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Abstract 

The heat equation is very important in our life, because it describes the phenomenon of heat transfer 

throughout bodies, which is essential if we are to know how much heat that is transferred, and the 

temperature of the bodies. 

Conduction is heat transfer by means of molecular agitation within a material without any motion of 

the material as a whole. In this project we investigate conduction of heat in different parts of a lamp 

and the gas inside it. Also we derive a model for the heat of an electrical bulb, which especially 

describes the heat of the glass surrounding the filament inside. In addition we give some knowledge on 

the mechanism of lighting, the types of electrical bulbs, the constituents of incandescent bulbs and life 

time of the bulbs. 
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1.0. Introduction 

In real life there are many types of bulbs, the most important are the incandescent bulb and the 

fluorescent bulb, both used widely in industry, as light in our homes, streets, etc. To study such an 

object is very interesting on one side, and very important on the other.  

Why is it interesting? To know how the electric bulbs work, how they produce light and from what 

they are made. 

And why is it important? To study what really happens inside the bulb and why the glass of the bulb 

becomes very hot. Besides it is important to study the effect of heat on the life time of the bulb. All 

these questions and others are subjects of discussion for this project.     

 

2.0. Electric bulb    

Light bulb, like lots of devices has many types, but the most commonly used is the incandescent light, 

which generates more heat. Here we base our study on incandescent light, and some information about 

light bulbs is explained, i.e. main types of bulbs, history, basic parts, building up, and mechanism of 

incandescent light bulb.      

 

2.1. Types of electrical bulbs 

There are many types of electric bulbs that are used in real life, but the most used are incandescent 

light bulbs, fluorescent lamps, and gas discharge lamps.  We give brief information about each one. 

  

2.1.1. Incandescent light bulb 

An incandescent light bulb produces light by heating a small filament of tungsten to about 1000-2500 

ºC. At that temperature, the thermal radiation that the filament emits includes a substantial amount of 

visible light. But the filament also emits a great deal of infrared light (heat light) and it also transfers 

heat via conduction and convection to the glass bulb around it. When you put your hand near the bulb, 

you feel both the infrared light and the heat that has worked its way to the surface of the bulb. The 

bulb feels hot. The efficiency of this type of electrical bulb is 5%, this means that approximately 95% 

of the energy is converted to heat and the remaining quantity is only converted to light. And we will 

apply our research to this kind of bulb since it produces much more heat than the others.  

 

2.1.2. Fluorescent light bulb 

A fluorescent lamp tries to produce light without heat. It is colliding electrons with mercury atoms to 

produce an atomic emission of ultraviolet light. This ultraviolet light is then converted to visible light 

by the layer of white phosphor powder on the inside of the lamp's glass envelope. In principle, this 
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whole activity can be performed without creating any thermal energy. However, many unavoidable 

imperfections cause the lamp to convert some of the electric energy it consumes into thermal energy. 

Nonetheless, the lamp only becomes warm rather than hot. And the efficiency of this type is 10%, it 

means that only 8.1% from the energy is converted to light. 

 

2.1.3. Gas discharge lamp 

This lamp uses an electric discharge in a gas inside the lamp to produce visible light directly. (Often 

high pressure mercury, sodium vapor, or even neon). 

 

2.2. History of the light bulb 

The invention of the light bulb is usually attributed in Britain to Joseph Wilson Swan in 1828-1914, 

and in the United States to Thomas Alva Edison. Some sources indicate that Heinrich Göbel built the 

first functional bulbs three decades earlier. He later challenged Edison’s patent while living in the 

United States, but his legal “interference case” was overruled in court. Alexander Nikolayevich 

Lodygin independently developed an incandescent light bulb in 1874 

 

2.3. Basic parts of the incandescent bulb 

The incandescent light bulb is made from a thin filament of a material with a 

high melting point sealed inside a glass bulb, from which the air has been 

evacuated or which is filled with an inert gas to protect the filament from 

oxidation (i.e. to prevent the filament from burning out at high temperature). 

The filament is made from a material with high melting points and high resistance, because the 

proportion of light energy to heat energy radiated by the filament rises as the temperature increases, 

and the most efficient light source is obtained at the highest filament temperature, and the needs of 

high resistance is to give more light, so almost every filament is made from tungsten, because it has 

these properties. 

The burning of the lamp cause the filament to become thinner during its life to the point where it 

breaks at the thinnest point, this point well melt just before failure. 

 

2.4. Building up light bulb 

The glass enclosures are made from a ribbon of hot glass that's first thickened and then blown into 

molds to form the bulb shapes. These enclosures are then cooled, cut from the ribbon, and their insides 

are coated with diffusing material that gives the finished bulb its soft white appearance. 

The filament is formed by drawing tungsten metal into a very fine wire. This wire, typically only 42 

microns (0.0017 inches) in diameter is first wound into a coil and then this coil is itself wound into a 

coil. The mandrels used in these two coiling processes are trapped in the coils and must be dissolved 
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away with acids after the filament has been annealed. 

The finished filament is clamped or welded to the power leads, which have already been embedded in 

a glass supporting structure. This glass support is inserted into a bulb and the two glass parts are fused 

together. A tube in the glass support allows the manufacturer to pump the air out of the bulb and then 

reintroduce various inert gases. When virtually all of the oxygen has been eliminated from the bulb, 

the tube is cut off and the opening is sealed. Once the base of the bulb has been attached, the bulb is 

ready for use. 

