ is unord, then f1 = 0xffffffff
else f1 = 0x00000000

fcvt.fx.sf f1 = f2
fcvt.fxu.sf f1 = f2
fcvt.fx.trunc.sf f1 = f2
fcvt.fxu.trunc.sf f1 =f2

V Unsupported, or NaN operand, or too large in absolute
value

f1 = Integer Indefinite
(0x1003e8000000000000000)

fpcvt.fx.sf f1 = f2
fpcvt.fxu.sf f1 = f2
fpcvt.fx.trunc.sf f1 = f2
fpcvt.fxu.trunc.sf f1 = f2

V Any NaN operand, or too large in absolute value
f1 = Integer Indefinite
(32-bit code 0x80000000 in the appropriate
half; exponent: 0x1003e)

frcpa.sf f1, p2 = f2, f3 V Any unsupported operand
f1 = QNaN Indefinite, p2 = 0

Any SNaN operand
if f2 is SNaN, then f1 = Q (f2), p2 = 0
else f1 = Q (f3), p2 = 0

Operation is Inf/Inf, or it is [pseudo]0/[pseudo]0
f1 = QNaN Indefinite, p2 = 0

Conditions Causing, and Responses to, Floating-point Exceptions

3-22

In Table 3-4, for parallel instructions, it is implied that the result specified applies only to the half
(halves) that corresponds to an invalid exception being raised.

The unmasked response of the IA-64 arithmetic instructions listed in Table 3-4 to invalid
exceptions is to leave the operands unchanged, and to set the V bit in the ISR code. The operating
system kernel, reached via the floating-point fault vector, will then invoke the user floating-point
exception handler, if one has been registered. Otherwise, the default action should be to terminate
the application.

3.7 Valid Operations with NaNs

Rules similar to those in Table 3-4 establish the value of the result in case one or more input
operands are quiet NaNs (QNaNs), and an invalid exception is not raised (for fcmp and fpcmp, this
means that ’frel’ is none of lt, le, nlt, or nle; otherwise, fcmp or fpcmp will raise an invalid
exception). Table 3-5 lists the value of the hardware-provided result in such cases, i.e. when at least
one of the operands is a quiet NaN, and no exception of higher priority applies (see the exception
priorities at the beginning of Section 3.3), regardless of whether the invalid exceptions are enabled
or not. Table 3-5 is not related to any floating-point exception, but it is included here for
completeness because responding to QNaNs fits as priority between responding to invalid
exceptions due to unsupported or SNaN operands and to invalid exceptions due to causes other
than unsupported or SNaN operands. The results listed in Table 3-5 are generated by the hardware.

fprcpa.sf f1, p2 = f2, f3 V Any SNaN operand
if f2 is SNaN, then f1 = Q (f2), p2 = 0
else f1 = Q (f3), p2 = 0

Operation is Inf/Inf, or 0/0
(with any combination of signs)
f1 = QNaN Indefinite, p2 = 0

frsqrta.sf f1, p2 = f3 V Unsupported operand
f1 = QNaN Indefinite, p2 = 0

Operand is SNaN
f1 = Q (f3), p2 = 0

Operand is -Inf, or (the operand is strictly negative and it is
not a pseudo-zero)

f1 = QNaN Indefinite, p2 = 0

fprsqrta.sf f1, p2 = f3 V Operand is SNaN
f1 = Q (f3), p2 = 0

Operand is -Inf, or the operand is strictly negative (this
excludes -0)

f1 = QNaN Indefinite, p2 = 0

Table 3-4. Masked Response of the IA-64 Arithmetic Instructions to Invalid Exceptions (listed
in decreasing order of their priority) (Cont’d)

Floating-point Instruction Exception Condition and Result

Table 3-5. Result of Floating-point Arithmetic Instructions for QNaN Input(s), in the Absence
of Floating-point Exceptions

Floating-point Instruction Condition and Result

fma.pc.sf f1 = f3, f4, f2
fms.pc.sf f1 = f3, f4, f2
fnma.pc.sf f1 = f3, f4, f2
fms.pc.sf f1 = f3, f4, f2

Any QNaN operand
if f4 is QNaN, then f1 = f4
else if f2 is QNaN, then f1 = f2
else if f3 is QNaN, then f1 = f3

3-23

Conditions Causing, and Responses to, Floating-point Exceptions

3.8 Response to Divide-by-Zero Faults

Table 3-6 lists the actions performed by the hardware as part of the masked response to a
divide-by-zero fault.

The unmasked response of the IA-64 arithmetic instructions listed in Table 3-6 to divide-by-zero
exceptions is to leave the operands unchanged, and to set the Z bit in the ISR code. The operating
system kernel, reached via the floating-point fault vector, will then invoke the user floating-point
exception handler, if one has been registered. Otherwise, the default action should be to terminate
the application.

3.9 Response to Denormal Faults

Both the masked and the unmasked response to denormal faults originate in the IA-64 Floating-
Point Emulation Library (see Figure 3-3). The emulation library is invoked by the operating system
kernel, reached via the floating-point fault vector, for an Itanium processor specific SWA fault.

fpma.pc.sf f1 = f3, f4, f2
fpms.pc.sf f1 = f3, f4, f2
fpnma.pc.sf f1 = f3, f4, f2

Any QNaN operand
if f4 is QNaN, then f1 = f4
else if f2 is QNaN, then f1 = f2
else if f3 is QNaN, then f1 = f3

fcmp.frel.fctype.sf p1, p2 = f2, f3 Any QNaN operand, and ‘frel’ is none of lt, le, nlt, nle
if ‘frel’ is unord, then p1, p2 = 1, 0
else p1, p2 = 0, 1

fpcmp.frel.sf f1 = f2, f3 Any QNaN operand, and ‘frel’ is none of lt, le, nlt, nle
if ‘frel’ is unord, then f1 = 0xffffffff
else f1 = 0x00000000

frcpa.sf f1, p2 = f2, f3 Any QNaN operand
if f2 is QNaN, then f1 = f2, p2 = 0
else f1 = f3, p2 = 0

fprcpa.sf f1, p2 = f2, f3 Any QNaN operand
if f2 is QNaN, then f1 = f2, p2 = 0
else f1 = f3, p2 = 0

frsqrta.sf f1, p2 = f3 Operand is QNaN
f1 = f3, p2 = 0

fprsqrta.sf f1, p2 = f3 Any operand is QNaN
f1 = f3, p2 = 0

Table 3-5. Result of Floating-point Arithmetic Instructions for QNaN Input(s), in the Absence
of Floating-point Exceptions

Floating-point Instruction Condition and Result

Table 3-6. Masked Response of the IA-64 Arithmetic Instructions to Divide-by-Zero
Exceptions

Floating-point Instruction Exception Result

frcpa.sf f1, p2 = f2, f3
fprcpa.sf f1, p2 = f2, f3

Z if a is non-[pseudo-]zero finite and b is [pseudo-]
zero, then f1=Inf, with the sign of a/b, and p2=0
(the IEEE 754 Standard mandated result);
set the Z bit in FPSR.sfx

Conditions Causing, and Responses to, Floating-point Exceptions

3-24

The masked response of the IA-64 arithmetic instructions to denormal exceptions is identical to the
response to Itanium processor specific SWA faults, when the denormal exceptions are masked (see
Table 3-3 in Section 3.5), which include providing a result and setting the D status flag in the
appropriate status field of the FPSR.

The unmasked response of the IA-64 arithmetic instructions to denormal exceptions is to leave the
operands unchanged, and to set the D bit in the ISR code. The IA-64 Floating-point Emulation
Library performs these operations, and returns a denormal exception code to the operating system
kernel, which will then invoke the user floating-point exception handler, if one has been registered.
Otherwise, the default action should be to terminate the application. The unmasked response to
denormal exceptions is included in Table 3-3 of Section 3.5 above.

3.10 Response to SWA Traps

Table 3-7 summarizes the actions performed by the IA-64 Floating-point Emulation Library (SWA
handler) in response to an Itanium processor specific SWA trap. The library is invoked by the
operating system kernel, reached via the floating-point trap vector, for a SWA trap. The result of
the first IEEE rounding is already available.

“undo” the first IEEE rounding, denormalize, and round to the destination
precision, with bounded exponent range (the result is a correctly signed zero,

denormal, or smallest normal floating-point number)

if the result is inexact

if the inexact exceptions are enabled

clear the SWA bit, set the I bit, and assign the fpa bit in the ISR
code

set the U and I bits in FPSR.sfx

raise an inexact exception

else

set the U and I bits in FPSR.sfx

return the result

endif

else

return the result

endif

3.11 Response to Overflow Traps

For overflow traps, both the masked and the unmasked response are presented in Table 3-8. The
actions listed are performed by the hardware or by the IA-64 Floating-point Emulation Library,
depending on whether the exception was raised by the hardware or by the emulation library (in

Table 3-7. Response of the IA-64 Arithmetic Instructions to Itanium™ Processor Specific SWA
Traps

Floating-point Instruction Exception

fma.pc.sf f1 = f3, f4, f2
fms.pc.sf f1 = f3, f4, f2
fnma.pc.sf f1 = f3, f4, f2
fpma.pc.sf f1 = f3, f4, f2
fpms.pc.sf f1 = f3, f4, f2
fpnma.pc.sf f1 = f3, f4, f2

SWA Trap,
Itanium processor
specific

3-25

Conditions Causing, and Responses to, Floating-point Exceptions

Figure 3-4 of Section 3.3 the overflow trap can be raised only by the hardware, while in Figure 3-5,
the overflow trap can be raised only from software, by the emulation library).

Masked response:
set the result to the correctly signed infinity or to the largest normal

floating-point number, according to the rounding mode, as mandated by

the IEEE 754 Standard (second IEEE rounding)

if the inexact exceptions are disabled

set the O and I bits in FPSR.sfx

return the IEEE mandated result

else

set the I bit and assign the fpa bit in the ISR code

set the O and I bits in FPSR.sfx

raise an inexact exception

endif

Unmasked response:
truncate to 17 bits the exponent of the result from the first IEEE rounding

set the O bit and assign the I and fpa bits in the ISR code

set the O bit and update the I bit in FPSR.sfx

raise an overflow exception

The IEEE Standard 754 for Binary Floating-point Computations [3] requests that when raising an
overflow trap, the user handler be provided with the result rounded to the destination precision, as
if with unbounded exponent, but then scaled down by a factor equal to 2 raised to 3 · 2n-2, where n
is the number of bits in the exponent of the floating-point format used to represent the result (this
will bring it close to the middle of the range covered by the particular format). The scaling factors
for the various formats are determined by the following:

The actual scaling is not performed by the hardware, nor by the IA-64 Floating-point Emulation
Library. It is typically performed by an IEEE filter that is invoked before calling the user
floating-point exception handler, if one has been registered (otherwise the default action is usually
to terminate the application).

Table 3-8. Response of the IA-64 Arithmetic Instructions to Overflow Exceptions

Floating-point Instruction Exception

fma.pc.sf f1 = f3, f4, f2
fms.pc.sf f1 = f3, f4, f2
fnma.pc.sf f1 = f3, f4, f2
fpma.pc.sf f1 = f3, f4, f2
fpms.pc.sf f1 = f3, f4, f2
fpnma.pc.sf f1 = f3, f4, f2
frcpa.sf f1, p2 = f2, f3

O

Number of Bits in Exponent Exponent of the Base-2 Scaling Factor

8 3 * 26 = 192 = 0xc0

11 3 * 29 = 1536 = 0x600

15 3 * 213 = 24566 = 0x6000

17 3 * 215 = 98304 = 0x18000

Conditions Causing, and Responses to, Floating-point Exceptions

3-26

3.12 Response to Underflow Traps

For underflow traps, both the masked and the unmasked response are presented in Table 3-9. The
actions listed are performed by the hardware or by the IA-64 Floating-point Emulation Library,
depending on whether the exception was raised by the hardware or by the emulation library (in
Figure 3-4 of Section 3.3 the underflow trap can be raised only by the hardware, while in
Figure 3-5, the underflow trap can be raised only from software, by the emulation library).

Masked response:
“undo” the first IEEE rounding, denormalize, and round to the destination
precision, with bounded exponent range (the result is a correctly signed zero,

denormal, or smallest normal floating-point number)

if the result is exact or the inexact exceptions are disabled

if the result is inexact

set the U and I bits in FPSR.sfx

endif

return the result

else

set the I bit and update the fpa bit in the ISR code

set the U and I bits in FPSR.sfx

raise an inexact exception

endif

Unmasked response:
truncate to 17 bits the exponent of the result from the first IEEE rounding

set the U bit and assign the I and fpa bits in the ISR code

set the U bit and update the I bit in FPSR.sfx

raise an underflow exception

The IEEE Standard 754 for Binary Floating-point Computations [3] requests that when raising an
underflow trap, the user handler be provided with the result rounded to the destination precision, as
if with unbounded exponent, but then scaled up by a factor equal to 2 raised to 3 · 2n-2, where n is
the number of bits in the exponent of the floating-point format used to represent the result (this will
bring it close to the middle of the range covered by the particular format). The scaling factors for
the various formats are the same as those for unmasked overflow exceptions, listed above.

 Just as for overflow, the actual scaling is not performed by the hardware, nor by the IA-64
Floating-point Emulation Library. It is typically performed by an IEEE filter that is invoked before
calling the user floating-point exception handler, if one has been registered (otherwise the default
action is usually to terminate the application).

Table 3-9. Response of the IA-64 Arithmetic Instructions to Underflow Exceptions

Floating-point Instruction Exception Result (Below)

fma.pc.sf f1 = f3, f4, f2
fms.pc.sf f1 = f3, f4, f2
fnma.pc.sf f1 = f3, f4, f2
fpma.pc.sf f1 = f3, f4, f2
fpms.pc.sf f1 = f3, f4, f2
fpnma.pc.sf f1 = f3, f4, f2
frcpa.sf f1, p2 = f2, f3

U

3-27

Conditions Causing, and Responses to, Floating-point Exceptions

3.13 Response to Inexact Traps

 For inexact traps, both the masked and the unmasked response are presented in Table 3-10. The
actions listed are performed by the hardware or by the IA-64 Floating-point Emulation Library,
depending on whether the exception was raised by the hardware or by the emulation library (in
Figure 3-4 of Section 3.3 both situations are possible, while in Figure 3-5, the inexact trap can be
raised only from software, by the emulation library).

Masked response:
set the I bit in FPSR.sfx

return the result

Unmasked response:
set the I bit and update the fpa bit in the ISR code

set the I bit in FPSR.sfx

raise an inexact exception

The explanations in Table 3-2 through Table 3-10 above are given for scalar instructions, or for
‘one half’ for parallel ones. For parallel instructions, one or two simultaneous exception conditions
per instruction are possible. If any is a SWA fault condition, it may also lead to one or two trap
conditions per instruction. If only SWA faults and traps are involved (and no other enabled
floating-point exception conditions), then the result for the excepting half (halves) of the
instruction is provided as explained in Table 3-3 and Table 3-7 (response to SWA faults and to
SWA traps). The non-excepting half, if any, is executed if it is associated with a SWA fault in the
other half, or its result is left unchanged if it is associated with a SWA trap. If any enabled
exceptions occur while executing a parallel instruction, then a user handler has to be invoked in
order to generate a result. Support for handling such situations is provided through an IEEE
Floating-point Exception Filter (details on its operation are given in a separate man page). The role
of the filter is to simplify handling of unmasked floating-point exceptions in user code (it shields
the user from many machine specific aspects, and it simplifies and increases the portability of the
user code).

Table 3-10. Response of the IA-64 Arithmetic Instructions to Inexact Exceptions

Floating-point Instruction Exception Result (Below)

fma.pc.sf f1 = f3, f4, f2
fms.pc.sf f1 = f3, f4, f2
fnma.pc.sf f1 = f3, f4, f2
fpma.pc.sf f1 = f3, f4, f2
fpms.pc.sf f1 = f3, f4, f2
fpnma.pc.sf f1 = f3, f4, f2
fcvt.fx.sf f1 = f2
fcvt.fxu.sf f1 = f2
fcvt.fx.trunc.sf f1 = f2
fcvt.fxu.trunc.sf f1 = f2
fpcvt.fx.sf f1 = f2
fpcvt.fxu.sf f1 = f2
fpcvt.fx.trunc.sf f1 = f2
fpcvt.fxu.trunc.sf f1 = f2
frcpa.sf f1, p2 = f2, f3
frsqrta.sf f1, p2 = f3

I

Conditions Causing, and Responses to, Floating-point Exceptions

3-28

3.14 Examples

The control flow and the sequence of steps followed in processing floating-point exceptions are
illustrated next by four examples. The order of the sequence of steps followed is marked in each
figure. Software components that occur multiple times in the same figure indicate different
invocations (only in Example 1 and Example 4).

Example 1
The first example is that of a divide operation that raises a SWA fault, and then an underflow trap
(underflow traps are assumed to be enabled).

Assuming a scalar divide operation, the SWA fault is raised by an frcpa instruction that jump-starts
the iterative computation for computing the result of the divide operation. As the result is provided
by the user exception handler for unmasked (enabled) underflow exceptions, the output predicate
of frpca has to be clear when execution of the application program containing it is resumed
(clearing the output predicate is the task of the user handler or of the IEEE Floating-point
Exception Filter). The clear output predicate disables the iterative computation following frcpa, as
the result is already in the correct floating-point register (the iterative computation will be in
general inlined automatically by the compiler).