 

2.5. Mechanism of light production in the bulb 

When the electrical current travels through the filament and because of the electrical resistance of the 

filament, the filament gets white-hot and generates light. In detail, an electric current flows through a 

double-spiral coil of very thin tungsten wire. As the electric charges in the current flow through this 

tungsten filament, they collide periodically with the tungsten atoms and transfer energy to those 

tungsten atoms. The current gives up its energy to the tungsten filament and the filament's temperature 

rises to about 1000° C to 2500° C. While all objects emit thermal radiation, very hot objects emit some 

of the thermal radiation as visible light. An object of 
oC1000 to

oC2500 emits about 12% of its heat as 

visible light and this is the light that you see coming from the bulb. The glass enclosure shields the 

filament from oxygen because tungsten burns in air. 

 

Figure 1: The electric motion through the conductors 

 

Electrons in copper wire have an easy time breaking free from the pull of their atoms, therefore copper 

is said to have low resistance. The easier it is for electrons to break free, the better electricity flows, 

and the lower resistance a material has.  

But materials with high resistance usually have fewer electrons available to break away, and often the 

atoms are closer together. This means a stronger pull on each electron, which makes them slow down. 

Because the electrons keep fighting to escape, the atoms shake back and forth and heat up. In light 

bulbs, we see the glow from that heat as light.  
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3.0. Modeling of the system  

Derivation of the mathematical model are of the most fundamental principles of physics, it depends on 

the law of conservation of energy. According to this principle energy can’t be created or destroyed, but 

transformed from one form to another, or transfer from one source to another. 

In this problem the heat transfer is proportional to two types of heat transfer, conduction and 

convection. 

 

3.1. Conduction heat transfer 

First we derive the heat conduction through arbitrary volume Ω   in 
2R  with boundary Γ  over a 

time [ ]TI ,0= . We let ),( txu denote the temperature and ),( txq  the heat at the point x  at time t . We 

let ),( txf  denote the rate of heat (per unit of volume) supplied at ),( tx  by a heat source. 

We derive the model using a basic conservation law expressing conservation of heat in the following 

form: for any fixed domain V  in Ω  with boundary S , the rate of the total heat introduced in V  by 

the external source is equal to the rate of the total heat accumulated in V plus the total heat flux 

through S . This is based on the fact that the convection that the heat introduced in V  by the external 

source can choose between two options only: (1) flow out of V or (2) be accumulated inV . With S  

denoting the boundary of V and n  denoting the outward unit normal to S , the conservation law can 

be expressed as 

, ds  dx  dx nqu
t

f
SVV

•+
∂

∂
= ∫∫∫ λ  (1) 

Where ),( txλ  is the heat capacity coefficient that gives the amount of heat per unit of volume needed 

to raise the temperature one unit, and for the glass it equals KkgkJ ./ 84.0 , and all functions are 

evaluated at a specific time, It∈  . By the divergence theorem, 

∫∫ •∇=•
VS

qnq ,dx  ds   (2) 

And combined with (1), this implies that: 

∫ ∫=•∇+
∂

∂

V V

fqu
t

,dx dx )  )(( λ   (3) 

Where the time derivation could be moved under the integral sign because V does not depend on the 

time t . Since V  is arbitrary, assuming the integrands are Lipschitz continuous, it follows that   

Ttxtxftxqtxu
t

≤<Ω∈=•∇+
∂

∂
0 , allfor        ),(),(  ),)((λ   (4) 

That is a differential equation describing conservation of heat involving two unknown: the temperature 

),( txu  and the heat flux ),( txq . We thus have one equation and two unknowns and we need yet 
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another equation. 

The second equation is a constitutive equation that couples the heat flux q  to the temperature 

gradient u∇ . Fourier’s law states that heat flows from warm to cold regions with the heat flux 

proportional to the temperature gradient: 

Ttxtxutxatxq ≤<Ω∈∇−= 0  ,for    ),(),(),(   (5) 

Where the factor of proportionality ),( txa  is the coefficient of heat conductivity, and for glass it 

equals KmW ./ 5.0 . Note the minus sign indicating that the heat flows from warm to cold regions, 

and that the heat conductivity ),( txa is positive. Combining (4) and (5) we obtain the basic 

differential equation describing heat conduction: 

( ], , 0in  )(  )( Tfuau
t

×Ω=∇•∇−
∂

∂
λ    (6) 

Where ),( txa and ),( txλ  are given positive coefficients depending on ),( tx  and ),( txf  is a given 

heat source, and the unknown ),( txu represents the temperature. 

Provided the differential equation is complemented by initial and boundary conditions. The complete 

model with Dirichlet boundary conditions reads: 

( ]

( ]













Ω∈=

×Γ=

×Ω=∇•∇−
∂

∂

, for                   )(uu(x,0)

, , 0on                               

, , 0    )(  )(
t

 

0 xx

Tuu

Tinfuau

b

λ

   (7) 

And the stationary heat conduction equation is: 

 

( ]
( ]




×Γ=

×Ω=∇•∇−

, , 0on                    

, , 0    )(  

Tuu

Tinfua

b

   (8) 

 

3.2. Convection heat transfer 

Now we will formulate the heat transfer by convection, if we assume that the heat transfer is 

convection dominated, corresponding to the conservation of heat for any fixed domain V  in Ω  with 

boundary S , the rate of the total heat introduced in V  by the external source is equal to the rate of the 

total heat accumulated in V plus the total heat flux through S  by the convection  

ds  dx  dx nqu
t

f
SVV

•+
∂

∂
= ∫∫∫ λ   (9) 

And by the divergence theorem  

∫∫ •∇=•
VS

qnq dx, ds    (10) 
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Substitute 10 in 9 we get 

∫ ∫=•∇+
∂

∂

V V

fqu
t

,dx dx )  )(( λ   (11) 

And this gives   

Ttxtxftxqtxu
t

≤<Ω∈=•∇+
∂

∂
0 , allfor        ),(),(  ),)((λ  (12) 

Where 

uq ∇•=•∇ β ,    (13) 

Here β  is the vector field velocity,  

Combining equation (12) and (13), 

This give the final form of heat transfer by convection 

( ]

( ]













Ω∈=

×Γ=

×Ω=∇•+
∂

∂

, for                   )(uu(x,0)

, , 0on                               

, , 0      )(
t

 

0 xx

Tuu

Tinfuu

b

βλ

 (14) 

Here we consider the boundary condition as Dirichlet boundary conditions just as an example. And the 

stationary case corresponding to this equation is  

( ]
( ]




×Γ=

×Ω=∇•

, , 0on             

, , 0      

Tuu

Tinfu

b

β
  (15) 

 

So we can formulate the model of the glass heat equation as follows: 

( ]

( ]













Ω∈=

×Γ=

×Ω=∇•+∇•∇−
∂

∂

, for                   )(uu(x,0)

, , 0on                               

, , 0       )(  )(
t

 

0 xx

Tuu

Tinfuuau

b

βλ

 (16) 

With the source given by ),( txf , and given boundary conditions and initial boundary 
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4.0. Modeling of light bulb   

 

4.1. Geometry D3 - D2    

In the case of the light bulb we have a D3  geometric body, in fact the problem is three dimensions 

D3 (see fig 2), and because of the symmetry of the light bulb at the axisz − , we will deal with the 

problem as a two dimension problem ( D2 ), as shown in figure 3. 

 

 

Figure 2: 3D Geometry of the bulb 

 

Figure 3: 2D Geometry of the bulb 

 

The exact model is formulated for both the glass and the gas inside the bulb; here the heat conduction 

coefficient is changing from the gas medium to the coefficient of glass, so we will define two 

coefficients. Let  1a  be the conduction coefficient of the gas, and 2a  be the conduction coefficient of 

the glass. The gas inside the bulb will occupy a circle with radius 44.02 =r , and the thickness of the 

glass which is taken as 0.06 unit length )06.044.05.0( 21 =−=− rr , also we have the metal in the 

bottom of the light bulb, this metal is of high conduction coefficient, which means it will have high 

temperature, and it is formulated to occupy a cylinder with radius 2.0  in D3 , and in D2  it is 

formulated as the boundary at two points - 2.0  and 2.0 .  

 

4.2. Simplified model 

Reasonable consideration must be taken because the convection field is too small to be mentioned, 

since the bulb is evacuated from air, also the convection term will be too small compared to the 

conduction terms, so we will let 0=β . 

In fact the glass will be rapidly heated and we can consider the steady state case, and the problem will 

be time independent. The problem becomes to find the temperature of the surface of the glass with 

thickness 0.06 that is having a Nobel gas inside, in other words to find the temperature ),( txu such 

that 
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



Γ=

Ω=∇•∇−

, on                          

,      )(  

buu

infua
    (17) 

 

4.3. The source function ),( yxf   

Now ),( yxf  is considered as the heat the filament generates, which means that: 

 ),( yxf = energybulbthebulbtheofefficiency   )   1( ×− = ×95.0 the bulb energy, and this is equal to 

the temperature of the tungsten
oC1700 in the rate, and since that of the filament is very small inside 

the bulb, and also because the heat is uniformly distributed at the surface of the filament, we will 

consider the filament as a small sphere centered at the centre of the bulb, so in the D2 -case we will 

take the source as a small circle centered at the origin of the geometry. 

),( yxf = 1.0),(    1700 ≤yxnormwhenever (the average of 1000 and 2500)         

 

4.4. Thermal conductivity coefficient      

 The thermal conductivity coefficients are different from gas space to the glass, so we can define  a  as 

follows: 







−≤+≤

−<+

spaceGlassyxa

spaceGasyxa

    ,5.00.44      ,

              , 44.0       ,

2222

2

222

1
  (18) 

Where 1a = 0314.0 , and 2a = 35.0 . 







≤+≤

<+

,5.00.4      ,1

 , 44.0       ,0314.0

2222

222

yx

yx
  (19) 

 

5.0. Boundary conditions 

The boundary condition considered consists of two types of boundary condition, Dirichlet boundary 

condition in 1Γ  (green color), and Neumann boundary condition 2Γ  and 3Γ  (red and yellow color 

respectively), this is depicted in fig 4.  
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Figure 4: The boundary of the system 

 

This is reasonable, since there is an exchange of temperature between glass at 2Γ , 3Γ  and the 

surrounding air, whereas aluminum at 1Γ  is isolated from the outside by the plug. 