Figure 3-6. Flow of Control for Handling a SWA Fault Raised by a Divide Operation, Followed
by an Underflow Trap

Divide Example: (0.0100...01 * 2^emin) / (1.0 * 2^2) = 0.0001 * 2^emin

(D traps disabled: SWA Fault; U traps enabled: No SWA trap, but user handler called)
000838

Application Code

User Mode

SWA Fault
ISR Code = 0x08

Result

Kernel Trap Handler

Kernel Mode

U Trap
ISR Code = 0x1001

IA-64 Floating-point
Emulation Library

(SWA Handler)

Kernel Mode

IEEE Filter

User Mode

U Trap

Result

User Floating-point
Exception Handler

User Mode

Result

ISR Code = 0x1001

1

2
3

4

5

7
8

6

SWA Fault
ISR Code = 0x08

U Trap

3-29

Conditions Causing, and Responses to, Floating-point Exceptions

Example 2
The second example illustrates the case of a parallel instruction that raises an invalid fault in the
high half, and a SWA fault in the low half (reported first as a SWA fault, but then converted to a
denormal fault by the IA-64 Floating-point Emulation Library). Both invalid and denormal
exceptions are assumed to be enabled. This example could be that of an fpma instruction having a
denormal operand in the low half (e.g. 0.1 * 2-126) and a signaling NaN in the high half (the fpma
operation has three single precision input operands for each half). It is assumed that processing of
the two halves at the user level takes place in the little endian order: low half first, followed then by
the high half (this is just a convention, and is not imposed by the architecture).

Figure 3-7. Flow of Control for Handling a Double Fault (V high, SWA Fault low), Raised by an
IA-64 Parallel Instruction

Parallel (SIMD) Instruction Example: denormal operand in the low half, invalid operand in the high half

(V and D traps enabled)
000839

Application Code

User Mode

V_hi, SWA_F_lo
ISR Code = 0x81 SIMD

Result

Kernel Trap Handler

Kernel Mode

V_hi, D_lo
ISR Code = 0x21

IA-64 Floating-point
Emulation Library

(SWA Handler)

Kernel Mode

IEEE Filter

User Mode

D
Scalar
Result

User Floating-point
Exception Handler

User Mode

SIMD Result

ISR Code = 0x21

1

2

3

V_hi, D_lo4

5

9
10

8

V_hi, SWA_F_lo
ISR Code = 0x81 Scalar

Result

V

6

7

Conditions Causing, and Responses to, Floating-point Exceptions

3-30

Example 3
 The third example illustrates the case of a parallel instruction that raises an invalid fault in the high
half, and an underflow trap in the low half, with no SWA requests involved. Both invalid and
underflow exceptions are assumed to be enabled. As only the fault is detected first, the IEEE filter
tries to re-execute the low half of the instruction, generating a new exception (underflow trap).
Note that steps 2 and 4 (the calls to the IEEE Filter from the kernel trap handler) should also
include a brief call to the Floating-point Emulation Library. This is not represented in Figure 3-8,
as the only action performed by the floating-point emulation library in these cases is to return to the
caller.

Figure 3-8. Flow of Control for Handling a Fault in the High Half (V high), and a Trap in the
Low Half (U low) of an IA-64 Parallel Instruction

Parallel (SIMD) Instruction Example: underflow in the low half, invalid operand in the high half (nested traps)

(V and U traps enabled)
000840

Application Code

User Mode

SIMD
Result

ISR Code = 0x01
V_hi

12
1

Kernel Trap Handler

Kernel Mode

SIMD Result
(For original data)11

2

IEEE Filter

User Mode

Scalar
Result

V Fault

10

9

User Floating-point
Exception Handler

User Mode

Kernel Trap Handler

Kernel Mode

SIMD Result
(For modified data_hi)

ISR Code = 0x0101
U_lo

7

4

IEEE Filter

User Mode

Scalar
Result

U Trap

6

5

User Floating-point
Exception Handler

User Mode

ISR Code = 0x01
V_hi

U_lo
(Re-exec)

ISR Code = 0x0101
3

SIMD
Result

8

3-31

Conditions Causing, and Responses to, Floating-point Exceptions

Example 4
Finally, the fourth example repeats the third one, but with underflow exceptions disabled. This
transforms the underflow trap into a SWA trap.

Figure 3-9. Flow of Control for Handling a Fault in the High Half (V high), and a
SWA Trap in the Low Half of an IA-64 Parallel Instruction

Parallel (SIMD) Instruction Example: SWA trap in the low half, invalid operand in the high half (nested traps)

(V traps enabled, U traps disabled)
000841

Application Code

User Mode

SIMD
Result

ISR Code = 0x01
V_hi

10
1

Kernel Trap Handler

Kernel Mode

SIMD Result
(For original data)9

2

IEEE Filter

User Mode

Scalar
Result

V Fault

10

7

User Floating-point
Exception Handler

User Mode

Kernel Trap Handler

Kernel Mode

SIMD Result
(For modified data_hi)

ISR Code = 0x0101
SWA_trap_lo

5

4

IA-64 Floating-point
Emulation Library

Kernel Mode

ISR Code = 0x01
V_hi

SWAT
(Re-exec)

ISR Code = 0x0101
3

SIMD
Result

6

Conditions Causing, and Responses to, Floating-point Exceptions

3-32

4-1

Architecturally Mandated Floating-point
Software Assistance 4

The architecturally mandated software assistance is necessary for the scalar reciprocal
approximation instructions, frcpa and frsqrta, that help implement in software the floating-point
and integer divide and remainder, and respectively the floating-point square root operations.

4.1 Conditions that Require Architecturally Mandated
SWA

The architecturally mandated SWA conditions for the scalar divide and square root are presented
next (the conditions for divide apply to the remainder operation as well, as it is based on the divide
algorithm). Similar conditions exist for the parallel divide and square root operations, but they do
not lead to SWA requests. The parallel instructions behavior will be detailed in Chapter 5.

4.1.1 Architecturally Mandated SWA Conditions for Divide

For divide, if a/b has to be calculated, the frcpa instruction provides an initial approximation of 1/b
that allows starting a Newton-Raphson (or similar) iterative process to compute the correctly
rounded value of a/b as specified by the IEEE-754 Standard for Binary Floating-point
Computations [3]. Several floating-point divide algorithms are available, depending on the
instruction type (parallel or not), on the precision of the arguments and of the result, but also on
whether best latency or best throughput is preferred. For the scalar single, double, and
double-extended precision algorithms (see [1] for the single and double precision algorithms) the
result can be calculated correctly for any valid input values of the arguments. Special cases exist
only for the algorithm that operates on register file format floating-point numbers. If the inputs are
in floating-point register file format, with 17-bit exponents, then some of the intermediate
computation steps might underflow, overflow, or lose precision. A sample algorithm for register
file format computations is shown below. The same algorithm can be used for double-extended
precision calculations.

Consider the following sample algorithm for calculating a/b in floating-point register file format,
where a, b, y0, e0, y1, e1, y2, e2, y3, e3, y4, q0, r0, q1, r1, and q2 are floating-point numbers with N =
64 bits in the significand, y0 is an 11-bit approximation of 1/b, rn is the IEEE rounding to nearest
mode, and rnd is any IEEE rounding mode. The precision of the calculation is indicated for each
step.

1. table lookup

2. register file double-extended precision

3. register file double-extended precision

4. register file double-extended precision

5. register file double-extended precision

6. register file double-extended precision

7. register file double-extended precision

y0 1 b⁄ 1 ε0+()⋅ ε0 2
m–≤ m,, 8.886= =

e0 1 b y0⋅–()
rn

=

y1 y0 e0+ y0⋅()
rn

=

e1 e0
2()rn=

y2 y1 e1 y1⋅+()
rn

=

e2 1 b y2⋅–()
rn

=

y3 y2 e2 y2⋅+()
rn

=

Architecturally Mandated Floating-point Software Assistance

4-2

8. register file double-extended precision

9. register file double-extended precision

10. register file double-extended precision

11. register file double-extended precision

12. register file double-extended precision

13. register file double-extended precision

14. register file double-extended precision

The algorithm generates q2 = (a/b)rnd , the correctly rounded floating-point register file format
value of a/b. In the actual implementation, each of the 14 computation steps above translates into
one IA-64 assembly language instruction. The first and the last step use status field 0 from the
FPSR (the user status field), while all the intermediate steps use status field 1 (reserved for special
computations by software conventions; status field 1 uses rounding to nearest, and the register file
double-extended floating-point format [1], with 17-bit exponents and 64-bit significands). Steps
(2) through the last are predicated by the output predicate of the frcpa instruction (corresponding to
step (1) above). Thus, when the result of the divide operation is provided directly by the hardware
or by the SWA handler (the IA-64 Floating-point Emulation Library), the output predicate will be
cleared and steps (2) through the last will be skipped. For this to work, the frcpa instruction and the
last instruction in the sequence need to have the same output register.

The conditions that might cause certain intermediate steps to overflow, underflow, or lose
precision are the following, and they identify situations when the Itanium processor will have to
ask for software assistance (SWA):

An observation is necessary for condition (a). The condition for avoiding generation of a huge yi
was determined mathematically as

As written above, it would not require Software Assistance for some denormal values of b (for
those that have eb = emin - 1, when combined with a value of a that has a negative exponent, but
larger than emin + N - 1; see Figure 4-1 in Section 4.2). If frcpa returns a valid approximation for
the reciprocal 1/b, the divide algorithm will generate a correct result. The disadvantage is that steps
(2), (6), (8), (11), and (13) of the algorithm above will all cause Itanium processor specific SWA
faults, because b is denormal. It is therefore better to include the case eb = emin - 1 with the
architecturally mandated SWA faults, thus allowing for the result to be generated with one single
SWA fault. Condition (a) was thus modified to:

An observation is necessary also for condition (b). When eb = emax - 2, some yi might become tiny,
but the precision loss will not be catastrophic, i.e. the final result of the divide operation will still be
correct. Yet, producing a denormal yi and then consuming it in the next instruction would cause an
Itanium processor specific SWA trap, and then an Itanium processor specific SWA fault. This could

e3 1 b y3⋅–()
rn

=

y4 y3 e3 y3⋅+()
rn

=

q0 a y0⋅()
rn

=

yo a b– q0⋅()
rn

=

q1 q0 r0+ y3⋅()
rn

=

r1 a b– q1⋅()
rn

=

q2 q1 r1 y4⋅+()
rnd

=

a() e
b emin 1 yi might be huge()–≤

b() e
b emax 2 yi might be tiny()–≥

c() ea eb– emax qi might be huge()≥

d() ea eb– emin 1 qi might be tiny()+≤

e() ea emin≤ N 1 ri might lose precision()–+









a(){ eb emin 2 yi might be huge()–≤

a(){ e
b emin 1 yi might be huge()–≤

4-3

Architecturally Mandated Floating-point Software Assistance

happen again for a subsequent yi, which would slow down the computation significantly. The
decision was taken to ask for software assistance for eb = emax - 2 too, not only for eb ≥ emax - 1
(condition (b) is already modified above).

When an IA-64 architecturally mandated SWA fault is raised, the SWA handler will scale the input
values appropriately, will calculate the result of the divide operation for the scaled values, and will
scale back the result. The output predicate of frcpa will be set to 0.

4.1.2 Architecturally Mandated SWA Conditions for Square Root

For the square root, if has to be calculated, the frsqrta instruction provides an initial
approximation of , that allows starting a Newton-Raphson or similar iterative process to
compute the correctly rounded value of as specified by the IEEE-754 Standard for Binary
Floating-point Computations [3]. Several floating-point square root algorithms are available,
depending on the instruction type (parallel or not), on the precision of the argument and of the
result, but also on whether best latency or best throughput is preferred. For the scalar single,
double, and double-extended precision algorithms devised (see [1] for the single and double
precision algorithms) the result can be calculated correctly for any valid input values of the
argument. Special cases exist only for the algorithm that accepts register file format floating-point
numbers. If the inputs are in register file floating-point format (with 17-bit exponents), then some
of the intermediate computation steps might lose precision. A sample algorithm for register file
format computations is shown below. The same algorithm can be used for double-extended
precision calculations.

Consider the following sample algorithm for calculating in floating-point register file format,
where a, h, t1, t2, t3, t4, t5, t6, y1, y2, S, H, d, S1, H1, d1, and R are floating-point numbers with N =
64 bits in the significand, y0 is an 11-bit approximation of , rn is the IEEE rounding to
nearest mode, and rnd is any IEEE rounding mode. The precision of the calculation is indicated for
each step.

1. table lookup

2. register file double-extended precision

3. register file double-extended precision

4. register file double-extended precision

5. register file double-extended precision

6. register file double-extended precision

7. register file double-extended precision

8. register file double-extended precision

9. register file double-extended precision

10. register file double-extended precision

11. register file double-extended precision

12. register file double-extended precision

13. register file double-extended precision

14. register file double-extended precision

15. register file double-extended precision

16. register file double-extended precision

17. register file double-extended precision

a
1 a()⁄

a

a

1 a()⁄

y0 1 a⁄ 1 ε0+()⋅ ε0 2
m–

m,≤, 8.831= =

h 1 2⁄ a⋅()rn=

t1 y0 y0⋅()
rn

=

t2 1 2⁄ t1– h⋅()
rn

=

y1 y0 t2+ y0⋅()
rn

=

t3 y1 h⋅()
rn

=

t4 1 2⁄ t3 y1⋅–()
rn

=

y2 y1 t4+ y1⋅()
rn

=

S a y2⋅()
rn

=

t5 y2 h⋅()
rn

=

H 1 2⁄ y2⋅()
rn

=

d a S S⋅–()rn=

t6 1 2⁄ t5– y2⋅()
rn

=

S1 S d+ H⋅()rn=

H1 H t6+ H⋅()
rn

=

d1 a S1– S1⋅()
rn

=

R S1 d1+ H1⋅()
rnd

=

Architecturally Mandated Floating-point Software Assistance

4-4

The algorithm generates , the correctly rounded floating-point register file format
value of . In the actual implementation, each of the 17 computation steps above translates into
one IA-64 assembly language instruction. The first and the last step use status field 0 from the
FPSR (the user status field), while all the intermediate steps use status field 1 (reserved for special
computations by software conventions). Steps (2) through the last are predicated by the output
predicate of the frsqrta instruction (corresponding to step (1) above). Thus, when the result of the
square root operation is provided directly by the hardware or by the SWA handler (the IA-64
Floating-point Emulation Library), the output predicate will be cleared and steps (2) through the
last will be skipped. For this to work, the frsqrta instruction and the last instruction in the sequence
have to have the same output register.

The condition that might cause certain intermediate steps to lose precision is shown below. It
identifies situations when the Itanium processor will have to ask for software assistance (SWA):

ea ≤ emin + N – 1 (di might lose precision)

When an IA-64 architecturally mandated SWA fault is raised, the SWA handler will scale the input
value appropriately, will calculate the result of the square root for the scaled value, and will scale
back the result. The output predicate of frsqrta will be set to 0.

4.1.3 Floating-point Traps Raised by the SWA Handler for
Architecturally Mandated SWA Faults

The IA-64 architecturally mandated SWA conditions were presented in Table 3-2 of Section 3.4.

If frcpa raises an IA-64 architecturally mandated SWA fault, the SWA handler (the IA-64
Floating-point Emulation Library) will provide the result for the divide operation (not just an
approximation for the inverse of the denominator), and will clear the output predicate. The
software assistance handler can also raise an underflow, overflow, or inexact exception pertaining
to the result of the divide operation. If any input is unnormal and the denormal exceptions are
enabled, the SWA handler will just convert the ISR code to that of a denormal exception and the
operating system will search for a corresponding user exception handler (see Section 4.2,
Algorithms for SWA Faults for Floating-point Divide, for more details)

Similarly, if frsqrta raises an IA-64 architecturally mandated SWA fault, the SWA handler (the
IA-64 Floating-point Emulation Library) will provide the result for the square root operation (not
just an approximation for the inverse of the square root of the denominator), and will clear the
output predicate. The software assistance handler can also raise an inexact exception pertaining to
the result of the square root operation. If the input is unnormal and the denormal exceptions are
enabled, the SWA handler will just convert the ISR code to that of a denormal exception and the
operating system will search for a corresponding user exception handler (see Section 4.4,
Algorithms for SWA Faults for Floating-point Square Root for more details).

The existence of floating-point traps raised by the SWA handler (the IA-64 Floating-point
Emulation Library) was acknowledged also in Section 3.3, ‘‘Floating-point Exception Priority’’,
through Figure 3-4 and Figure 3-5. Figure 3-3 shows also that a denormal fault can be raised by the
SWA handler following an Itanium processor specific SWA fault.

Of the floating-point exceptions that can be raised from software, some traps can never be raised
directly by the hardware. These are overflow, underflow, and inexact traps raised following an
architecturally mandated SWA fault for frcpa, and inexact traps raised following an architecturally
mandated SWA fault for frsqrta. A user floating-point exception handler reached for such an
enabled exception will associate it with frcpa or frsqrta respectively (so from the user’s point of
view, these traps appear to be raised by the two scalar reciprocal approximation instructions).

R a()rnd=
a

4-5

Architecturally Mandated Floating-point Software Assistance

4.2 Algorithms for SWA Faults for Floating-point Divide

When an architecturally mandated SWA fault is raised for frcpa, the SWA handler, which is
invoked by the operating system kernel, uses alternate algorithms to calculate the result for the
divide operation.

Figure 4-1 delimits the regions of the (ea, eb) plane where IA-64 architecturally mandated SWA
faults are required. Note that ea and eb are integer numbers, which means that only points of integer
coordinates in plane have to be considered. We have , as denormal
values are also allowed. The five conditions, (a) through (e), that determine the architecturally
mandated SWA faults are represented by half-planes, delimited by straight lines as shown in
Figure 4-1. The innermost irregular hexagon delimited by dotted lines (including its boundaries)
identifies the points in plane for which IA-64 architecturally mandated software assistance is not
necessary. The regions marked Underflow and Overflow contain points where the result of the
divide operation is either tiny or huge. For some points on these regions’ boundaries, the underflow
or overflow might or might not occur, depending also on the significands of the dividend and of the
divisor.

ea eb, emin N– 1+ emax[,]∈

Figure 4-1. Architecturally Mandated SWA Conditions for frcpa

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

. .

. .
.

.

..

. .

..
.

.
.....
...