     

5.1. boundary 1Γ  

At boundary 1Γ , the material that is in touch with the glass is metal and is made from aluminum, and 

this metal is of high conductivity that is heated quickly, so we can consider the temperature of the 

glass at this boundary as the temperature of the metal. In fact the aluminum is almost only heated from 

the filament, but a small part of its temperature is coming from the flow of the electric current that is 

passing through it. As shown in the following figure (5), we can formulate the problem for the whole 

system, air, gas glass, and aluminum (AGGA) inside the bulb.   

 

                                                  

Figure 5: The whole system, Air, Gas, Glass, Aluminum (AGGA) 

Air 

Nobel Gas 

Glass 

Aluminium 
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So to determine the temperature at this boundary it is better to define the temperature at the boundary 

1Γ  as the sum of two temperature values, the temperature from the filament and the temperature from 

current flow. 

5.1.1. Temperature gained from the filament   

This value can be obtained by solving the whole system, air, glass, gas, and aluminum (AGGA), the 

mesh will be like the figure depicted above, and the method that is used to get the solution is the Finite 

Element Method (FEM) for solving partial differential equations (PDE), we will put the light on this 

method later. After solving the system with different conduction coefficients 1a = 0314.0 , 12 =a , 

2403 =a , 0257.04 =a  for gas, glass, aluminum, and air respectively, then the solution of the 

system is depicted in the following figure: 

 

 

 

Figure 6: Computed solution for the whole system (AGGA) 

 

As you can see, the temperature of the aluminum is approximately 105 ºC to 100 ºC, which indicates 

that the temperature that is gained from the filament is ≅  103 ºC. 

Here is a figure that shows the solution to the whole model (AGGA). 
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Figure 7: Computed solution for the whole system (AGGA) at the other side 

 

5.1.2. Temperature gained from current flow 

When electric current flows through a wire of metal the wire becomes hot, and if the metal is of high 

resistance then the temperature that is generated will be higher, (the higher the resistance the higher 

the temperature), and this is known as the Joule Heating Law, which states that the current flowing 

through wires encounters resistance, and that some electrical energy is transformed into thermal 

energy through it.. In mathematical form Joule’s law is given by: 

RIPjoule
2=    (20) 

 Where I  is the current (ampere), R is the material resistance (ohm) and P is the power (watt).  

The resistance is given by 

A

L
R

ρ
= ,    (21) 

Where: 

ρ : is the resistivity of aluminum. 

L : is length of the aluminum piece. 

A : is the cross-section area of the aluminum piece. 

First we need to calculate the value of resistivity that is changing with temperature, and the formula of 

resistivity ρ  is given by: 

))(1( 00 TT −+= αρρ ,  (22) 

Where 0ρ  is the resistivity of aluminum at room temperature (
oC20 ) and it is ohm81017.3 −× , 

0039.0=α  is the temperature coefficient of aluminum, 0T  and T  are the temperatures of aluminum 
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before and after heating, so we can consider CT o200 = as the room temperature and CT o103=  as 

the temperature of aluminum after it has been heated from the filament as it is simulated in the whole 

system, substituting this in equation (22), we get the resistivity ohm8102.4 −×=ρ . 

Now, the aluminum piece will be considered as a parallelogram plate with length mL 21010 −×= , and 

cross-section 
2710882.0 mA −×=  (thin plates with width = m2102 −× ), now we can calculate the 

resistance of the aluminum plates from equation (21), and it will be ohm210762.4 −× . 

By Joule’s law for heating (equation 22) and consider that the value of the electrical current that is 

usually used in light bulb is 3 ampere at the average; it is easy to calculate the power that is generated 

in the aluminum plates RIPjoule
2= 22 10762.43 −××= = watts4286.0 . And if we turn on the bulb 

for one hour we will get the heat that is generated in the plates, 

tPH ×= = hourwatt 15242.0 × = Joule4286.0 .  

(This is the heat that is generated in the plates).   

But the heat that is generated in the material is proportional to the change of temperature and the mass 

of the body, i.e.H α TM ∆× , where M  is the mass of the plates, and T∆  is the temperature change 

value of the plates, this relation gives: 

TMcH ∆××= ,  (23) 

 Here c is the heat capacity of the aluminum and it is equal to CkgJ o./900 , and the mass can be 

calculated by the usual mass law, vdm ×=  (
3/2700 mkgd = is the density of aluminum, and v  is 

the volume of the aluminum plates that is easy to calculate, LAv ×=  

=
272 10*882.010*10 mm −− × =

3910820.8 m−× ), hence the mass is equal to kg5103814.2 −× . 

Substitute all results in equation (23), we will get the value of the temperature change affected by the 

current flow, 

TMcH ∆××= ⇒ T∆××= −510*3814.29004286.0  ⇒  =∆T Co9960.19 Co20≈ . This is 

the temperature that is generated from the current flow. 

Therefore at 1Γ the temperature will be defined as  

CTTT currentfilament

o12320103
1

=+=+=Γ .   

 

5.2. boundary 2Γ  and 3Γ  

At boundaries 2Γ  and 3Γ , there are some changes of  temperature between the glass and the air 

surrounding it, hence we can consider Neumann conditions at those boundaries, and it can be obtained 

by the continuity of the solution at the surface of the glass, which implies: airglass TaTa ∇=∇ 12  , and 

airTa ∇1   is proportional to the difference of temperature between the two media, this means that  
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)(1 airglassair TTkTa −=∇ ,  the temperature of the air outside is taken to be the temperature of the 

room at Co20 .    

 

5.3. Final model 

Find the temperature ),( yxu of the system consisting of the gas and the glass together such that:  









ΓΓ−=∂

Γ=

Ω=∆−

  and , on            20uua-

,  on                        103u

,  in                  f ua  

32n

1     (24) 

Where a is defined as: 







≤+≤

<+

,5.00.4      ,1

 , 44.0       ,0314.0

2222

222

yx

yx
  (25) 

And the function source is given by 1700),( =yxf . 

 

6.0. Coordinates of Laplacian equation 

The Laplacian operator in spherical coordinates is 

2

2

222

2

2

2

sin

1
)(sin

sin

1
)(

1

φθθ
θ

θθ ∂

∂
+

∂

∂

∂

∂
+
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The derivation is fairly straight forward and begins with locating a vector r in spherical coordinates as 

shown in the figure. 

 

Figure 8: Spherical Coordinates 

 

The z component of the unit vector in direction of r  is given from the simple right triangle 

||
cos

r

z
)=θ

 

Since a unit vector has a length of 1, the z  component is 



 19 

θcos=z  

To get the x  component, we need to get the r
)
projected onto the planexy −  

||

||
)90cos(

r

rxy
)

)

=−θ
 

Using the trig identity 

θθ sin)90cos( =−  

The projected unit vector is 

θsin|| =xyr
)

 

Finally, the x  component is reached through the right triangle 

||
cos

xyr

x
)=φ

 

Giving 

θφ sincos=x  

The y  component follows the x  component through 

||
sin

xyr

y
)=φ

 

This yield 

θφ sinsin=y  

The vector in spherical coordinates is then 

[ ]k cos sinsin cossin
))))

θφθφθ ++== jirrrR    (27) 

Now describing the unit vectors of a moving particle φθ
)))

,,r shown in the spherical coordinates figure 

is a little trickier. If a particle moves in the direction, it only moves in or out along r so 

rk
r

R )
=

∂

∂
 

For θ
)
 andφ

)
, think of uniform circular motion like a record, so they can be calculated from 

|/|

/

θ

θ
θ

∂∂

∂∂
=

R

R
 

|/|

/

φ

φ
θ

∂∂

∂∂
=

R

R)
 

Next, take the partial derivatives of (27) and then calculate their magnitudes to get the above unit 

vectors. 

[ ]kjir
R )))

θφθφθ
θ

sinsincoscoscos −+=
∂

∂
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[ ]jir
R ))

φθφθ
θ

cossinsinsin +−=
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[ ]θφθφθ
θ

222222 sinsincoscoscos ++=•=
∂

∂
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R
 

θφφθ
θ

2222 sin)sin(coscos ++=
∂

∂
r

R
 

Using the basic trig identity 

r
R

=
∂

∂

θ
 

)cos(sinsin 222 φφθ
φ

+=
∂

∂
r

R
 

θ
φ

sinr
R

=
∂
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Then plug in these values to get 

ji
)))
 cos sin φφφ +−=  

kji
))))
 sin sincos coscos θφθφθθ −+=  

And from before we had 

kjir
))))
 cos sinsin cossin θφθφθ ++=  

The generalized differential for curvilinear coordinates is 

3
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For spherical coordinates we have 

ru =1  

θ=2u  

φ=3u  

And from earlier we learned 

r

R
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φ
θ

φ ∂

∂
=
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∂ RR )
 

Plugging these values into the generalized differential yields 
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φφθθθ
)))

drrdrdrdR sin++=  

The next major step is to see how the gradient fits into definition of the differential for a function f  

φ
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θ
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d
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d
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dr
r

f
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∂
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+

∂
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dRfdf •∇=  

So we see that the following must be equal and we need to solve for the gradient's components. 

fdrdr
r

f
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∂
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θθ
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φ
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f
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∂
 

Therefore our scale factors are 

1=∇r  

r

1
=∇θ  

θ
φ

sin

1

r
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This finally gives us the gradient in spherical coordinates 
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The last tedious calculation is then the Laplacian, which is our goal 
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Let us break it up by components to make it easy to view, so carrying out only part of the dot product 

our 1st term is 
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While this looks a little scary, all but the 2nd term is zero. The first term is zero because there is no r  

in r
)
 

kjir
))))
 cos sinsin cossin θφθφθ ++=  

So by taking the derivative with respect to r this yields zero. Similarly, the 3rd and 6th term are zero 

when taking the partial derivatives. The 4th, 5th, 7th and 8th terms are zero because the dot product of 

two orthogonal vectors (
o90 ) is zero so 

0=•θ
))

r  
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0=•φ
))

r  

This leaves only the second term 
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Now onto the θ
)
term 
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The dot product gets rid of the 2nd, 3rd, 7th and 8th terms, while the 4th and 6th terms are zero when 

taking the derivatives 
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∂
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Two terms remain, for the first term we need to calculate 
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This yield 
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The 5th term is just the dot product 
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Finally, the φ
)
 part of the dot product is 
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Once again the dot product makes the 2nd, 4th and 5th terms zero. The first term derivative 
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This leads to 
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The 3rd term derivative is 

φθφθφθ
φ
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)

cos coscos sincos =+−=
∂

∂
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This leads to 



 23 

θθ

θ

θ
φθ

θ

φ

∂

∂
=

∂

∂
•

sin

cos1
cos

sin 2rrr

)
)

  (32) 

The 6th term can be seen to be zero because the derivative of φ
)
 with respect to φ  is a vector 

perpendicular to φ
)
 (feel free to carry out this calculation), so the dot product will be zero. 