.

.

..............

.....

.......

.

.

.
.

. .

. ..

. .

.

..

..

.

..

...

.

................
. ..

........................
..
..
..
..
..
..
..
..
..
.

a min(e) e = e + N - 1

(c) e =
 e - e

b

a max

NO SWA

SWA

SWA

SWA

 e = e - N + 1a min

min e = e
 e = e

a
a max

 e = e max

(a) e = e - 1
b min

b mine = e

e = e
b

 - N + 1min

(b) e = e - 2b max

(d) e = e - e - 1b minaa minbe = e - e + N
b

N - 1

(0,0)

(e , e)

(e , e)

a

a

b

b

b

a

(e , e)

Underflow

Overflow
(e , e)

2N

a b

Architecturally Mandated Floating-point Software Assistance

4-6

The various conditions that require architecturally mandated SWA faults for the divide operation
will be examined next in detail. A floating-point number x will be represented as a product of its
sign, significand, and a power of 2:

The four IEEE rounding modes are rn (rounding to nearest), rm (rounding to negative infinity), rp
(rounding to positive infinity), and rz (rounding to zero). An unspecified rounding mode is denoted
by rnd.

The thirteen cases that follow are listed in the order in which they are checked for in the source
code of the FP SWA handler. Their sequence translates into an ‘‘if - else if - else if - ... - else’’
construct. This means that when examining any condition, it may be looked at as if logically
AND-ed with the negations of all the previous conditions. Note though that in any of the following
cases, if any input argument to frcpa is unnormal and the denormal exceptions are enabled, a
denormal fault will be taken (which implies setting the D flag in the ISR code, and leaving the
FPSR unchanged).

Case (I) eb ≤ ea – emax – 2 (part of condition (c) for SWA)

 It can be shown that:

holds, where MAXFP is the largest normal number that can be represented in the floating-point
register file format.

The calculation of |a/b| will always raise an overflow exception (enabled or not), no matter which
rounding mode is used. The first computation steps are shown below (some details are omitted).

• Scale a and b:

• Calculate c1 using the algorithm for double-extended and floating-point register file format
values, and a local value of the Floating-point Status Register (FPSR), but with the user
settings for rounding mode, precision and computation mode:

x σx sx 2
ex⋅ ⋅=

a
b
--- MAXFP 1ulp+≥

a
b

sa

sb

---- 2
ea eb–

⋅
sa

sb

---- 2
emax 2+

⋅ 1

2 2
N– 1+

–
------------------------- 2

emax 2+
⋅ 2

emax 1+
>≥ ≥=

MAXFP 1ulp+=

a1 a 2
ea–

⋅= ea1
ea ea 0=–=,

b1 b 2
eb–

⋅= eb1
eb eb 0=–=,

c1

a1

b1
----- c 2

eb ea–
⋅= =

4-7

Architecturally Mandated Floating-point Software Assistance

This is a normal floating-point number:

The result depends now on whether an overflow or inexact trap occurs or not. The three cases that
matter are listed below.

(I a). If the overflow traps are disabled and the inexact traps are disabled, then return the IEEE
mandated result for the divide operation:

where the symbol ^ denotes the exclusive OR operation.

• Set to 1 the overflow and inexact status flags in the FPSR.

• Clear the result predicate of the frcpa instruction.

• Return TRUE to the OS kernel trap handler, indicating that the result of the divide operation is
provided.

(I b). If the overflow traps are enabled, the result of the divide has to be calculated with exponent
modulo 217, and has to be delivered to the OS kernel, which will in turn pass it to the user trap
handler. The computation steps are listed below.

• Calculate the biased exponent for :

As ec + bias ≥ 217 – 1, set O = 1 in the ISR code

• Set the result to , which will be delivered to the exception
handler.

• If the result is inexact, determine the fpa bit. Using a local value of the FPSR, with rounding to
nearest and in floating-point register file format, calculate

As c1 is within 1 ulp of a1/b1 (no matter which rounding mode is used to calculate it), the
calculation for d1 will be exact. Also, d1 will be normal due to the range of a1. Two cases are
possible, as the result is inexact (this excludes the case d1 = 0):

 If d1 < 0, set I = 1 and fpa = 0 in the ISR code.

 If d1 > 0, set I = 1 and fpa = 1 in the ISR code.

• Set O = 1 and update I in the FPSR.

• Clear the output predicate of frcpa.

c1

sa

sb

---- 2
ea eb– ea– eb+

⋅
sa

sb

---- 1
2
--- 2, 

 ∈= =

a
b









=

+ ∞, if σa ^ σb = 0 and rnd is rn or rp

+ MAXFP, if σa ^ σb = 0 and rnd is rm or rz

– ∞, if σa ^ σb = 1 and rnd is rn or rm

– MAXFP, if σa ^ σb = 1 and rnd is rp or rz

c c1 2
ea eb–

⋅=

ec bias+ ec1
ea eb bias+–+=

c∗ σc sc 2
ec bias+()mod217

⋅ ⋅=

d1 b1 c1 a1–⋅=

Architecturally Mandated Floating-point Software Assistance

4-8

• Return FALSE to the OS kernel trap handler, indicating that a new (and different) exception
has to be raised, and that it provides a result for the divide operation that has to be propagated
to the user exception handler. Also indicate that a fault was converted to a floating-point trap
(this will help the OS kernel to increment the instruction pointer correctly).

(I c). If the inexact traps are enabled and the result is inexact, then return the IEEE mandated result
for the divdide operation:

• Set I = 1 in the ISR code and fpa = 1 if the result is infinite (in absolute value).

• Set O = 1 and I = 1 in the FPSR.

• Clear the output predicate.

• Return FALSE to the OS kernel trap handler, indicating that a new (and different) exception
has to be raised, and that it provides a result for the divide operation that has to be propagated
to the user exception handler. Also indicate that a fault was converted to a floating-point trap
(this will help the OS kernel to increment the instruction pointer correctly).

Case (II) eb = ea – emax – 1 and sa ≥sb (part of condition (c) for SWA)

It can be shown that:

This case is similar to Case (I) above, and it can be logically OR-ed with Case (I).

Case (III) eb = ea – emax – 1 and sa < sb (part of condition (c) for SWA)

It can be shown that

holds, where MINFP is the smallest normal number that is representable in floating-point register
file format. This means that a/b will be a normal floating-point number, no matter which rounding
mode is used to calculate it.

a
b









=

+ ∞, if σa ^ σb = 0 and rnd is rn or rp

+ MAXFP, if σa ^ σb = 0 and rnd is rm or rz

– ∞, if σa ^ σb = 1 and rnd is rn or rm

– MAXFP, if σa ^ σb = 1 and rnd is rp or rz

a
b
--- MAXFP 1ulp+≥

a
b

sa

sb

---- 2
ea eb–

⋅
sa

sb

---- 2
emax 1+

⋅ 2
emax 1+

MAXFP 1ulp+=≥= =

MAXFP a
b
--- MINFP≤ ≤

a
b

sa

sb

---- 2
ea eb–

⋅
sa

sb

---- 2
emax 1+

⋅ 2 2
N– 2+

–

2 2
N– 1+

–
------------------------- 2

emax 1+
⋅≤= =

4-9

Architecturally Mandated Floating-point Software Assistance

First, it will be shown that:

From above, it is sufficient to show that:

which is true.

Next, it will be shown that:

From above:

which means that a/b is a normal floating-point number, but it still might raise an inexact
exception, if the inexact exceptions are enabled. In any case, the result of the divide operation has
to be calculated. The computation steps are listed below.

• Scale a and b:

Calculate c1 using the algorithm for double-extended and floating-point register file format values,
and a local value of the FPSR, but with the user settings for rounding mode, precision and
computation mode:

a
b
--- MAXFP ⇔<

a
b
--- 2 2

N– 1+
–() 2

emax⋅<

2 2
N– 2+

–

2 2
N– 1+

–
------------------------- 2

emax 1+
⋅ 2 2

N– 1+
–() 2

emax ⇔⋅<

2 2 2
N– 2+

–()⋅ 2 2
N– 1+

–()
2

⇔<

4 2–
N– 3+

4< 2
N– 3+

– 2
2N– 2+

+

a
b
--- MINFP≥

a
b

sa

sb

---- 2
ea eb–

⋅
sa

sb

---- 2
emax 1+

⋅ 1

2 2
N– 1+

–
------------------------- 2

emax 1+
⋅ 2

emax MINFP> >≥= =

MINFP a
b
--- MAXFP< <

a1 a 2
ea–

⋅= ea1
ea ea 0=–=,

b1 b 2
eb–

⋅= eb1
eb eb 0=–=,

c1

a1

b1
----- c 2

ea– eb+
⋅==

Architecturally Mandated Floating-point Software Assistance

4-10

This is a normal floating-point number:

• Calculate .

 The result depends now on whether the inexact (I) traps are enabled or not.

(III a). If the inexact traps are disabled or the result is exact, then:

• Set the I flag in the FPSR if the result of the divide operation is inexact.

• Clear the result predicate of the frcpa instruction.

• Return TRUE to the OS kernel trap handler, indicating that it provides the result of the divide
operation.

(III b). If the inexact traps are enabled and the result of the divide operation is inexact, the quotient
has to be delivered to the OS kernel trap handler, which will raise an inexact exception and will
then pass the quotient to the user trap handler.

The following computation steps have to be performed:

• Determine the fpa bit. Using a local value of the FPSR, with rounding to nearest and in
floating-point register file format, calculate

As c1 is within 1 ulp of a1/b1 (no matter which rounding mode is used to calculate it), the
computation of d1 will be exact. Also, d1 will be normal, due to the range of a1.

• Two cases are possible (as the result is inexact):

If d1 < 0, set I = 1 and fpa = 0 in the ISR code.

If d1 > 0, set I = 1 and fpa = 1 in the ISR code.

• Set I = 1 in the FPSR

• Clear the result predicate of the frcpa instruction.

• Return FALSE to the OS kernel trap handler, indicating that a new (and different) exception
has to be raised, and that it provides a result for the divide operation that has to be propagated
to the user exception handler. Also indicate that a fault was converted to a floating-point trap
(this will help the OS kernel to increment the instruction pointer correctly).

Case (IV) eb = ea – emax (part of condition (c) for SWA)

Also:

c1

sa

sb

---- 2
ea eb– ea– eb+

⋅
sa

sb

---- 1
2
--- 2, 

 ∈= =

c c1 2
ea eb–

⋅=

d1 b1 c1 a1–⋅=

a
b

sa

sb

---- 2
ea eb–

⋅
sa

sb

---- 2
emax 2 2

N– 1+
–

1
------------------------- 2

emax⋅≤⋅ MAXFP= = =

a
b

sa

sb

---- 2
ea eb–

⋅
sa

sb

---- 2
emax 1

2 2
N– 1+

–
------------------------- 2

emax⋅≥⋅ 2
emax 1–

MINFP> >= =

4-11

Architecturally Mandated Floating-point Software Assistance

From above:

This case is thus similar to Case (III) above, and it can be logically OR-ed with Case (III).

Case (V) ea – emax + 1 ≤ eb and eb ≤ ea – emin – 2 and (ea ≤ emin + N – 1 or eb ≤ emin – 1 or
eb ≥ emax – 2) (part of conditions (a), (b), and (e) for SWA)

Also:

From above:

This case too is similar to Case (III) above, and it can be logically OR-ed with Case (III).

Case (VI) eb = ea – emin – 1 (part of conditions (b), (d) and (e) for SWA)

Also:

From above:

MINFP a
b
--- MAXFP≤<

a
b

sa

sb

---- 2
ea eb– sa

sb

---- 2
emin 2+ 1

2 2
N– 1+

–
------------------------- 2

emin 2+
2

emin 1+
>⋅≥⋅≥⋅=

2
emin> MINFP=

a
b

sa

sb

---- 2
ea eb– sa

sb

---- 2
emax 1– 2 2

N– 1+
–

1
------------------------- 2

emax 1–
⋅≤⋅≤⋅=

1
2
--- MAXFP MAXFP<⋅=

MINFP a
b
--- MAXFP≤<

a
b

sa

sb

---- 2
ea eb– sa

sb

---- 2
emin 1+ 1

2 2
N– 1+

–
------------------------- 2

emin 1+
⋅≥⋅=⋅=

1
2
--- 2

emin 1+
⋅ 2

emin=> MINFP=

a
b

sa

sb

---- 2
ea eb– sa

sb

---- 2
emin 1+ 2 2

N– 1+
–

1
------------------------- 2

emin 1+
⋅<⋅=⋅=

2 2
N– 1+

–() 2
emax⋅ MAXFP=<

MINFP a
b
--- MAXFP< <

Architecturally Mandated Floating-point Software Assistance

4-12

This case too is similar to Case (III) above, and it can be logically OR-ed with Case (III).

Case (VII) eb = ea – emin and sa ≥ sb (part of conditions (b), (d) and (e) for SWA)

Also:

From above:

This case also is similar to Case (III) above, and it can be logically OR-ed with Case (III).

Case (VIII) eb = ea – emin and sa < sb (part of conditions (b), (d) and (e) for SWA)

It can be shown that:

where MINFP – 1ulp is the smallest normal minus 1 ulp (1 ulp considered for the binade [2emin-1,
2emin).

We will show that a/b is smaller than the smallest normal minus 1 ulp. For this, it is sufficient to
show that:

which is true.

a
b

sa

sb

---- 2
ea eb– sa

sb

---- 2
emin 2

emin≥⋅=⋅ MINFP= =

a
b

sa

sb

---- 2
ea eb– sa

sb

---- 2
emin 2 2

N– 1+
–

1
------------------------- 2

emin⋅≤⋅=⋅=

2 2
N– 1+

–() 2
emax⋅ MAXFP=<

MINFP a
b
--- MAXFP<≤

a
b
--- MINFP 1ulp–≤

a
b

sa

sb

---- 2
ea eb– sa

sb

---- 2
emin 2 2

N– 2+
–

2 2
N– 1+

–
------------------------- 2

emin⋅≤⋅=⋅=

2 2
N– 2+

–

2 2
N– 1+

–
------------------------- 2

emin⋅ 2 2
N– 1+

–() 2
emin 1–

⇔⋅<

2 2 2
N– 2+

–()⋅ 2 2
N– 1+

–()
2

⇔<

4 2–
N– 3+

4< 2
N– 3+

– 2
2N– 2+

+

4-13

Architecturally Mandated Floating-point Software Assistance

It can also be shown that a/b is larger than the smallest denormal (which is not important anymore
for the computation of the result of a/b.)

where is the value of the smallest denormal that can be represented in the given format.

The calculation of the tiny value |a/b| might raise an underflow and/or an inexact exception, no
matter which rounding mode is used. The main computation steps are listed below.

• Scale a and b:

• Calculate c1 using the algorithm for double-extended and floating-point register file format
values, and a local value of the FPSR, but with the user settings for rounding mode, precision
and computation mode:

This is a normal floating-point number:

• If the result is inexact, determine the fpa bit. Using a local value of the FPSR, with rounding to
nearest and in floating-point register file format, calculate

As c1 is within 1 ulp of a1/b1 (no matter which rounding mode is used to calculate it), the
calculation for d1 will be exact. Also, d1 will be normal due to the range of a1. Two cases are
possible (as the result is inexact):

 If d1 < 0, then fpa = 0.

 If d1 > 0, then fpa = 1.

a
b

sa

sb

---- 2
ea eb– sa

sb

---- 2
emin 1

2 2
N– 1+

–
------------------------- 2

emin⋅≥⋅=⋅=

2
emin 1–

2
emin

N– 1+
> >

2
em in N– 1+

a1 a 2
ea–

⋅= ea1
ea ea 0=–=,

b1 b 2
eb–

⋅= eb1
eb eb 0=–=,

c1

a1

b1
----- c 2

eb ea–
⋅= =

c1

sa

sb

---- 2
ea eb– eb ea–+ 1

2
--- 2, 

 ∈⋅=

d1 b1 c1 a1–⋅=

Architecturally Mandated Floating-point Software Assistance

4-14

The result depends now on whether an underflow or inexact trap occurs or not. Two cases that
matter are the following:

(VIII a). If the underflow traps are enabled, the result of the divide has to be calculated with
exponent modulo 217, and has to be delivered to the OS kernel, which will in turn pass it to the user
trap handler. The computation steps are listed below.

• Calculate the biased exponent for :

• Set the result to , that will be delivered to the exception handler.

• Set U = 1 in the ISR code (as ec + bias ≤ –217 + 1). If the result is inexact, set I = 1 and the
value of fpa calculated above in the ISR code.

• Set U = 1 in FPSR. If the result is inexact, set I = 1 in the FPSR.

• Clear the output predicate of frcpa.

• Return FALSE to the OS kernel trap handler, indicating that a new (and different) exception
has to be raised, and that it provides a result for the divide operation that has to be propagated
to the user exception handler. Also indicate that a fault was converted to a floating-point trap
(this will help the OS kernel to increment the instruction pointer correctly).

(VIII b). If the underflow traps are disabled:

• If the flush-to-zero mode is disabled (ftz = 0), calculate . As this is a ‘‘normal’’
with an exponent smaller than emin when an unbounded exponent range is considered, c will
have to be denormalized using the information in fpa, rnd = I, and sticky = 0 (where I is the
inexact status flag from the calculation of c1). (Denormalization consists in shifting the
significand right and incrementing the exponent at each step until it reaches emin. The result is
then rounded to the destination precision.)

• Otherwise, if the flush-to-zero mode is enabled (ftz = 1), then |c| = 0, where c has the sign of c1,
and the result is inexact.

• If the result is inexact, set U = 1 and I = 1 in the FPSR.

• Clear the output predicate of frcpa.

• If the result is inexact and the inexact traps are enabled, set I = 1 and the value of the fpa bit in
the ISR code (the value of fpa was calculated in the denormalization process). Return FALSE
to the OS kernel trap handler, indicating that a new (and different) exception has to be raised,
and that it provides a result for the divide operation that has to be propagated to the user
exception handler. Also indicate that a fault was converted to a floating-point trap (this will
help the OS kernel to increment the instruction pointer correctly).

• Otherwise, if the result c is exact or the inexact traps are disabled, return TRUE to the OS
kernel, indicating that the SWA handler provides the result of the divide operation.

Case (IX) ea – emin + 1 ≤ eb ≤ ea – emin + N – 2 (part of conditions (b), (d) and (e) for SWA)

It can be shown that:

c c1 2
ea eb–

⋅=

ec bias+ ec1
ea eb bias+–+=

c∗ σc sc 2
ec bias+()mod217

⋅ ⋅=

c c1 2
ea eb–

⋅=

a
b
--- MINFP 1ulp–≤

4-15

Architecturally Mandated Floating-point Software Assistance

where MINFP – 1ulp is the smallest normal minus 1 ulp (1 ulp considered for the binade [2emin-1,
2emin).

This shows that the infinitely precise a/b is tiny. Further, it can be shown that a/b is larger than the
smallest denormal (which is not important anymore for the computation of the result of a/b):

where is equal in value to the smallest denormal that can be represented. This shows
that no matter which rounding mode is used, a/b is a non-zero denormal, or possibly the smallest
denormal (in absolute value).

Case (IX) is similar to Case (VIII) above, and it can be logically OR-ed with Case (VIII).

Case (X) eb = ea – emin + N – 1 and sa ≥ sb (part of conditions (b), (d) and (e) for SWA)

In this case it can be shown that:

This shows that a/b is tiny. Further, it can be shown that a/b is larger than the smallest denormal
(which is not important anymore for the computation of the result of a/b):

where is equal in value to the smallest denormal that can be represented. This shows
that no matter which rounding mode is used, the rounded value of a/b is a non-zero denormal.

Case (X) is similar to Case (VIII) above, and it can be logically OR-ed with Case (VIII).

a
b

sa

sb

---- 2
ea eb–

⋅
sa

sb

---- 2
emin 1–

⋅ 2 2
N– 1+

–
1

-------------------------≤ ≤ 2
emin 1–

⋅=

2 2
N– 1+

–() 2
emin 1–

⋅ MINFP 1ulp–==

a
b

sa

sb

---- 2
ea eb–

⋅
sa

sb

---- 2
emin N– 2+

⋅ 1

2 2
N– 1+

–
-------------------------≥ ≥ 2

emin N– 2+
2

emin N– 1+
>⋅=

2
em in N– 1+

a
b
--- MINFP 1ulp–<

a
b

sa

sb

---- 2
ea eb–

⋅
sa

sb

---- 2
emin N– 1+

⋅=
2 2

N– 1+
–

1
-------------------------≤ 2

emin N– 1+
⋅=

2
emin N– 2+

MINFP 1ulp–< <

a
b

sa

sb

---- 2
ea eb–

⋅
sa

sb

---- 2
emin N– 1+

⋅= 2
emin N– 1+

≥=

2
em in N– 1+

Architecturally Mandated Floating-point Software Assistance

4-16

Case (XI) eb = ea – emin + N – 1 and sa < sb (part of conditions (b), (d) and (e) for SWA)

It can be shown that a/b is smaller than the smallest denormal, minus 1 ulp (1 ulp considered for the
binade [2emin-N, 2emin-N+1)):

In order to show that:

where is the smallest denormal minus 1 ulp, it is sufficient to show that:

which is true.

This shows that a/b is smaller than the smallest denormal number that can be represented in the
floating-point register file format, even after rounding to the destination precision.

Case (XI) is similar from a computational point of view to Case (VIII) above, and it can be
logically OR-ed with Case (VIII). In case (XI) though, the result will always be zero or the smallest
normal in absolute value, provided no underflow trap is taken (it may still be zero if an inexact trap
is taken).

Case (XII) eb ≥ ea – emin + N (part of conditions (b), (d) and (e) for SWA)

It can be shown in this case too that a/b is smaller than or equal to the smallest denormal, minus
1 ulp (1 ulp considered for the binade [2emin-N, 2emin-N+1)):

where is the smallest denormal minus 1 ulp.

Case (XII) too is similar from a computational point of view to Case (VIII) above, and it can be
logically OR-ed with Case (VIII). In case (XII), just as in Case (XI), the result will always be zero
or the smallest denormal in absolute value, provided no underflow trap is taken (it may still be zero
if an inexact trap is taken).

a
b

sa

sb

---- 2
ea eb–

⋅
sa

sb

---- 2
emin N– 1+

⋅=
2 2

N– 2+
–

2 2
N– 1+

–
-------------------------< 2

emin N– 1+
⋅=

a
b
--- 2 2

N– 1+
–() 2

emin N–
⋅<

2 2
N– 1+

–() 2
emin N–

⋅

2 2
N– 2+

–

2 2
N– 1+

–
------------------------- 2

emin N– 1+
⋅ 2 2

N– 1+
–() 2

emin N–
⇔⋅<

2 2 2
N– 2+

–()⋅ 2 2
N– 1+

–()
2

⇔<

4 2–
N– 3+

4< 2
N– 3+

– 2
2N– 2+

+

a
b

sa

sb

---- 2
ea eb–

⋅
sa

sb

---- 2
emin N–

⋅ 2 2
N– 1+

–
1

-------------------------≤ ≤ 2
emin N–

⋅=

2 2
N– 1+

–() 2
emin N–

⋅=

2 2
N– 1+

–() 2
em in N–

⋅

4-17

Architecturally Mandated Floating-point Software Assistance

Note that for coding purposes, cases (IX), (X), (XI), and (XII) can be logically OR-ed to form one
condition, eb ≥ ea – emin + 1.

Case (XIII) Error

If all the tests for cases (I) through (XII) have failed, an architecturally mandated SWA fault or an
Itanium processor specific SWA fault caused by a floating-point register file format denormal is
not necessary. In the actual IA-64 Floating-point Emulation Library code, this case is reserved for
Itanium processor specific SWA faults for floating-point data types with an exponent range smaller
than that for 17 bits (8, 11, or 15 bits). In such cases, an approximation of the value of 1/b and an
output predicate set to 1 are the results of the frcpa instruction. The SWA handler returns TRUE to
the OS kernel, indicating that it provides the result to frcpa. The software algorithm that begins
with frcpa will then calculate the result for the divide operation.

Note that the logical union of Cases (I) through (V) specified above covers condition (a) for
software assistance from Section 4.1.1:

Cases (V) through (XII) cover condition (b):

Cases (I) through (IV) cover condition (c):

Cases (VI) through (XII) cover condition (d):

Finally, Cases (V) through (XII) cover condition (e):

4.3 Frequency Estimation of the Architecturally
Mandated SWA Faults for Floating-point Divide

An estimation of the total number of possible pairs of exponents for a and b, (ea, eb), is:

where N is the number of bits in the significand. We counted emin twice, in order to account for
denormals (whose significands are of the form 0.b1b2...bN-1, with bi binary digits). For the
purposes of this estimation, unnormals other than denormals are considered to be already
normalized.

a(){ e
b emin 1 yi might be huge()–≤

b(){ e
b emax 2 yi might be tiny()–≥

c(){ ea eb– emax qi might be huge()≥

d(){ ea eb– emin 1 qi might be tiny()+≤

e(){ ea emin≤ N 1 ri might lose precision()–+

Ntot emax emin 1–()– 1+[]2
emax emin– 2+()2

2 emax⋅ 1+()2
= = =

Architecturally Mandated Floating-point Software Assistance

4-18

The total number of possible pairs of exponents for a and b, (ea, eb), for which the architecturally
mandated SWA does not happen, is:

(we subtracted the lower and the upper triangles respectively from the rectangle considered
initially in Figure 4-1 of Section 4.2). The total number of possible pairs of exponents for a and b,
(ea, eb), for which the architecturally mandated SWA does happen is then:

For the floating-point register file format:

From here:

This calculation assumes that all the possible exponents of a and b have equal probability of
occurring when computing a/b.

Note that in the computation performed in the SWA handler for the floating-point register file
format, the conditions for Itanium processor specific SWA faults are covered by the conditions for
the architecturally mandated SWA faults (this was achieved also by modifying condition (a), as
explained above).

NNOSWA emax 3–() emin 1+–[] emax emin N+()– 1+[]⋅=

1
2
--- emin– 1+() emin– 2+() 1

2
--- emin– N–() emin– N– 1+()⋅ ⋅–⋅ ⋅–

2 emax 3–⋅() 2 emax N–⋅()⋅=

1
2
--- emax emax 1+() 1

2
--- emax N– 1–() emax N–()⋅ ⋅–⋅ ⋅–

NSWA Ntot NNOSWA–=

Ntot 2 65535⋅ 1+()2
17 179 607 041, , ,= =

NNOSWA 2 65535 3–⋅() 2 65535 64–⋅()

1
2
--- 65535 65536

1
2
--- 65535 64– 1–() 65535 64–()⋅ ⋅–⋅ ⋅

–⋅

131067 131006 2 147 450 880, , , 2 143 193 185, , ,– 12 879 919 337, , ,=–⋅

=

=

NSWA 17 179 607 041, , , 12 879 919 337, , ,– 4 299 687 704, , ,= =

NSWA Ntot⁄ 4 299 687 704, , , 17 179 607 041, , ,⁄() 100⋅ 25.0278= = %

4-19

Architecturally Mandated Floating-point Software Assistance

4.4 Algorithms for SWA Faults for Floating-point
Square Root

When an architecturally mandated SWA fault is raised for frsqrta, the SWA handler, which is
invoked by the operating system kernel, uses an alternate algorithm to calculate the result for the
square root operation.

Figure 4-2 shows the regions of the ea axis where IA-64 architecturally mandated SWA faults are
required. Note that ea is an integer number, which means that only points of integer coordinates on
this axis have to be considered. We have , as denormal values are also
allowed. The condition that determines the necessity for architecturally mandated SWA faults is

This condition will be examined next. Again, a floating-point number x will be represented as a
product of its sign, significand, and a power of 2:

The four IEEE rounding modes are rn (rounding to nearest), rm (rounding to negative infinity), rp
(rounding to positive infinity), and rz (rounding to zero). An unspecified rounding mode is denoted
by rnd.

The two cases that follow are listed in the order in which they are checked for in the IA-64
Floating-point Emulation Library source code. Their sequence translates into an ‘‘if - else’’
construct. Note though that in any of the following two cases, if the input argument to frsqrta is
unnormal and the denormal exceptions are enabled, a denormal fault will be taken (which implies
setting the D flag in the ISR code, and leaving the FPSR unchanged).

Case (I) ea ≤ emin + N – 1

The square root reduces approximately in half the exponent of the result, which means that will
be a normal floating-point number in register file format.

ea emin N– 1 emax,+[]∈

Figure 4-2. Architecturally Mandated SWA Condition for frsqrta
ea emin N 1–+≤

.

emax

a

min
e

min min

0

2 N - 1

ea

e e - ea a

e - N + 1 e + N - 1

x σx sx 2
ex⋅ ⋅=

a

Architecturally Mandated Floating-point Software Assistance

4-20

 To calculate , the value of a is scaled to

After applying the square root algorithm, is obtained, which has to be scaled back:

The subsequent actions depend now on whether the result is inexact, and whether the inexact (I)
traps are enabled.

(I a). If the inexact traps are disabled or the result is exact:

• Set the result for the square root operation to s

• If the result is inexact, set I = 1 (the inexact status flag) in the FPSR

• Clear the output predicate of frsqrta

• Return TRUE to the OS kernel, indicating that the SWA handler provides the result of the
square root operation

(I b). If the inexact traps are enabled and the result of the square root operation is inexact, then the
result has to be delivered to the OS kernel, which will in turn pass it to the user trap handler:

• Determine the fpa bit. Using a local value of the FPSR, with rounding to nearest and in
floating-point register file format, calculate

• As s1 is within 1 ulp of a1/s1 (no matter which rounding mode was used to calculate it), the
computation of d1 will be exact. Also, d1 will be normal, due to the range of a1.

• Two cases are possible:

If d1 < 0, set I = 1 and fpa = 0 in the ISR code

If d1 > 0, set I = 1 and fpa = 1 in the ISR code

• Set I = 1 (the inexact status flag) in the FPSR

• Set the result for the square root operation to s

• Clear the output predicate of frsqrta

• The SWA handler returns FALSE to the OS kernel, indicating that a new (and different)
exception has to be raised, and that it provides a result for the square root operation that has to
be propagated to the user exception handler. Also indicate that a fault was converted to a
floating-point trap (this will help the OS kernel to increment the instruction pointer correctly).

Case (II) Error

If the test for case (I) has failed, it means that an architecturally mandated SWA fault or an Itanium
processor specific SWA fault caused by a floating-point register file format unnormal is not

s a=

a1 a 2⋅
e– a if ea is even or,=

a1 a 2⋅
ea– 1+

if ea is odd=

s1 a1=

s s1 2⋅
ea 2⁄

if ea is even or,=

s s1 2⋅
ea 1–() 2⁄

if ea is odd=

d1 s1 s1⋅ a1–=

4-21

Architecturally Mandated Floating-point Software Assistance

necessary. In the actual code IA-64 Floating-point Emulation Library, this case is reserved for
Itanium processor specific SWA faults for floating-point data types with an exponent range smaller
than that for 17 bits (8, 11, or 15 bits). In such cases, an approximation of the value and an
output predicate set to 1 are the results of the frsqrta instruction. The SWA handler returns TRUE
to the OS kernel, indicating that it provides the result to frsqrta. The software algorithm that begins
with frsqrta will then calculate the result for the square root operation.

4.5 Frequency Estimation of the Architecturally
Mandated SWA Faults for Floating-point Square
Root

An estimation of the total number of possible values of the exponent of a is:

where N is the number of bits in the significand, and the value of emin – 1 was added to account for
denormal values of a. For the purposes of this estimation, unnormals other than denormals are
considered to be already normalized.

The number of values of the exponents ea for which the architecturally mandated SWA faults
occur, is:

For floating-point register file format:

This calculation assumes that all the possible exponents of a have equal probability of occurring
when computing .

1 a⁄

Ntot emax emin 1–()– 1+ 2 emax⋅ 1+= =

NSWA emin N 1–+() emin 1–() 1+– N 1+= =

NSWA Ntot⁄ 64 1+() 2 65535⋅ 1+() 100⋅⁄ 0.04959= =

a

Architecturally Mandated Floating-point Software Assistance

4-22

5-1

Architecturally Mandated Pseudo-SWA
Requests for Parallel Computations 5

The architecturally mandated software assistance requests are issued while executing the frcpa or
frsqrta instructions, when an intermediate computation step in the calculation of a divide or square
root result initiated by these instructions might overflow, underflow, or lose precision, thus
potentially leading to an incorrect result, or to the incorrect raising of an IEEE exception. A SWA
request is a floating-point exception handled by the IA-64 Floating-point Emulation Library.

Similar situations may arise for the fprcpa or fprsqrta instructions. In these cases, rather than
issuing SWA requests, fprcpa and fprsqrta are raising ‘‘pseudo-SWA requests’’, by merely clearing
their output predicate. The software assistance will have to come in this case from the user code,
instead of a dedicated SWA handler (the IA-64 Floating-point Emulation Library). As the divide
and square root sequences of instructions are usually inlined by compilers, code for processing
pseudo-SWA requests will have to be inlined as well. The complimentary code will unpack the
parallel (SIMD) operands of the instruction that issued the pseudo-SWA request, will normalize
them, will perform two scalar calculations for the two halves of the result, and will pack the
parallel result. This is possible, because performing the unpacked operations using the
floating-point register file format for single precision operands will avoid any further SWA
requests (this could not have been easily possible for SWA requests issued for register file format
operands, as there is no higher precision to use for a simple alternate calculation).

There is a major advantage to this approach, as the pseudo-SWA requests from fprcpa and fprsqrta
occur more frequently (on a relative scale) than those from frcpa and frsqrta. Therefore it is
important to ensure faster processing of these requests in the application code, than what can be
achieved using an interrupt handler.

The main disadvantage is that a clear output predicate for fprcpa and fprsqrta does not
disambiguate the cases when the output register contains the result of the divide or square root
operation (e.g. for 0/0 or), from the cases when it contains just a reciprocal approximation
(examples will be given below for each instruction). This constitutes an issue when floating-point
exceptions that are enabled occur while computing divide or square root results (the detailed
solution is not included here).

5.1 Architecturally Mandated Pseudo-SWA Conditions
for Parallel Floating-point Divide

For the parallel divide, if a1/b1 and a2/b2 have to be calculated, the fprcpa instruction provides
initial approximations of 1/b1 and 1/b2 that allow starting a Newton-Raphson or similar iterative
process to compute the correctly rounded values of a1/b1 and a2/b2 as specified by the IEEE-754
Standard for Binary Floating-point Computations [3]. The sample algorithm presented below
might not generate the IEEE correct result if some of the intermediate computation steps
underflow, overflow, or lose precision. For simplicity, the computation is presented only for one set
of single precision input values.

Consider the following algorithm for calculating a/b in single precision, where a, b, y0, e0, y1, e1,
y2, e2, y3, q0, r0, q1, r1, and q2 are floating-point numbers with Ns-bit significands, y0 is an 11-bit

1–

Architecturally Mandated Pseudo-SWA Requests for Parallel Computations

5-2

approximation of 1/b, rn is the IEEE rounding to nearest mode, and rnd is any IEEE rounding
mode. The precision of the calculation is indicated for each step.

1. table lookup

2. single precision

3. single precision

4. single precision

5. single precision

6. single precision

7. single precision

8. single precision

9. single precision

10. single precision

11. single precision

12. single precision

The algorithm generates q2 = (a/b)rnd, the correctly rounded single precision value of a/b.