The 7th term derivative is zero 
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Then we keep the 8th term 
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Putting the results from (28),(29),(30),(31),(32) and (33) we get 
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Certainly, we could finish here, but let us combine some terms and notice the following relationships 

(check these for yourself) 










∂

∂

∂

∂
=









∂

∂
+

∂

∂

r
r

rrrrr

2

22

2 12
 










∂

∂

∂

∂
=

∂

∂
+

∂

∂

θ
θ

θθθθ

θ

θ
sin

sin

1

sin

cos1
222

2

2 rrr
 

This gives us the equation given in (26), the Laplacian in spherical coordinates 
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7.0. Finite Element Method (FEM) 

FEM was developed initially, and prospered, as a computer based simulation method for the 

analysis of aerospace structure. Then it found its way into both design and analysis of 

complex structural systems, not only in aerospace but in civil and mechanical engineering. In 

the late 1960s it expanded to the simulation of non-structural problems in fluids, thermo 

mechanics and electromagnetics. This “physical FEM” is an operational tool, which fits 

primarily the operational knowledge component of engineering, and draws from the 

mathematical models of the real world. 

The success of FEM as a general–purpose simulation method attracted attention in the 1970s 

from two quarters beyond engineering: mathematics and software entrepreneurs. The world of 
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FEM eventually split into applications, mathematics and commercial software products. The 

former two are largely housed in the comfortable obscurity of academia.                      

7.1. Theory  

FEM is one of the methods that give the numerical solution to partial differential equations 

(PDE), and it depends on the triangulation hτ  of the space Ω , where hτ = {   ,Κ such that 

Ω=Κ∪ },  

The final model of the problem is to simulate the solution ),( yxu such that: 
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Finite Element Method is read as find  hVU ∈  such that for every hVv∈  the following hold 

 

 

Where =hV { vv :  is a piecewise continuous linear function in each hτ , and 0=v on 1Γ  } 

 

7.2. Stability estimate 

To derive stability estimate for the model, and to make this reasonable it is better to take the bulb and 

the air surrounding it as a complete model, so the temperature of the air will be considered as a 

boundary condition of the system. This means that it will be Dirichlet conditions at the boundaries, 

dx.fv ds.v)U20(dx.vU.a

dx.v)U.(av)Ua(

2

∫∫∫

∫∫

ΩΓΩ

ΩΩ

=−+∇•∇⇒

∇•∇−=∆−



 25 

hence the equation of the system is given by: 
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Multiply the equation fua =∆−    by a test function uv = , (take 1=a  for simplicity) and integrate 

over the  Ω  we get 
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∫ ∫
Ω Ω

=∇⇒ dxufdxu ...)( 2
,   Vux ∈Ω∈  and ,  

, ..
2

∫ ≤=∇⇒ ufdxufu  Where  .  denotes the usual )(2 ΩL - norm 

And by Poincaré inequality uCu ∇≤ Ω  for some constant ΩC depending on the boundary of the 

space, which yields:  

 fCu Ω≤∇  fCuCu
2

ΩΩ ≤∇≤⇒   

This means that the solution ),( yxu  is less than the given source. 

 

8.0. Life-time  

When an incandescent lamp is working, it produces heat and light because electrons are running 

through a thin filament and thereby rising its temperature. The amount of light and heat emitted will 

increase with temperature. 

 

Lamps are designed to work at a specific voltage (U). By choosing the right values of filament length 

(l) and cross-sectional area (A) the resistance (R) is determined. Voltage and resistance gives the 

current (I) and the power (P) output. 
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The power fraction that produces light increases with temperature and that is why tungsten is chosen 

for filament material. Tungsten has an abnormally high melting temperature. Even so, at the 

operational temperature of a lamp tungsten may burn in the presence of oxygen. Because of that the 

bulb is evacuated. At these high temperatures there will also be considerable evaporation of tungsten 

and the lamp will go dimmer. The decrease of the radius will increase the resistance and reduce the 

light output, while the evaporated tungsten deposits on the inside of the glass. Today, most light bulbs 

have a filling gas to reduce both evaporation and its consequences. 

 

Evaporation depends on temperature and pressure. Inert filling gases such as nitrogen, argon and 

xenon, procure pressure and will make some of the evaporated tungsten bounce back and redeposit on 

the filament. Halogen filling gases, on the other hand, will react with the evaporated tungsten, both at 

the glass surface and in the bulb space, and when the compound reaches the hottest parts of the 

filament break and redeposit the tungsten. 

  

Evaporation is not uniform along the filament, because the temperature is not constant along its length. 

The hinges and support wires will remove some heat by way of conduction and the radius of the 

filament may not be altogether uniform. Thinner parts of the filament will have a greater resistance 

than the average, since the same current flows through all the length of the filament. This will raise the 

temperature because the moving electrons will collide more frequently and transfer part of their kinetic 

energy to vibrational energy in the tungsten atoms, i.e. heat. Additionally, the smaller cross-sectional 

area will be able to radiate less heat. Accordingly, these thin ‘hot-spots’ will evaporate increasingly 

more tungsten until one of them breaks/melts. 