The conditions that might cause certain intermediate steps to overflow, underflow, or lose precision
are the following, and they identify situations when the Itanium processor will have to issue a
pseudo-software assistance (SWA) request, by clearing the output predicate of fprcpa:

The same observations as in the case of frcpa can be made for conditions (a) and (b) (see
Section 4.1.1, ‘‘Architecturally Mandated SWA Conditions for Divide’’), but in the case of fprcpa
the action taken is that the output predicate is cleared, rather than raising a SWA fault.

When fprcpa asks for pseudo-SWA by clearing its output predicate, the floating-point output
register will contain the approximation fprcpa can provide for the inverse of b. The code containing
the fprcpa instruction will have to check the result predicate, if an IEEE correct answer is needed.
Otherwise, for a non-IEEE divide one could simply multiply the approximation of 1/b by a. The
values provided by fprcpa in such cases are:

• , with the sign of the denominator, if eb ≤ emin – 1

• 0, with the sign of the denominator, if eb ≥ emax – 2

• the 11-bit table approximation for the inverse of the denominator if ea – eb ≥ emax,
ea – eb ≤ emin + 1, or ea ≤ emin + N – 1

Note that if a pseudo-SWA request condition is met when one of the inputs is a denormal number
and the denormal exceptions are enabled, then the OS kernel trap handler will first invoke the SWA
handler (for a SWA fault). This will in turn convert the ISR code to that of a denormal exception

y0 1 b⁄ 1 ε0+()⋅ ε0 2
m–≤ m,, 8.886= =

e0 1 b y0⋅–()
rn

=

y1 y0 e0+ y0⋅()
rn

=

e1 1 b y1⋅–()
rn

=

y2 y1 e1 y1⋅+()
rn

=

e2 1 b y2⋅–()
rn

=

y3 y2 e2 y2⋅+()
rn

=

q0 a y0⋅()
rn

=

r0 a b q0⋅–()
rn

=

q1 q0 r0 y2⋅+()
rn

=

r1 a b– q1⋅()
rn

=

q2 q1 r1+ y3⋅()
rn

=

a() e
b emin 1 yi might be huge()–≤

b() e
b emax 2 yi might be tiny()–≥

c() ea eb– emax qi might be huge()≥

d() ea eb– emin 1 qi might be tiny()+≤

e() ea emin≤ N 1 ri might lose precision()–+









∞

5-3

Architecturally Mandated Pseudo-SWA Requests for Parallel Computations

and will return it to the kernel. The operating system will then search for a corresponding
user-registered floating-point exception handler.

Similar to the register file format divide operation, each of the 12 computation steps above
translates into a parallel IA-64 assembly language instruction. The first and the last step use status
field 0 from the FPSR (the user status field), while all the intermediate steps use status field 1
(reserved for special computations by software conventions). Steps (2) through the last are
predicated by the output predicate of the fprcpa instruction (corresponding to step (1) above). Thus,
when the output predicate of fprcpa (corresponding to step (1)) is cleared, steps (2) through the last
will be skipped. Again, the fprcpa instruction and the last instruction in the sequence have to need
the same output register.

Care has to be exercised when the output predicate of fprcpa is cleared, as there is no easy way to
tell whether the floating-point output register contains the result of the parallel divide operation, or
just approximations to the inverses of the two denominators. The solution is to split the parallel
operands in two in both cases (result provided or approximation), to perform two scalar operations,
and to pack the two halves of the result in the end. This means re-calculating the two components
of the result in cases when it was already provided by fprcpa. This solution is preferred to the one
that would check the input operands and decide whether the result is already there when the output
predicate is cleared - this would only lengthen the execution time in all cases. The sequence of
steps inlined by the compiler for a parallel divide operation is outlined below (but the actual
implementation may be different):

Note though that the sequence outlined above has to be implemented so as to handle correctly all
the floating-point exceptions.

intermediate parallel computation steps

…

fprcpa table lookup

predicated by fprcpa output
predicate

go to “done” if fprcpa output predicate is 1

unpack parallel operands into scalar operands

normalize scalar operands

…

result = q2; predicated by fprcpa

branch predicated by fprcpa
output predicate

frcpa table lookup for the low half

intermediate scalar computation steps - low half

…

predicated by frcpa output
predicate

…

…

low result ; predicated by
the frcpa output predicate

frcpa table lookup for the high
half

intermediate scalar computation steps - high half

…

predicated by frcpa output
predicate

done :

pack the low half and high half of the result

store result

high result ;

predicated by frcpa output
predicate

y0 1 b⁄ 1 ε0+()⋅ ε0 2
m–≤,=

q2 q1 r1+ y3⋅()
rnd

=

y0 1 b⁄ 1 ε0+()⋅ ε0 2
m–≤,=

q′3 q3()
rnd

=

y0 1 b⁄ 1 ε0+()⋅ ε0 2
m–≤,=

q′3=

q″3 q3()
rnd

= q″3=

Architecturally Mandated Pseudo-SWA Requests for Parallel Computations

5-4

An observation has to be made regarding the denormal floating-point exceptions raised when
computing the result of a divide operation. In the case of the parallel divide, the last operation in
the sequence (using the user status field 0) may receive a denormal input generated by the previous
computation step (using status field 1), even though none of the original input operands a and b
was denormal. This will cause raising the denormal operand exception (setting the D status flag in
status field 0 if the denormal exceptions are disabled, or taking a denormal trap if they are enabled).
This situation can be resolved by scaling the input operands at the beginning, and by scaling the
result accordingly at the end of the computation.

5.2 Frequency Estimation of the Architecturally
Mandated Pseudo-SWA Faults for Parallel
Floating-point Divide

For the parallel single precision format, even though there is no architecturally mandated SWA, an
evaluation similar to that for the floating-point register file format can be made for the number of
points in the (ea, eb) plane, for which fprcpa will return the best approximation it can provide for
the reciprocal 1 / b, but will clear the output predicate:

where Ntot represents the total number of possible pairs of exponents for a and b, NNOSWA is the
number of points for which user level software assistance is not needed, and NSWA denotes the
number of points for which user level software assistance (pseudo-SWA) is needed.

From here:

This calculation assumes that all the possible exponents of a and b have equal probability of
occurring when computing a/b.

5.3 Architecturally Mandated Pseudo-SWA Conditions
for Parallel Floating-point Square Root

For the parallel square root, if and have to be calculated, the fprsqrta instruction provides
initial approximations of and that allow starting a Newton-Raphson or similar
iterative process to compute the correctly rounded values of and as specified by the
IEEE-754 Standard for Binary Floating-point Computations [3]. The sample algorithm presented
below might not generate the IEEE correct result if some of the intermediate computation steps
lose precision. For simplicity, the computation is presented only for one set of single precision
input values.

Consider the following algorithm for calculating in single precision, where y0 is an 11-bit
approximation of , the values a, h, t1, t2, t4, y1, S, H, D, S1, H1, d1, and R are floating-point

Ntot 2 127⋅ 1+()2
65025==

NNOSWA 2 127 3–⋅() 2 127 24–⋅()⋅ 1
2
--- 127 128

1
2
--- 127 24 1––() 127 24–()⋅ ⋅–⋅ ⋅–

251 230⋅ 127 64 51 103 57730 8128 5253––=⋅–⋅– 44349

=

= =

NSWA 65025 44349– 20676= =

NSWA Ntot⁄ 20676 65025⁄() 100⋅ 31.797= = %

a1 a2
1 a1⁄ 1 a2⁄

a1 a2

a
1 a⁄

5-5

Architecturally Mandated Pseudo-SWA Requests for Parallel Computations

numbers with Ns = 24 bits in the significand (single precision), rn is the IEEE rounding to nearest
mode, and rnd is any IEEE rounding mode. The precision of the calculation is indicated for each
step.

1. table lookup

2. single precision

3. single precision

4. single precision

5. single precision

6. single precision

7. single precision

8. single precision

9. single precision

10. single precision

11. single precision

12. single precision

13. single precision

The algorithm generates , the correctly rounded single precision value of .

The condition that might cause certain intermediate steps to lose precision is the following, and it
identifies situations when the Itanium processor will have to issue a pseudo-software assistance
(SWA) request, by clearing the output predicate of fprsqrta:

{ ea ≤ emin + N – 1 (di might lose precision)

When fprsqrta asks for pseudo-SWA by clearing its output predicate, the floating-point output
register will contain the 11-bit approximation for the inverse of . The code containing the
fprsqrta instruction will have to check the result predicate, if an IEEE correct answer is needed.
Otherwise, for a non-IEEE square root one could simply multiply the approximation of by a.

Note that if a pseudo-SWA request condition is met when the input is a denormal number and the
denormal exceptions are enabled, then the OS kernel trap handler will first invoke the SWA handler
(for a SWA fault). This will in turn convert the ISR code to that of a denormal exception and will
return it to the kernel. The operating system will then search for a corresponding user-registered
floating-point exception handler.

Similar to the register file format square root operation, each of the 13 computation steps above
translates into a parallel IA-64 assembly language instruction. The first and the last step use status
field 0 from the FPSR (the user status field), while all the intermediate steps use status field 1
(reserved for special computations by software conventions). Steps (2) through the last are
predicated by the output predicate of the fprsqrta instruction (corresponding to step (1) above).
Thus, when the output predicate of fprsqrta (corresponding to step (1)) is cleared, steps (2) through
the last will be skipped. The fprsqrta instruction and the last instruction in the sequence need to
have the same output register.

Care has to be exercised when the output predicate of fprsqrta is cleared, as there is no easy way to
tell whether the floating-point output register contains the result of the parallel square root
operation, or just approximations to the inverse square roots of the two arguments. The solution is
to split the parallel operands in two in both cases (result provided or approximation), to perform
two scalar operations, and to pack the two halves of the result in the end. This means re-calculating

y0 1 a⁄ 1 ε0+()⋅ ε0 2
m–≤ m,, 8.831= =

h 1 2⁄ y0⋅()
rn

=

t1 a y0⋅()
rn

=

t2 1 2⁄ t1 h⋅–()
rn

=

y1 y0 t2 y0⋅+()
rn

=

S a y1⋅()
rn

=

H 1 2⁄ y1⋅()
rn

=

d a S– S⋅()rn=

t4 1 2⁄ S– H⋅()rn=

S1 S d H⋅+()rn=

H1 H t4+ H⋅()
rn

=

d2 a S1– S1⋅()
rn

=

R S1 d1 H1⋅+()
rnd

=

R a()rnd= a

a

1 a⁄

Architecturally Mandated Pseudo-SWA Requests for Parallel Computations

5-6

the two components of the result in cases when it was already provided by fprsqrta. This solution is
preferred to the one that would check the input operands and decide whether the result is already
there when the output predicate is cleared – this would only lengthen the execution time in all
cases. The sequence of steps inlined by the compiler for a parallel square root operation is outlined
below (but the actual implementation may be different):

Note that the sequence outlined above has to be implemented so as to handle correctly all the
floating-point exceptions.

An observation has to be made regarding the denormal floating-point exceptions raised when
computing the result of a square root operation. In the case of the parallel square root, the last
operation in the sequence (using the user status field 0) may receive a denormal input generated by
the previous computation step (using status field 1), even though the original input operand a was
not denormal. This will cause raising the denormal operand exception (setting the D status flag in
status field 0 if the denormal exceptions are disabled, or taking a denormal trap if they are enabled).
Just as for the parallel divide operation, this situation is resolved by scaling the input operand at the
beginning, and by scaling the result accordingly at the end of the computation.

…

fprsqrta table lookup

intermediate parallel computation steps

…

predicated by fprsqrta output
predicate

go to “done” if fprsqrta output predicate is 1

unpack parallel operands into scalar operands

normalize scalar operands

…

result = R; predicated by fprsqrta
output predicate

branch predicated by fprsqrta
output predicate

frsqrta table lookup for the low
half

intermediate scalar computation steps - low half

…

predicated by frsqrta output
predicate

…

low result = ; predicated by
frsqrta output predicate

frsqrta table lookup for the high
half

intermediate scalar computation steps - low half

…

predicated by frsqrta output
predicate

done:

pack the low and high half of the result

store result

high result = ; predicated by
frsqrta output predicate

y0 1 a⁄ 1 ε0+()⋅ ε0 2
m–≤,=

R S1 d1+ H1⋅()
rnd

=

y0 1 a⁄ 1 ε0+()⋅ ε0 2
m–≤,=

R′ S1 d1+ H1⋅()
rnd

=

y0 1 a⁄ 1 ε0+()⋅ ε0 2
m–≤,=

R ′

R″ S1 d1+ H1⋅()
rnd

= R″

5-7

Architecturally Mandated Pseudo-SWA Requests for Parallel Computations

5.4 Frequency Estimation of the Architecturally
Mandated Pseudo-SWA Faults for Parallel
Floating-point Square Root

For the parallel single precision format, even though there is no architecturally mandated SWA, a
similar evaluation can be made for the number of points on the ea axis, for which fprsqrta will
return the best approximation it can provide for , but will clear the output predicate:

NSWA / Ntot = (24 + 1) / (2 · 127 + 1) · 100 = 9.8039 %

where NSWA denotes the number of points for which user level software assistance (pseudo-SWA)
is needed, and Ntot is the total number of possible exponents for a.

This calculation assumes that all the possible exponents of a have equal probability of occurring
when computing .

1 a⁄

a

Architecturally Mandated Pseudo-SWA Requests for Parallel Computations

5-8

6-1

Examples of Floating-point Software
Assistance Requests 6

Examples for Itanium processor specific as well as IA-64 architecturally mandated SWA requests
are given in the following subsections.

Examples are also given of parallel floating-point operations that lead first to SWA faults or traps,
and then to other enabled floating-point exceptions. First, they are processed by the SWA handler
(IA-64 Floating-point Emulation Library), and then, by an optional Floating-point IEEE Filter and
by a user exception handler.

6.1 Examples of Itanium™ Processor Specific Software
Assistance Requests

Itanium processor specific software assistance requests appear in two forms: Itanium processor
specific software assistance faults and Itanium processor specific software assistance traps. These
two cases will be illustrated separately.

6.1.1 Itanium™ Processor Specific Software Assistance Faults

Itanium processor specific software assistance faults are raised when an input operand to an IA-64
instruction is unnormal or denormal (for parallel instructions unnormals other than denormals are
not representable), with the restrictions specified in Table 3-2. Software assistance in this case is
necessary because the Itanium processor cannot handle input operands that are unnormal. One
exception occurs for the fnorm operation, which multiplies its input operand by 1.0, and adds 0.0 to
the result. The exception is that the fnorm instruction with an unnormal input will raise a SWA fault
only if the exponent of the input operand is 0, or if the denormal exceptions are enabled. In this
latter case, the SWA handler (the IA-64 Floating-point Emulation Library), will raise a denormal
operand (D) exception, and the operating system will look for a user defined handler for denormal
exceptions.

A few examples of operations raising (or not raising) Itanium processor specific SWA faults
follow. The examples, illustrating only the fma operation, are meant to cover a variety of situations
that are possible. In all the cases when a SWA fault is raised, it is because one of the operands is
unnormal (or denormal).

Example 1 fma.s0 f1 = f3, f4, f2
with rc = 0x00 (rounding to nearest), pc = 0x11 (64-bit significand), wre = 1 (17-bit exponent),
exceptions disabled, and:

The fma instruction raises an Itanium processor specific SWA fault because f4 contains an
unnormal.

f3 1.0 2
0⋅=

f4 0.0111…1 2
emin 7+

⋅ 0.0111…1 2
65534– 7+⋅= =

f2 0.0=

Examples of Floating-point Software Assistance Requests

6-2

Floating-point status flags set: D, indicating an unnormal operand.
The result, normal and exact, is:

Note that if the denormal exceptions are enabled, the SWA handler raises a denormal exception.
Compare this example with Example 7 below, for fnorm.

Example 2 fma.s0 f1 = f3, f4, f2
with rc = 0x00 (rounding to nearest), pc = 0x11 (64-bit significand), wre = 1 (17-bit exponent),
exceptions disabled, and:

The fma instruction raises an Itanium processor specific SWA fault because f4 contains a denormal.
Floating-point status flags set: D, indicating a denormal operand.
The result, tiny and exact, is:

Note that if the denormal exceptions are enabled, the SWA handler raises a denormal exception. If
the denormal exceptions are disabled but the underflow exceptions are enabled, an underflow trap
is taken. Compare this example with Example 10 below, for fnorm (from Section 6.1.2).

Example 3 fma.s0 f1 = f3, f4, f2
with rc = 0x00 (rounding to nearest), pc = 0x11 (64-bit significand), wre = 1 (17-bit exponent),
exceptions disabled, and:

The fma instruction raises an Itanium processor specific SWA fault because f3 contains a denormal.
Floating-point status flags set: D, indicating a denormal operand; U, indicating a result that is tiny
and inexact; I, indicating a result that is inexact.
The result, tiny and inexact, is:

Note that if the denormal exceptions are enabled, the SWA handler raises a denormal exception. If
the denormal exceptions are disabled but the underflow exceptions are enabled, an underflow trap
is taken. If the denormal and underflow exceptions are disabled but the inexact exceptions are
enabled, an inexact trap is taken.

f1 f3 f4 f2+⋅ 1.11…100 2
emin 5+

1.11…100 2
65534– 5+⋅=⋅= =

f3 1.0 2
0⋅=

f4 0.0111…1 2
emin⋅ 0.0111…1 2

65534–⋅= =
f2 0.0=

f1 f3 f4 f2+⋅ 0.0111…1 2
emin 0.0111…1 2

65534–⋅=⋅= =

f3 0.011…1 2
emin⋅ 0.011…1 2

65534–⋅= =

f4 1.0 2
3–⋅=

f2 0.0=

f1 f3 f4 f2+⋅ 0.000100…0 2
emin 0.000100…0 2

65534–⋅=⋅= =

6-3

Examples of Floating-point Software Assistance Requests

Example 4 fma.s0 f1 = f3, f4, f2
with rc = 0x00 (rounding to nearest), pc = 0x11 (64-bit significand), wre = 1 (17-bit exponent),
exceptions disabled, and:

The fma instruction raises an Itanium processor specific SWA fault because f3 contains a denormal.
Floating-point status flags set: D, indicating a denormal operand.
The result, tiny and exact, is:

Note that if the denormal exceptions are enabled, the SWA handler raises a denormal exception. If
the denormal exceptions are disabled but the underflow exceptions are enabled, an underflow trap
is taken.