 

The reason this often happens as the lamp is turned on is because tungsten has less resistance when 

cool than when heated. The thin spots will reach working temperature faster, because of the smaller 

mass, and the high current resulting from the low resistance in the greater part of the filament will 

make the hot-spots even hotter and the evaporation greater, compared to during steady-state operation. 

 

The rate of mass evaporation per unit area (J) can be expressed as: 
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The temperature dependence of the mass evaporation rate can be found tabelled (eg. in the CRC 

Handbook of Physics and Chemistry E-364, (1978)).  

 

The rate of redeposition of tungsten in a bulb with an inert gas will be proportionate to the probability 

of colliding with the gas atom (noble gas) or molecule (nitrogen). Assuming the gas in the bulb at 

room temperature (T) has the pressure (p) of 1 atm the amount (n) of gas atoms/molecules in the bulb 

can be obtained. 
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The atomic radius of the gas atom or the covalent radius of the gas molecule can be used together with 

the amount to calculate the total volume of the gas particles (Vp). Taking the bulb to be a sphere of 

radius rb and volume Vb, the filament to be centrally placed and assuming a collision with a gas 

particle always brings the tungsten back to the filament at the spot of evaporation, the change of radius 

can be expressed as: 
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The expression in the bracket is the probability for a tungsten atom to propagate a step of length equal 

to its own diameter towards the glass without colliding. This expression is however clearly wrong in 

more than one aspect, and we decided to model the lifetime in a vacuum bulb. 

 

Breaking of the filament is assumed to take place when the thinnest spot has reached the melting 

temperature of tungsten or is sufficiently thin to break due to mechanical causes. 

 

9.0. Results and discussion 

Now we show some of the results that are obtained after solving the model numerically by using a 

Matlab code, the solution ),( yxu  represents the temperature of the glass and the gas inside.   
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Figure 9: Computed solution U(x,y) for the glass and the gas 
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Figure 10: Computed solution U(x,y) for the glass and the gas 
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Figure 11: Computed solution U(x,y) for the glass and the gas 
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Figure 12: Computed solution U(x,y) for the glass and the gas 
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Figure 13: Computed solution U(x,y) for the glass and the gas 
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Figure 14: Computed solution U(x,y) for the glass and the gas 
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It is noticed from the figures above (figures: 9-14) that the temperature of the system is high for the 

gas and a bit lower for the glass, and this is due to the position and the thermal conductivity coefficient 

of the material, since the temperature of the body is proportional to its heat conductivity, and also the 

temperature has an opposite proportionality to the distance. 

Aluminum is of high thermal conductivity, so it conducts temperature perfectly to the contact material, 

and it is obvious from the figures above that the part of the glass near the aluminum is more heated 

than the farther part, and the glass temperature is continuously decreased when we depart away from 

the aluminum. 

The temperature of the glass is approximately arranged between Co123 (contact points to the 

aluminum) to Co22.86 (farthest point from the aluminum), you can see also the symmetry of the 

solution at axisy − . 
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Figure 15: Decrease of the radius of the filament with time. 

 

 

We chose to model the lifetime of a 60 W bulb designed to work at a voltage of 120 V. The tungsten 

filament of the modeled bulb has a radius of 22.85 µm and a length of 0.533 m. We assumed that the 
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filament would break at a radius of 1 nm in a vacuum bulb and supposed the filament to be 

manufactured with a tolerated difference in radius of ± 5 %. Accordingly, the critical radius would be 

0.95 of the rated radius, i.e. ca 21.71 µm. When modeled like this, the lifetime of the light bulb was 

found to be ca 740 hours. The rated lifetime of a non-vacuum 60 W bulb with these dimensions of 

filament is 750 h. 

 

Figure 15 show the change of radius at the hot-spot with time, compared with the change of average 

radius. It can clearly be seen that the difference between the hot-spot radius and the average radius 

grows with time. This is consistent with the difference in temperature seen between the hot-spot and 

the rest of the filament and that the evaporation rate increases when the temperature is increased. 

When the average cross-sectional area of the filament decreases, the resistance will grow and the 

current decrease. Since the temperature is dependant on both current a cross-sectional area it will 

decrease with a flattened curve until some critical point where the cross-sectional area is sufficiently 

small at the hot-spot to get really hot. When this occurs, the filament is speedily wasting at the hot-

spot. 
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Figure 16: Change in filament temperature with time. 

10.0. Conclusion 

The incandescent bulb and the fluorescent bulb are the most widely used kinds of electric bulbs in the 
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industry because of the importance to every day life. 

The formulated mathematical model for the system is basically detailed conduction heat transfer. The 

light bulb was modeled and the Dirichlet boundary conditions 2Γ  and 3Γ  were taken into account. The 

temperature gained from the filament and current flows were analyzed. The study also gives a 

description of the coordinates of the Laplacian equation. The description of Finite Element Method 

(FEM) and stability estimates were used in the implementation of the problem. 

In conclusion, the following observations were made: 

A) The heat distribution in the glass is symmetric both at the z-axis and the y-axis, and can be modeled 

in one dimension as a second order boundary value problem with aluminum temperature as a 

boundary conditions. 