Example 5 fma.s0 f1 = f3, f4, f2
with rc = 0x00 (rounding to nearest), pc = 0x00 (24-bit significand), wre = 0 (15-bit exponent),
exceptions disabled, and:

Note that f4 is represented as an IA-32 stack single real denormal (1-bit sign + 15-bit exponent +
24-bit significand). In floating-point register file format, it will have a biased exponent of 0 instead
of 0xc001.
The fma instruction raises an Itanium processor specific SWA fault because f4 contains a denormal.
Floating-point status flags set: D, indicating a denormal operand.
The result, tiny and exact, is:

Note that if the denormal exceptions are enabled, the SWA handler raises a denormal exception. If
the denormal exceptions are disabled but the underflow exceptions are enabled, an underflow trap
is taken. Compare this example with Example 8 below, for fnorm.

f3 0.011…1000 2
emin⋅ 0.011…1000 2

65534–⋅= =

f4 1.0 2
3–⋅=

f2 0.0=

f1 f3 f4 f2+⋅ 0.000011…1 2
emin 0.000011…1 2

65534–⋅=⋅= =

f3 1.0 2
0⋅=

f4 0.0111111111111111111111100…0 2
emin⋅=

0.0111111111111111111111100…0 2
16382–⋅

f2 0.0=

f1 f3 f4 f2+⋅ 0.0111111111111111111111100…0 2
emin⋅= =

0.0111111111111111111111100…0 2
16382–⋅

Examples of Floating-point Software Assistance Requests

6-4

Example 6 fma.s0 f1 = f3, f4, f2
with rc = 0x00 (rounding to nearest), pc = 0x10 (53-bit significand), wre = 0 (15-bit exponent),
exceptions disabled, and:

Note that f4 is represented as an IA-32 stack double real denormal (1-bit sign + 15-bit exponent +
53-bit significand). In floating-point register file format, it will have a biased exponent of 0 instead
of 0xc001.
The fma instruction raises an Itanium processor specific SWA fault because f4 contains a denormal.
Floating-point status flags set: D, indicating a denormal operand.
The result, tiny and exact, is:

Note that if the denormal exceptions are enabled, the SWA handler raises a denormal exception. If
the denormal exceptions are disabled but the underflow exceptions are enabled, an underflow trap
is taken.

Example 7 fnorm.s0 f1 = f3
with rc = 0x00 (rounding to nearest), pc = 0x11 (64-bit significand), wre = 1 (17-bit exponent),
exceptions disabled, and:

Floating-point status flags set: D, indicating a denormal operand.
The result, normal and exact, is:

The fnorm instruction (pseudo-op for fma) does not raise a SWA fault, even though f3 contains an
unnormal, because its biased exponent in floating-point register file format is not 0, and the
denormal exceptions are disabled. To compute the result, which is normal and exact, the hardware
shifts left the significand and decrements the exponent. Note that if the denormal exceptions are
enabled, the SWA handler raises a denormal exception. Compare this example with Example 1
above, for fma.

Example 8 fnorm.s0 f1 = f3
with rc = 0x00 (rounding to nearest), pc = 0x00 (24-bit significand), wre = 0 (15-bit exponent),
exceptions disabled, and:

f3 1.0 2
0⋅=

f4 0.011111…100000000000 2
emin⋅

0.011111…100000000000 2
16382–⋅

= =

f2 0.0=

f1 f3 f4 f2+⋅
0.0111…100000000000 2

emin⋅
0.0111…100000000000 2

16382–⋅

= =

=

f3 0.0111…1 2
emin 7+

⋅ 0.0111…1 2
65534 7+–⋅= =

f1 f3 1.0 0.0+⋅ 1.11…100 2
emin 5+

1.11…100 2
65534– +⋅=⋅= =

f3 0.0111111111111111111111100…0 2
emin⋅= =

0.0111111111111111111111100…0 2
16382–⋅

6-5

Examples of Floating-point Software Assistance Requests

Note that f3 is represented as an IA-32 stack single real denormal (1-bit sign + 15-bit exponent +
53-bit significand). In floating-point register file format, it will have a biased exponent of 0 instead
of 0xc001.
The fnorm instruction (pseudo-op for fma) raises an Itanium processor specific SWA fault because
f3 contains a denormal, and its biased exponent in floating-point register file format is 0.
Floating-point status flags set: D, indicating a denormal operand.
The result, tiny and exact, is:

If the denormal exceptions are enabled, then a SWA fault is raised, but the SWA handler raises a
denormal exception. If the denormal and the underflow exceptions are disabled, the result, tiny and
exact, will leave unchanged the U status flag in the appropriate status field of the FPSR. If the
underflow exceptions are enabled, the tiny result causes an underflow trap to be raised. Compare
this example with Example 5 above, for fma.

Example 9 fnorm.s0 f1 = f3
with rc = 0x00 (rounding to nearest), pc = 0x11 (64-bit significand), wre = 0 (15-bit exponent),
exceptions disabled, and:

Note that f3 is represented as an IA-32 stack double-extended real denormal (1-bit sign + 15-bit
exponent + 64-bit significand). In floating-point register file format, it will have a biased exponent
of 0 instead of 0xc001.
The fnorm instruction (pseudo-op for fma) raises an Itanium processor specific SWA fault because
f3 contains a denormal, and its biased exponent in floating-point register file format is 0.
Floating-point status flags set: D, indicating a denormal operand.
The result, tiny and exact in double-extended precision, is:

If the denormal exceptions are enabled, then a SWA fault is raised, but the SWA handler raises a
denormal exception. If the denormal and the underflow exceptions are disabled, the result, tiny and
exact, will leave unchanged the U status flag in the appropriate status field of the FPSR. If the
underflow exceptions are enabled, the tiny result causes an underflow trap to be raised.
Sample source code for the examples above is included in Section 6.1.3.

6.1.2 Itanium™ Processor Specific Software Assistance Traps

Itanium processor specific software assistance traps are raised when the underflow traps are
disabled, if the result of a floating-point instruction is tiny (tininess is evaluated after rounding to
the destination precision, with unbounded exponent range), and the flush-to-zero mode is disabled.
This means that the result requires denormalization, i.e. shifting right of the significand and
incrementing the exponent (in the simplest case), operations that the hardware cannot perform.

A few examples of operations raising (or not) Itanium processor specific SWA traps follow.

f1 f3 1.0 0.0+⋅ 0.0111111111111111111111100…0 2
emin =⋅= =

0.0111111111111111111111100…0 2
16382–⋅

f3 0.0111…1 2
emin⋅ 0.0111…1 2

16382–⋅= =

f1 f3 1.0 0.0+⋅ 0.0111…1 2
emin 0.0111…1 2

16382–⋅=⋅= =

Examples of Floating-point Software Assistance Requests

6-6

Example 10 fnorm.s0 f1 = f3
with rc = 0x00 (rounding to nearest), pc = 0x11 (64-bit significand), wre = 1 (17-bit exponent),
exceptions disabled, and:

Floating-point status flags set: D, indicating a denormal operand.
The result, tiny and exact, will be:

In the example above, the fnorm instruction (pseudo-op for fma) does not raise a SWA fault, even
though f3 contains a denormal, because its biased exponent in floating-point register file format is
not 0, and the denormal exceptions are disabled. If the denormal exceptions are enabled, then a
SWA fault is raised, but the SWA handler raises further a denormal exception. If the denormal and
underflow exceptions are disabled, the result, tiny and exact, will leave unchanged the U status flag
in the appropriate status field of the FPSR, and will cause raising an Itanium processor specific
SWA trap. If the underflow exceptions are enabled, the tiny result will cause raising of an
underflow trap. Compare this example with Example 2 above, for fma.

Example 11 fma.s0 f1 = f3, f4, f2
with rc = 0x00 (rounding to nearest), pc = 0x11 (64-bit significand), wre = 1 (17-bit exponent),
exceptions disabled, and:

The fma instruction raises a SWA trap because its result is a tiny floating-point number.
Floating-point status flags set: U, indicating a result that is tiny and inexact; I, indicating a result
that is inexact.
The result, tiny and inexact, is:

Note that if the underflow exceptions are enabled, the SWA handler raises an underflow exception.
If the underflow exceptions are disabled, but the inexact exceptions are enabled, then the SWA
handler raises an inexact exception.

Example 12 fma.s0 f1 = f3, f4, f2
with rc = 0x00 (rounding to nearest), pc = 0x11 (64-bit significand), wre = 1 (17-bit exponent),
exceptions disabled, and:

The fma instruction raises a SWA trap because its result is a tiny floating-point number.
Floating-point status flags set: none.

f3 0.0111…1 2
emin⋅=

f1 f3 1.0 0.0+⋅ 0.0111…1 2
emin⋅= =

f3 1.11…100 2
emin⋅ 1.11…100 2

65534–⋅= =

f4 1.0 2
5–⋅=

f2 0.0=

f1 f3 f4 f2+⋅ 0.000100…0 2
emin 0.000100…0 2

65534–⋅=⋅= =

f3 1.11…100000 2
emin⋅ 1.11…100000 2

65534–⋅= =

f4 1.0 2
5–⋅=

f2 0.0=

6-7

Examples of Floating-point Software Assistance Requests

The result, tiny and exact, is:

Note that if the underflow exceptions are enabled, the SWA handler raises an underflow exception.

Example 13 fma.s0 f1 = f3, f4, f2
with rc = 0x01 (rounding to minus infinity), pc = 0x00 (24-bit significand), wre = 1 (17-bit
exponent), exceptions disabled, and:

The fma instruction raises a SWA trap because its result is tiny.
Floating-point status flags set: U, indicating a result that is tiny and inexact; I, indicating a result
that is inexact.
The result, tiny and inexact, is:

Note that if the underflow exceptions are enabled, the SWA handler raises an underflow exception.
If the underflow exceptions are disabled, but the inexact exceptions are enabled, then the SWA
handler raises an inexact exception.

Example 14 fma.s0 f1 = f3, f4, f2

with rc = 0x10 (rounding to plus infinity), pc = 0x00 (24-bit significand), wre = 0 (15-bit
exponent), exceptions disabled, and:

(Note that the value in f3 is outside the range of numbers representable with 15-bit exponents.)
The fma instruction raises a SWA trap because its result is tiny.
Floating-point status flags set: U, indicating a result that is tiny and inexact; I, indicating a result
that is inexact.
The result, tiny and inexact, is:

Note that if the underflow exceptions are enabled, the SWA handler raises an underflow exception.
If the underflow exceptions are disabled, but the inexact exceptions are enabled, then the SWA
handler raises an inexact exception.
Sample source code for the examples above is included also in Section 6.1.3 below.

f1 f3 f4 f2+⋅ 0.0000111…1 2
emin⋅ 0.0000111…1 2

65534–⋅= = =

f3 1.11…100000 2
emin⋅ 1.11…100000 2

65534–⋅= =

f4 1.0 2
5–⋅=

f2 0.0=

f1 f3 f4 f2+⋅ 0.0000111111111111111111100…0 2
emin⋅= =

0.0000111111111111111111100…0 2
65534–⋅

f3 1.11…100000 2
emin 17 bits()

⋅ 1.11…100000 2
65534–⋅= =

f4 1.0 2
5–⋅=

f2 0.0=

f1 f3 f4 f2+⋅
0.0000000000000000000000100…0 2

emin⋅
0.0000000000000000000000100…0 2

16382–⋅

= =

=

Examples of Floating-point Software Assistance Requests

6-8

6.1.3 Sample Code for Examples of Itanium™ Processor Specific
Software Assistance Faults and Traps

Sample source code for the examples presented in the two previous subsections is included next. A
simple test driver (written in C), calls the IA-64 assembly routines run_fma () and run_fnorm () to
execute the fma and fnorm operations with given input operands and Floating-point Status Register
(run_fnorm () is not shown).

main.c:

#include <stdio.h>

typedef struct {

__int64 LowPart;

__int64 HighPart;

} FLOAT128;

void run_fma (unsigned __int64 *fpsr,

FLOAT128 *d, FLOAT128 *a, FLOAT128 *b, FLOAT128 *c); // d = a * b + c

void run_fnorm (unsigned __int64 *fpsr, FLOAT128 *d, FLOAT128 *a);

// d = a * 1.0 + 0.0

void

main ()

{

FLOAT128 a, b, c, d;

unsigned __int64 fpsr;

int *p;

p = (int *)&d;

// ** //

// ************ ITANIUM PROCESSOR SPECIFIC SWA FAULTS *************** //

// ** //

// Example 1

// unnormal operand(s), traps disabled, rn

// fpsr = 0x003bf - sf0: rc=00, pc=11, wre=1, traps dis.

// 1.0 * 2^0 * 0.011...1 * 2^(emin_17_bits + 7) + 0.0 =

// 1.11...100 * 2^(emin_17_bits + 5)

fpsr = (unsigned __int64)0x03bf;

a.HighPart = 0x000000000000ffff; a.LowPart = 0x8000000000000000;

b.HighPart = 0x0000000000000008; b.LowPart = 0x3fffffffffffffff;

c.HighPart = 0x0000000000000000; c.LowPart = 0x0000000000000000;

run_fma (&fpsr, &d, &a, &b, &c);

printf (“RN d [HH, HL, LH, LL] = %8x %8x %8x %8x PUOZDI = %2x\n”

p[3], p[2], p[1], p[0], (short int)((fpsr >> 13) & 0x3f));

...

// Example 7

// unnormal operand(s), traps disabled, rn

// fpsr = 0x003bf - sf0: rc=00, pc=11, wre=1, traps dis.

// 0.011...1 * 2^(e min_17_bits + 7) * 1.0 * 2^0 + 0.0 =

6-9

Examples of Floating-point Software Assistance Requests

// 1.11...100 * 2^(emin_17_bits + 5)

fpsr = (unsigned __int64)0x03bf;

a.HighPart = 0x0000000000000008; a.LowPart = 0x3fffffffffffffff;

b.HighPart = 0x000000000000ffff; b.LowPart = 0x8000000000000000;

c.HighPart = 0x0000000000000000; c.LowPart = 0x0000000000000000;

run_fnorm (&fpsr, &d, &a);

printf (“RN d [HH, HL, LH, LL] = %8x %8x %8x %8x PUOZDI = %2x\n”,

p[3], p[2], p[1], p[0], (short int)((fpsr >> 13) & 0x3f));

...

// *** //

// *************** ITANIUM PROCESSOR SPECIFIC SWA TRAPS *******************
//

// *** //

// Example 10

// unnormal operand(s), traps disabled, rn

// fpsr = 0x003bf - sf0: rc=00, pc=11, wre=1, traps dis.

// 0.011...1 * 2^(e min_17_bits) * 1.0 * 2^0 + 0.0 =

// 0.011...1 * 2^(e min_17_bits)

fpsr = (unsigned __int64)0x03bf;

a.HighPart = 0x0000000000000001; a.LowPart = 0x3fffffffffffffff;

b.HighPart = 0x000000000000ffff; b.LowPart = 0x8000000000000000;

c.HighPart = 0x0000000000000000; c.LowPart = 0x0000000000000000;

run_fnorm (&fpsr, &d, &a);

printf (“RN d [HH, HL, LH, LL] = %8x %8x %8x %8x PUOZDI = %2x\n”,

p[3], p[2], p[1], p[0], (short int)((fpsr >> 13) & 0x3f));

// Example 11

// normal operands, unnormal result, traps disabled, rn

// fpsr = 0x003bf - sf0: rc=00, pc=11, wre=1, traps dis.

// 1.11...100 * 2^(e min_17_bits) * 1.0 * 2^(-5) + 0.0 =

// 0.00001...1 * 2^(e min_17_bits)

fpsr = (unsigned __int64)0x03bf;

a.HighPart = 0x0000000000000001; a.LowPart = 0xfffffffffffffffc;

b.HighPart = 0x000000000000fffa; b.LowPart = 0x8000000000000000;

c.HighPart = 0x0000000000000000; c.LowPart = 0x0000000000000000;

run_fma (&fpsr, &d, &a, &b, &c);

printf (“RN d [HH, HL, LH, LL] = %8x %8x %8x %8x PUOZDI = %2x\n”

p[3], p[2], p[1], p[0], (short int)((fpsr >> 13) & 0x3f));

...

}

run_fma.s

.file “run_fma.s”

.section .text

.align 32

.proc run_fma#

.global run_fma#

.align 32

run_fma:

{ .mmi

Examples of Floating-point Software Assistance Requests

6-10

alloc r31=ar.pfs,5,2,0,0 // r32, r33, r34, r35, r36, r37, r38

// &fpsr is in r32

// &fr1 (output) is in r33

// &fr2 (input) is in r34

// &fr3 (input) is in r35

// &fr4 (input) is in r36

// save old FPSR in r37

mov r37 = ar40

nop.i 0;;

} { .mmi

// load new fpsr in r38

ld8 r38 = [r32];;

// set new value of FPSR

mov ar40 = r38

nop.i 0;;

} { .mmi

// load first input argument into f8

ldf.fill f8 = [r34]

// load second input argument into f9

ldf.fill f9 = [r35]

nop.i 0;;

} { .mmi

// load third input argument into f10

ldf.fill f10 = [r36]

nop.m 0

nop.i 0;;

} { .mfi

nop.m 0

(p0) fma.s0 f11 = f8, f9, f10 // f11 = f8 * f9 + f10

nop.i 0;;

} { .mmi

// store result

stf.spill [r33] = f11

// save new FPSR in r38

mov r38 = ar40

nop.i 0;;

} { .mmi

// store new fpsr from r38

st8 [r32] = r38

// restore FPSR

mov ar40 = r37

nop.i 0;;

} { .mib

nop.m 0

nop.i 0

// return

br.ret.sptk b0

}

.endp run_fma

6-11

Examples of Floating-point Software Assistance Requests

6.2 Examples of IA-64 Architecturally Mandated
Software Assistance Requests

Divide

1) Condition (a):

eb ≤ emin – 1

Example: The exponents of a = 1.11 · 2–30000 and b = 0.00000101 · 2–65534 = 1.01 · 2–65540 satisfy
condition (a), but no other condition for architecturally mandated software assistance.

2) Condition (b):

eb ≥ emax – 2

Example:

The pair

satisfies condition (b), but no other condition for software assistance.

As an exercise, the precision loss in yi can be evaluated in this case. Without a software assistance
request from frcpa, the algorithm for double-extended and floating-point register file format inputs
generates the value y1* (the value of the second approximation y1 of 1/b before rounding) that is
shown below:

But this is tiny, as emin = –65534, and will be represented as a denormal. When denormalizing, the
least significant bit which is 1 (the 64-th bit above) is shifted out, and by rounding to nearest, the
previous bit, which was 0, becomes 1:

where the fraction contains 24 consecutive 1’s, followed by 39 consecutive 0’s, followed by a 1.
Represented in hexadecimal on 82 bits as a floating-point register file format number (17-bit
exponent and 64-bit significand) this becomes:

The effect of this accuracy loss in y1 is that the final result for a/b might be incorrect (in reality, for
this particular case, the precision loss is not catastrophic, i.e. the final result would not be affected;
other examples can be found for condition (b) where the precision loss really matters).

a 1.0 2
1000⋅=

b 1.111…1 2
emax 2–

⋅ 1.111…1 2
65533⋅= =

y1
∗ 2

64
2

40
– 1 2

9–
2

20–
+ + +() 2

65533– 65–⋅
2

63
2

62 … 2
40

1 2
9–

2
20–

+ + + + + +() 2
65533– 65–⋅

1 2
1– … 2

24–
2

63–
2

72–
2

83–
+ + + + + +() 2

65535–⋅

= =

=

y1 0.111…1100…01 2
65534–⋅=

00001 7ffff80000000001

Examples of Floating-point Software Assistance Requests

6-12

Without the architecturally mandated SWA requests, the operation producing y1 (an fma) would
create a denormal, and it would lead to an Itanium processor specific SWA trap. The operation
consuming y1 (also an fma), would then raise a SWA fault. This may further happen also for y2, y3,
and y4. Therefore (not mentioning accuracy), the performance is better if frcpa asks directly for
SWA in this case.

3) Condition (c):

ea – eb ≥ emax

Example: The exponents of a = 1.01 · 265533 and b = 1.11 · 2-65530 satisfy condition (c), but no
other condition for architecturally mandated software assistance.

4) Condition (d):

ea – eb ≤ emin + 1

Example: The exponents of a = 1.01 · 2-65436 and b = 1.11 · 265530 satisfy condition (d), but no
other condition for architecturally mandated software assistance.

5) Condition (e):

ea ≤ emin + N – 1

Example 1: if

and

(with 64-bit significands), the algorithm for double-extended precision and register file format
floating-point numbers produces a/b = 1.0 · 2-65477, instead of the correctly rounded result a/b =
1.0...01 · 2-65477.

Example 2: The exponents of a = 1.01 · 2-65530 and b = 1.11 · 2-65530 satisfy condition (e), but no
other condition for architecturally mandated software assistance.

Note that all the cases when a or b are denornal in floating-point register file format, are covered by
the conditions for architecturally mandated SWA. In such cases, the SWA handler for frcpa will
return the correct result for the divide. For fprcpa, if any input is denormal, the SWA handler will
just return an approximation for 1 / b (but not necessarily one that can be used to start a
Newton-Raphson or similar iterative calculation for the result of the divide operation).

Square Root

The condition for architecturally mandated SWA is:

ea ≤ emin + N – 1

This tells that if ea > emin + N – 1, a valid normal value will be returned by frsqrta or fprsqrta as an
approximation to 1/ .

a 1.111…110001 2
emin N 17–+

⋅ 1.111…110001 2
65487–⋅= =

b 1.111…1110000 2
10–⋅=

a

6-13

Examples of Floating-point Software Assistance Requests

Example 1: If a is a floating-point register file format value:

the algorithm for double-extended precision and register file format floating-point numbers
produces , instead of the correct result . The IEEE correct
value of will be calculated by the SWA handler.

Example 2: The exponent of a = 0.00000101 · 2-65534 = 1.01 · 2-65540 satisfies the condition for
architecturally mandated software assistance, and the IEEE correct value of will be calculated
by the SWA handler.

a 1.111…11 2
emin N 1–+

⋅ 1.111…11 2
65471–⋅= =

a 1.0 2
32735–⋅= a 1.11…11 2

32736–⋅=
a

a

Examples of Floating-point Software Assistance Requests

6-14

7-1

IA-64 Floating-point Emulation Library 7

The first section describes the method for installing the IA-64 Floating-point Emulation Library as
an EFI driver. The second section describes the API defined for the IA-64 Floating-point
Emulation Library. The API is defined to be independent of the operating system. The last
subsection illustrates the integration of IA-64 Floating-point Emulation Library with the operating
system.

It is assumed that the reader is familiar with the Extensible Firmware Interface (EFI) Specification
[4]. Where necessary, apprpropriate references will be made to the relevant sections of the EFI
spec.

7.1 EFI Floating-point SWA Driver

This section outlines a method for incorporating the Intel provided IA-64 Floating-point Emulation
Library (Floating-point Software Assistance Handler, or FP SWA handler) on an Itanium processor
based platform.

The Extensible Firmware Interface (EFI) provides services for loading runtime driver images into
memory. The FP SWA handler is encapsulated as an EFI runtime driver image. This allows the
loading of the FP SWA handler before an operating system is loaded. The topics discussed include:

• Installing an FP SWA driver.

• Updating an FP SWA driver.

• Loading an FP SWA driver.

• Identifying an FP SWA driver from an OS Loader or an OS Kernel.

7.1.1 Introduction to EFI Drivers

The following is a brief introduction to EFI drivers. For more details, please refer to the EFI
Specification [4].

EFI drivers can be coded in most high level languages, including C, and are relocatable. As with
any EFI driver image, it may be loaded through several mechanisms:
1) loaded from firmware storage device
2) loaded from a file on an EFI System Partition, or
3) loaded from any location that is accessible by EFI (Network, add-in device’s option ROM, etc.).

An EFI driver can also be replaced with a newer revision of the same driver. The update is
performed either from the EFI firmware or under control of an OS.

Once a runtime EFI driver is loaded, the EFI firmware marks the memory used by the driver as not
available for OS use and further indicates the range as requiring an OS virtual address mapping.
This allows the OS to make calls into the runtime driver from within its native OS virtual mapping,
and if it is appropriate for the function call to be performed with interrupts enabled. Before the OS
uses any EFI components in virtual mode, it supplies EFI with the set of virtual mappings required.
EFI notifies all runtime components, thus mapping the images to the new virtual addresses.

IA-64 Floating-point Emulation Library

7-2

7.1.2 FP SWA EFI Driver

The FP SWA driver may be included in non-volatile firmware storage device (e.g. flash memory)
along with the rest of firmware components (PAL and SAL), and/or it may be in a directory on an
EFI system partition (on hard disk). To support the identification and serviceability goals, the FP
SWA driver needs to be locatable and identifiable such that newer versions may automatically be
applied by custom setup or OS setup functions. To accomplish this:

• When installed on an EFI System Partition, the FP SWA driver image will be called
“fpswa.efi”, and will be installed in the “Intel Firmware” directory within the EFI
directory. The file path for the FP SWA driver from the root of an EFI System Partition is
“\EFI\Intel Firmware\fpswa.efi”.

This allows for custom or OS setup and utility functions to locate the FP SWA image if the
image resides on the EFI System Partition.

• The driver will have a monotonically increasing major and minor revision number assigned to
it (these will be stored in the high, and low 16 bits of the Revision field of the FpswaInterface
variable of type FPSWA_INTERFACE respectively). This revision number and the FP SWA
GUID (Guaranteed Unique Identifier) will be included in a PE (portable executable file
format) [5] resource on the image.

This allows for custom or OS setup and utility functions to automatically determine if they
have a new copy and the EFI system to determine if it has a newer version of the driver at load
image time.

• The driver will have provision to be loaded at an operating system prescribed virtual address.
The FP SWA driver implementation allows for the relocation of the entry point and
demonstrates its usage.

This allows for the OS to call the driver from within the context of the kernel, thus saving the
need for heavy-weight mode transitioning operations (e.g., switch to physical mode and
flushing TLB’s, synchronizing processors in a multiprocessor system, etc.). See Chapter 3 of
the EFI Specification [4] for more details.

In addition, the presence of an EFI System Partition install option allows providing tools that
maintain the FP SWA component on the platform. These tools can update the existing FP SWA
driver, even if the driver is in the ROM. The key data item to which an OSV must pay attention is
the globally defined variable that prescribes the loading of the FP SWA driver. For the load order,
the DriverOrder global variable and the associated DriverXXXX variable will be stored in
NVRAM; please refer to Chapter 17 of the EFI Specification [4]. EFI supports overriding the
built-in ROM version of a driver with one on the EFI System Partition.

7.1.2.1 OEM Requirements

OEMs must ship the platform with the Intel provided FP SWA EFI driver installed on the platform
(either on firmware storage media or on EFI system partition). This ensures that the platform will
have the necessary FP SWA EFI driver in the event that an OS does not have the driver or has an
older revision of FP SWA EFI driver. This also provides a path for OEM’s to upgrade the FP SWA
EFI driver.

7.1.2.2 Operating System Vendor (OSV) Requirements

OSVs must include the latest version of the Intel provided FP SWA EFI driver with the OS and
related service packs at the time of shipment. During OS or service-pack installation, the OS setup
procedure shall :

1. Check for the presence of an FP SWA EFI driver on the platform.*

7-3

IA-64 Floating-point Emulation Library

2. Compare the version of the FP SWA EFI driver included with the OS with the version found
on the platform.

3. If the OS FP SWA EFI driver version is more recent than the version found on the platform,
the OS must update the platform with the most recent version.

*If no FPSWA EFI driver is found on the platform, the OS must install the FPSWA EFI driver
contained on the OS media.

For instances when the OS is installed on a machine that has the FP SWA EFI driver missing, the
OS Loader shall, on failure to detect the FP SWA Protocol interface, use the EFI LoadImage()
operation to dynamically load the FP SWA driver included with the OS media before transferring
control to the OS setup procedure. The OS setup procedure must install the FP SWA driver on the
EFI System Partition, and update the DriverOrder and DriverXXXX environment variables.

7.1.2.3 FP SWA EFI Driver Functionality

Providing the FP SWA handler as an EFI driver does not mean that code within the driver that
provides the useful FP SWA functionality actually utilizes the EFI mechanism in any way other
than to load the binary code into memory. The FP SWA handler code does not use the EFI services.
This is similar to other EFI runtime drivers that keep their functionality lightweight. Most of the
EFI core services only materialize during the boot-services phase and are not available during
runtime.

7.1.2.4 FP SWA EFI Driver Implementation

The following header file example defines the EFI_INTEL_FPSWA Protocol. This includes a
GUID (Guaranteed Unique Identifier) and a protocol interface structure. The GUID is used to
identify the FP SWA image and FP SWA Protocol interface structure. The protocol interface
structure only contains a revision field and a single entry point into the FP SWA handler.

#define EFI_INTEL_FPSWA

 {c41b6531-97b9-11d3-9a29-0090273fc14d}

typedef struct _FPSWA_INTERFACE {

UINT32 Revision;

UINT32 Reserved;

EFI_FPSWAFpswa;

} FPSWA_INTERFACE;

typedef struct _FPSWA_RET {

UINT64 status;

UINT64 err1;

UINT64 err2;

UINT64 err3;

} FPSWA_RET;

IA-64 Floating-point Emulation Library

7-4

typedef FPSWA_RET (EFIAPI *EFI_FPSWA) (

IN UINTN TrapType,

IN OUT VOID *Bundle,

IN OUT UINT64 *pipsr,

IN OUT UINT64 *pfsr,

IN OUT UINT64 *pisr,

IN OUT UINT64 *ppreds,

IN OUT UINT64 *pifs,

IN OUT VOID *fp_state

);

On initialization, the EFI driver checks to see if there is an FP SWA driver already installed by
utilizing the LocateHandle() and HandleProtocol() functions. If there is a such a
driver, its Revision is checked against that of the current driver. If the current driver is newer, it
unloads the previous driver. If the current driver is not newer, an error code is returned from its
initialization procedure and the driver is unloaded. After all of the FP SWA drivers that have been
registered with the EFI firmware have been initialized, there will be only one FP SWA driver in
memory, and this driver will be the one with the highest Revision.

7.1.3 OS Loader / OS Initialization Requirements

An OS Loader or an OS Kernel is required to perform the following steps to make use of the FP
SWA handler.

• Call LocateHandle() to find the handle to the FP SWA driver

• Call HandleProtocol() to retrieve the FP SWA Protocol instance.

• Save the physical address of the FP SWA Protocol interface

• Call ExitBootServices()

• Call SetVirtualAddressMap()

• Use the physical address of the FP SWA Protocol interface to retrieve the virtual address of the
FP SWA entry point.

• Enable the FP SWA handler

The following code fragment shows the code required before ExitBootServices() is
called.

#define EFI_INTEL_FPSWA \

 { 0xc41b6531, 0x97b9, 0x11d3, \

0x9a, 0x29, 0x0, 0x90, 0x27, 0x3f, 0xc1, 0x4d }

EFI_GUID FpswaId = EFI_INTEL_FPSWA;

EFI_STATUS Status;

7-5

IA-64 Floating-point Emulation Library

UINTN BufferSize;

EFI_HANDLE *HandleBuffer;

EFI_HANDLE FpswaHandle;

FPSWA_INTERFACE *Fpswa;

BufferSize = sizeof(EFI_HANDLE);

Status = BS->LocateHandle(ByProtocol,

 &FpswaId,

 NULL,

 &BufferSize,

 &FpswaHandle

);

if(EFI_ERROR(Status))

return(Status);/* return error */

Status =

SystemTable->BootServices->HandleProtocol(

FpswaHandle,

&FpswaId,

&Fpswa

);

if(EFI_ERROR(Status))

return(Status);/* return error */

The value of Fpswa is a physical pointer to the FP SWA Protocol interface. This value must be
saved so that the FP SWA handler entry point can be extracted at a later time.

Once the physical address of the FP SWA interface is obtained by the OS loader or OS
initialization code, the OS loader must call the ExitBootServices() function and setup the
appropriate virtual mapping for the FP SWA using SetVirtualAddressMap() function. Once
ExitBootServices() and SetVirtualAddressMap() have been called, the FP
SWA driver will be at its new virtual address, and the FP SWA Protocol interface structure Fpswa
will contain the virtual address of the FP SWA handler entry point. The OS can use this FP SWA
handler entry point to service floating-point software assistance requests (floating-point SWA
faults and floating-point SWA traps).

7.2 Floating-point SWA Handler API - API for the IA-64
Floating-point Emulation Library

There is only one top-level function in the IA-64 Floating-point Emulation Library (FP SWA
handler), Fpswa(), which resolves all the cases of architecturally mandated SWA faults and of
Itanium processor specific SWA faults and traps. The Floating-point Emulation Library also
includes part of FP82 Floating-point Reference Library, that is invoked for cases of Itanium
processor specific SWA faults. The pseudo-code for the FP82 Floating-point Reference Library
functions used in floating-point emulation is shown in the ‘‘IA-64 Software Developer’s Guide’’
[1].

IA-64 Floating-point Emulation Library

7-6

It is assumed that:

1. The FP SWA handler is in LE (little endian) mode only.

2. The FP SWA handler uses registers from the register stack.

3. The FP SWA handler uses standard C calling conventions.

4. The FP SWA handler does not call back to the OS.

5. The FP SWA handler will look at the first two fields in the data structure pointed at by its last
parameter (see below), for the type of the floating-point state passed to it. If the state is less
than the full floating-point register state, it will use the actual physical floating-point registers
that are not present in the floating-point state for any updates.

Based on these assumptions, the operating system kernel should call the FP SWA handler as:
FPSWA_RET Fpswa (

int trap_type,

BUNDLE *pbundle,

__int64 *pipsr,

__int64 *pfpsr,

__int64 *pisr,

__int64 *ppreds,

__int64 *pifs,

FP_STATE *fp_state

);

where __int64 stands for the 64-bit integer data type.

The list of parameters, their type (input and/or output), and their usage are the following (for
parameters which are pointers, the input or output attribute refers to the object pointed at):

• trap_type - (input) type of exception (0 for trap, 1 for fault, invalid otherwise); this is necessary
because examination of the ISR code is not sufficient to distinguish between floating-point
faults and traps

• pbundle - (input) pointer to the 128-bit quantity that contains the IA-64 bundle; the OS must
guarantee that the FP SWA handler will be able to read the instruction bundle; the bundle
contains the floating-point instruction that caused the SWA request, and it is used for reading
the opcode of the instruction; the BUNDLE data type is defined as follows:

typedef struct bundle_s {

__int64 bundle_low64;

__int64 bundle_high64;

} BUNDLE;

• pipsr - (output) pointer to the 64-bit quantity that contains the IPSR value (Intrerruption
Processor Status Register); used to set in it the mfl and/or mfh bits that indicate whether a
‘‘low’’ floating-point register was modified (f2 to f31), or respectively a ‘‘high’’ one (f32 to
f127); upon return, pipsr points to the updated interruption processor status register (IPSR)
Note: the OS can clear the mfl and mfh bits in the 64-bit value pointed at by pipsr before
calling Fpswa(), and can examine them upon return; if set, they indicate that some
floating-point registers have been written by the FP SWA handler; whether these registers are
in the save area (with pointers in fp_state) or physical floating-point registers, depends on the
bit masks passed to Fpswa() in fp_state; the OS can also use the processor mfl and mfh bits,
knowing that the FP SWA handler uses only floating-point registers f6 through f11

• pfpsr - (input/output) pointer to the 64-bit quantity that contains the FPSR value
(Floating-point Status Register); used to read control bit settings, and to write new status flag
values; upon return, pfpsr points to the updated floating-point status register (FPSR); only the

7-7

IA-64 Floating-point Emulation Library

status flags of the status field used by the instruction that caused the floating-point SWA fault
or trap may be changed upon return from the call to Fpswa()

• pisr - (input/output) pointer to the 64-bit quantity that contains the ISR value (Intrerruption
Status Register); it is read to determine the type of an incoming floating-point exception; upon
return, if a floating-point exception has to be raised by the OS to the user level, pisr points to
the updated interruption status register (ISR) code for a (possibly) new floating-point
exception

• ppreds - (input/output) pointer to the 64-bit quantity that contains the predicate register value;
used to read the qualifying predicate of the excepting instruction; upon return, ppreds points to
the updated value of the 64-bit predicate register, but only if the instruction that caused the
floating-point SWA fault or trap has at least one output that is a predicate register (otherwise,
ppreds points to an unchanged value)

• pifs - (input) pointer to the 64-bit quantity that contains the IFS value (Intrerruption Function
State); used to read the value of CFM (the Current Frame Marker), and to extract the values of
the rotating register bases for floating-point and predicate registers

• fp_state - pointer to floating-point state area of type FP_STATE, containing the saved values of
the floating-point registers (the current floating-point register state); the definition of
FP_STATE is as follows:

typedef struct fp_state_s {

__int64 bitmask_low64; /* bitmask of FP regs f63-f2 */

__int64 bitmask_high64; /* bitmask of FP regs f127-f64 */

FP_STATE_LOW_PRESERVED *fp_state_low_preserved; /* f2-f5 */

FP_STATE_LOW_VOLATILE *fp_state_low_volatile; /* f6-f15 */

FP_STATE_HIGH_PRESERVED *fp_state_high_preserved; /* f16-f31 */

FP_STATE_HIGH_VOLATILE *fp_state_high_volatile; /* f32-f127 */

} FP_STATE;

typedef struct fp_state_low_preserved_s {

__int128 fp_lp[4]; /* contains FP registers f2-f5 */

} FP_STATE_LOW_PRESERVED;

typedef struct fp_state_low_volatile_s {

__int128 fp_lv[10]; /* contains FP registers f6-f15 */

} FP_STATE_LOW_VOLATILE;

typedef struct fp_state_high_preserved_s {

__int128 fp_hp[16]; /* contains FP registers f16-f31 */

} FP_STATE_HIGH_PRESERVED;

typedef struct fp_state_high_volatile_s {

__int128 fp_hv[96]; /* contains FP registers f32-f127 */

} FP_STATE_HIGH_VOLATILE;

The bitmask_low64 and bitmask_high64 fields of FP_STATE specify bit masks for all the
floating-point registers that are valid in FP_STATE. The bitmask_low64 field specifies the bit
mask for registers F0-F63, and bitmask_high64 specifies the bit mask for registers F64-F127. A
value of 1 in the bit mask means that the corresponding floating-point register is valid in
FP_STATE, and a value of 0 means that the corresponding floating-point register is not valid in the
FP_STATE, and the FP SWA handler must use the corresponding hardware floating-point register.
For example, if bit 2 of bitmask_low64 is set (1), state register F2 is valid in the FP_STATE
structure and is available in fp_state_low_preserved[0], which correspond to f2. An important
observation is that saving and restoring floating-point registers has to be made as atomic

IA-64 Floating-point Emulation Library

7-8

operations. Interruptions have to be disabled during this timeframe, otherwise a context switch
could occur, another thread could write to some of the floating-point registers, and upon resuming
the interrupted thread, some floating-point registers could contain incorrect data.

The return value from Fpswa is of type RET_FPSWA, which is a structure of 32 bytes maximum
(contained in r8-r11). The first eight bytes of the structure indicate if the call to the FP SWA
handler succeeded or failed. The return value definition is:

typedef struct {

 __int64 status; // r8

 unsigned __int64 err1; // r9

unsigned __int64 err2; // r10

unsigned __int64 err3; // r11

} FPSWA_RET;

If the return value (status) indicates an error (status < 0), the OS will print an error message and the
hex contents of some or all of r8, r9, r10, and r11, which contain implementation specific error
codes. A return value of 0 (status == 0) indicates that the FP SWA handler has successfully
emulated the instruction that caused the SWA fault or trap. A positive value (status > 0) indicates
that the floating-point exception is not a SWA fault or trap, or that the FP SWA handler has
converted it to another unmasked (enabled) floating-point exception that must be propagated to the
user. In the latter two cases, the FP SWA handler may update the floating-point state, the IPSR, the
FPSR, the ISR (only if a floating-point exception has to be propagated to the user level), and the
predicate registers in order to reflect the correct state information.

The return code of the FP SWA handler, status, is as follows:

• 0 - the floating-point instruction was successfully emulated, and a result is being provided

• -1 - the floating-point instruction emulation was unsuccessful (due to incorrect parameters to
the floating-point emulation function); this represents an internal error condition, and should
not occur if the FP SWA handler is invoked with correct parameters by the OS

• >0 - indicates that the floating-point emulation was not successful, and a new floating-point
exception is reported by the IA-64 Floating-point Emulation Library; up to three bits in the
value of the status field are set to indicate the status of the emulation; the following status bits
are defined:

— bit 0 - if set, indicates a new floating-point exception to be raised, that needs to be
delivered to the user; the actual floating-point exception type is indicated in the updated
ISR register.

— bit 1 - if set, an incoming floating-point fault was converted to an outgoing floating-point
trap by the IA-64 Floating-point Emulation Library, otherwise the type of the incoming
exception (fault or trap) is maintained for the new exception to be raised; this bit is only
tested if bit 0 is set

— bit 2 - if set, it indicates that a parallel (SIMD) instruction has caused the exception; this
bit is only tested if bit 0 is set; an OS will use this bit only if it wants to provide more
information to the user handler than that in the ISR code (e.g. it could indicate the
occurrence of a floating-point fault, of a floating-point trap, of multiple floating-point
faults, or of multiple floating-point traps; note though that such information - SIMD
instruction or not - can be derived also from the opcode of the instruction that caused the
exception)

— bits [3-63] - reserved

A template for interpreting the encoded error message when the return value from Fpswa() to the
OS kernel, fpswa_ret, contains fpswa_ret.status == -1, is presented below (note that the calls to
fprintf() will have to be replaced as needed for every OS).

7-9

IA-64 Floating-point Emulation Library

#include <stdio.h>

#define FP_EMUL_ERROR -1

void FPSWA_error_print (FPSWA_RET fpswa_ret)

{

unsigned int err_nr; // error number

unsigned int qp; // qualifying predicate

unsigned __int64 OpCode; // instruction opcode

unsigned int rc; // rounding control

unsigned int significand_size; // significand size: 24, 53, or 64

unsigned int ISRlow; // ISR code

unsigned int f1; // result floating-point register index

unsigned int sign; // sign bit of the result

unsigned int exponent; // exponent of the result

unsigned __int64 significand; // significand of the result

unsigned int new_trap_type;

// indicates that a new floating-point exception has to be raised

if (fpswa_ret.status != (__int64)FP_EMUL_ERROR) return;

err_nr = (unsigned int)(fpswa_ret.err1 >> 56);

// err_nr in err1, bits 63-56

if (err_nr == 1) {

fprintf (stderr, “Fpswa () Internal Error 1: template FXX is “

“invalid\n”);

} else if (err_nr == 2) {

fprintf (stderr, “Fpswa () Internal Error 2: instruction slot 3 “

“is not valid\n”);

} else if (err_nr == 3) {

qp = (unsigned int)fpswa_ret.err1; // // qp in err1, bits 31-0 (5-0)

fprintf (stderr, “Fpswa () Internal Error 3: qualifying predicate “

“PR[%ud] = 0\n”, qp);

} else if (err_nr == 4) {

OpCode = fpswa_ret.err2; // OpCode in err2, bits 63-0

fprintf (stderr, “Fpswa () Internal Error 4-%ud: instruction opcode”

“ %8x%8x not recognized\n”, (unsigned int)fpswa_ret.err3,

(unsigned int)(OpCode >> 32), (unsigned int)OpCode);

} else if (err_nr == 5) {

rc = (unsigned int)fpswa_ret.err1; // rc in err1, bits 31-0 (1-0)

fprintf (stderr, “Fpswa () Internal Error 5: invalid rc = %ud\n”,

rc);

} else if (err_nr == 6) {

fprintf (stderr, “Fpswa () Internal Error 6: cannot determine “

“the computation model\n”);

} else if (err_nr == 7) {

significand_size = (unsigned int)(fpswa_ret.err1 >> 32);

// significand_size in err1, bits 55-32

ISRlow = (unsigned int)fpswa_ret.err1; // ISRlow in err1, bits 31-0

f1 = (unsigned int)(fpswa_ret.err2 >> 32); // f1 in err2, bits 63-32

sign = (unsigned int) (fpswa_ret.err2 >> 17) & 0x01;

// tmp_fp.sign in err2, bit 17

exponent = (unsigned int)fpswa_ret.err2 & 0x1ffff;

// tmp_fp.exponent in err2, bits 16-0

significand = fpswa_ret.err3; // tmp_fp.significand in err3

fprintf (stderr, “Fpswa () Internal Error 7: incorrect significand”

“ size %ud for ISRlow = %4.4x and FR[%ud] = %1.1x %5.5x “

IA-64 Floating-point Emulation Library

7-10

“%8x%8x\n”, significand_size, ISRlow, f1, sign,exponent,

(unsigned int)(significand >> 32),

(unsigned int)significand);

} else if (err_nr == 8) {

fprintf (stderr, “Fpswa () Internal Error 8: non-tiny result for “

“SWA trap\n”);

} else if (err_nr == 9) {

significand_size = (unsigned int)fpswa_ret.err1;

// significand_size in err1, bits 31-0

fprintf (stderr, “Fpswa () Internal Error 9: incorrect significand”

“ size %ud\n”, significand_size);

} else if (err_nr == 10) {

rc = (unsigned int)fpswa_ret.err1; // rc in err1, bits 31-0

fprintf (stderr, “Fpswa () Internal Error 10: invalid rc = %ud for”

“ non-SIMD F1 instruction\n”, rc);

} else if (err_nr == 11) {

ISRlow = (unsigned int)fpswa_ret.err1;

// ISRlow & 0x0ffff in err1, bits 31-0

fprintf (stderr, “Fpswa () Internal Error 11: SWA trap code “

“invoked with F1 instruction, with invalid ISR.code = %x\n”,

ISRlow);

} else if (err_nr == 12) {

ISRlow = (unsigned int)fpswa_ret.err1;

// ISRlow & 0x0ffff in err1, bits 31-0

fprintf (stderr, “Fpswa () Internal Error 12: SWA trap code “

“invoked with SIMD F1 instruction, w/o O or U set in”

“ ISR.code = %x\n”, ISRlow);

} else if (err_nr == 13) {

fprintf (stderr, “Fpswa () Internal Error 13: non-tiny result “

“low\n”);

} else if (err_nr == 14) {

rc = (unsigned int)fpswa_ret.err1; // rc in err1, bits 31-0

fprintf (stderr, “Fpswa () Internal Error 14-%ud: invalid rc = %ud”

“for SIMD F1 instruction\n”, (unsigned int)fpswa_ret.err2,

rc);

} else if (err_nr == 15) {

fprintf (stderr, “Fpswa () Internal Error 15: non-tiny result “

“high\n”);

} else if (err_nr == 16) {

OpCode = fpswa_ret.err2;// OpCode in err2, bits 63-0

fprintf (stderr, “Fpswa () Internal Error 16: instruction opcode “

“%8x%8x not valid for SWA trap\n”,

(unsigned int)(OpCode >> 32), (unsigned int)OpCode);

} else if (err_nr == 17) {

OpCode = fpswa_ret.err2; // OpCode in err2, bits 63-0

ISRlow = (unsigned int)fpswa_ret.err3; // ISRlow in err3, bits 31-0

fprintf (stderr, “Fpswa () Internal Error 17: Fpswa () called w/o “

“trap_type FPFLT or FPTRAP, OpCode = %8x%8x, and ISR code “

“= %x\n”, (unsigned int)(OpCode >> 32),

(unsigned int)OpCode, ISRlow);

} else if (err_nr == 18) {

ISRlow = (unsigned int)fpswa_ret.err2;

fprintf (stderr, “Fpswa () Internal Error 18: SWA fault repeated, “

“fault_ISR_code = %x\n”,ISRlow);

} else if (err_nr == 19) {

new_trap_type = (unsigned int)fpswa_ret.err1;

7-11

IA-64 Floating-point Emulation Library

// new_trap_type in err1, bits 31-0

fprintf (stderr, “Fpswa () Internal Error 19: new_trap_type = %x\n”,

new_trap_type);

} else { // error

fprintf (stderr, “Incorrect err_nr = %8x%8x from Fpswa ()\n”,

(unsigned int)(fpswa_ret.err1 >> 32),

(unsigned int)fpswa_ret.err1);

}

}

7.3 FP SWA Handler Integration with the Operating
System

The operating system provides interface code to the IA-64 Floating-point Emulation library. The
library is called not only for SWA faults or traps, but for all the enabled (unmasked) floating-point
exceptions. The SWA faults and traps are filtered and handled by the floating-point emulation
library, but other exceptions are returned to the operating system kernel for being passed on to a
user-registered floating-point exception handler. New floating-point exceptions can also be raised
by the floating-point emulation library while processing SWA faults or traps.

All the necessary information about the floating-point exception is passed from the kernel to the
floating-point emulation library as defined by the FP SWA API, which may update necessary
processor state upon return. Sample interface code is shown below (entities not defined previously
are self-explanatory). The OS needs to get the FP SWA entry point from the OS loader or OS
initialization code as described above.

#define FLTTOTRAP 2

Trap (...) {

FP_STATE fp_state;

FPSWA_RET fpswa_ret;

...

Switch (trap_type) {

Case FPFAULT:

// get floating-point instruction bundle pointer

bundle = get_fp_instruction();

// create proper fp_state information

// example for f6-f15 used by kernel

fp_state.bitmask_low64 = 0xffc0; // bit6..bit15

fp_state.bitmask_high64 = 0;

// f6_f15 structure contains the state of f6-f15

fp_state.fp_state_low_volatile = &f6_f15;

// call IA-64 Floating-Point Emulation Library

fpswa_ret = fpswa_interface->fpswa(1, &bundle, &ipsr, &fpsr,

&isr, &preds, &ifs, &fp_state);

if (fpswa_ret.status == 0) {

// update IPSR and IIP to execute next instruction

// on return

increment_iip (pisr, pipsr, piip);

IA-64 Floating-point Emulation Library

7-12

return;

} else if (fpswa_ret.status == -1) {

FPSWA_error_print (fpswa_ret);

panic ();

} else {

if (fpswa_ret.status & FLTTOTRAP) {

// next exception is trap

increment_iip (pisr, pipsr, piip);

}

raise_exception (new exception); // raise new exception

return;

Case FPTRAP:

// get floating-point instruction bundle pointer

bundle = get_fp_instruction ();

// create proper fp_state information

// example for f6-f15 used by kernel

fp_state.bitmask_low64 = 0xffc0; // bit6..bit15

fp_state.bitmask_high64 = 0;

// f6_f15 structure contains the state of f6-f15

fp_state.fp_state_low_volatile = &f6_f15;

// call IA-64 Floating-Point Emulation Library

fpswa_ret = fpswa_interface->fpswa(0, &bundle, &ipsr, &fpsr,

&isr, &preds, &ifs, &fp_state);

if (fpswa_ret.status == 0) {

return;

} else if (fpswa_ret.status == -1) {

FPSWA_error_print (fpswa_ret);

panic ();

} else {

raise_exception (new exception);

// raise new exception

}

return;

}

}

Sample code for increment_iip () is shown next.

increment_iip (pisr, pipsr, piip) {

__int64 *pisr; // pointer to ISR

__int64 *pipsr; // pointer to IPSR

__int64 *piip; // pointer to IIP

int ei; // excepting instruction slot number in bundle (0, 1, 2)

ei = (*pisr >> 41) & 0x03;

// advance instruction pointer

if (ei == 0) { // no template for this case

*pipsr = *pipsr & (__int64)0xfffff9ffffffffff;

*pipsr = *pipsr | (__int64)0x0000020000000000;

} else if (ei == 1) { // templates: MFI, MFB

*pipsr = *pipsr & (__int64)0xfffff9ffffffffff;

7-13

IA-64 Floating-point Emulation Library

*pipsr = *pipsr | (__int64)0x0000040000000000;

} else { // if (ei == 2) - templates: MMF

*pipsr = *pipsr & (__int64)0xfffff9ffffffffff;

*piip = *piip + (__int64)0x10;

}

}

IA-64 Floating-point Emulation Library

7-14

8-1

References 8

[1] Intel® IA-64 Architecture Software Developer’s Guide, Intel Corporation, 2000

[2] Pentium® Pro Family Developer’s Manual, Intel Corporation, 1996

[3] IEEE-754 Standard for Binary Floating-point Computations, 1985

[4] Extensible Firmware Interface Specification, Revision 0.92,
http://developer.intel.com/technology/efi/index.htm, 1999

[5] Microsoft Portable Executable and Common Object File Format Specification,
Version 0.6, http://www.microsoft.com/hwdev/efi

References

8-2