B) The lifetime of a light bulb depends on the operating temperature, the uniformity, thickness and 

length of the filament and if/what kind of filling gas is used. 
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12.0. Appendices 
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12.1. AssembleMatrix 

function A = AssembleMatrix(points, edges, triangles, pde, W, time) 
 % Assemble a matrix on a given mesh (points, edges, triangles) 
% Create matrix 
A = zeros(size(points,2)); 
 % Quadrature points 
midpoints = [0.5 0.0; 0.5 0.5; 0.0 0.5]'; 
gausspoints = [(1-1/sqrt(3))/2 (1-1/sqrt(3))/2]; 
 % Iterate over all elements (interior domain) 
for triangle = triangles 
  % Get nodes, coordinates, and domain number 
  nodes = triangle(1:3); 
  coord = points(:,nodes); 
  d = triangle(4); 
  % Compute Jacobian of map and area of element 
  J = coord(:,1)*dphi(1)' + coord(:,2)*dphi(2)' + coord(:,3)*dphi(3)'; 
  dx = 0.5 * abs(det(J)); 
  % Assemble matrix 
  for p = midpoints 
   x = coord(:,1)*phi(1,p) + coord(:,2)*phi(2,p) + coord(:,3)*phi(3,p);  
  if ~isempty(W) 
      w  = evalfunctions(W(nodes,:), p); 
      dw = evalderivatives(W(nodes,:), p); 
    else 
      w  = []; 
      dw = []; 
    end 
 for i = 1:3 
 v = phi(i,p); 
      dv = J' \ dphi(i); 
 for j = 1:3 
 u = phi(j,p); 
    du = J' \ dphi(j);   
 integral = feval(pde, u, v, w, du, dv, dw, dx, 0, x, d, time, 1) / 3.0; 
    A(nodes(i),nodes(j)) = A(nodes(i),nodes(j)) + integral; 
    end 
    end 
  end 
 end 
 % Iterate over all edges (boundary) 
for edge = edges 
 % Get nodes, coordinates, and domain number 
  nodes = edge(1:2); 
  coord = points(:,nodes); 
  d = edge(5); 
 % Compute length of edge 
  ds = norm(coord(:,1) - coord(:,2)); 
 % Assemble matrix 
  for p = gausspoints 
 x = coord(:,1)*phiedge(1,p) + coord(:,2)*phiedge(2,p); 
 if ~isempty(W) 
      w  = evalfunctionsedge(W(nodes,:), p); 
      dw = evalderivativesedge(W(nodes,:), p); 
    else 
      w  = []; 
      dw = []; 
    end 
    for i = 1:2 
  v = phiedge(i,p); 
 for j = 1:2 



 38 

 u = phiedge(j,p); 
    integral = feval(pde, u, v, w, [0;0], [0;0], dw, 0, ds, x, d, time, 1) / 2.0; 
    A(nodes(i),nodes(j)) = A(nodes(i),nodes(j)) + integral; 
 end 
    end 
  end 
 end 
 %--- Basis functions on the reference element --- 
function y = phi(index, x) 
 switch index 
  case 1 
    y = 1 - x(1) - x(2); 
  case 2 
    y = x(1); 
  case 3 
    y = x(2); 
end 
 %--- Basis functions on the reference edge --- 
function y = phiedge(index, x) 
 switch index 
  case 1 
    y = 1 - x; 
  case 2 
    y = x; 
end 
  %--- Gradients of basis functions on the reference element --- 
function y = dphi(index) 
 switch index 
  case 1 
    y = [-1; -1]; 
  case 2 
    y = [1; 0]; 
  case 3 
    y = [0; 1]; 
end 
 %--- Gradients of basis functions on the reference edge --- 
function y = dphiedge(index) 
 switch index 
  case 1 
    y = -1; 
  case 2 
    y = 1; 
end 
 %--- Evaluate functions at the given quadrature point --- 
function w = evalfunctions(W, p) 
 n = size(W,2); 
w = zeros(1,n); 
 for i = 1:n 
  w(i) = W(1,i)*phi(1,p) + W(2,i)*phi(2,p) + W(3,i)*phi(3,p); 
end 
 %--- Evaluate derivatives of functions at the given quadrature point --- 
function dw = evalderivatives(W, p) 
 n = size(W,2); 
dw = zeros(2,n); 
 for i = 1:n 
  dw(:,i) = W(1,i)*dphi(1) + W(2,i)*dphi(2) + W(3,i)*dphi(3); 
end 
 %--- Evaluate functions at the given quadrature point --- 
function w = evalfunctionsedge(W, p) 
 n = size(W,2); 
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w = zeros(1,n); 
 for i = 1:n 
  w(i) = W(1,i)*phiedge(1,p) + W(2,i)*phiedge(2,p); 
end 
 %--- Evaluate derivatives of functions at the given quadrature point --- 
function dw = evalderivativesedge(W, p) 
 n = size(W,2); 
dw = zeros(2,n); 
 for i = 1:n 
  dw(1,i) = W(1,i)*dphiedge(1) + W(2,i)*dphiedge(2); 
end 
  

12.2. AssembleVector  

function b = AssembleVector(points, edges, triangles, pde, W, time) 
  
% Assemble a vector on a given mesh (points, edges, triangles) 
% Create matrix 
b = zeros(size(points,2),1); 
 % Quadrature points 
midpoints = [0.5 0.0; 0.5 0.5; 0.0 0.5]'; 
gausspoints = [(1-1/sqrt(3))/2 (1-1/sqrt(3))/2]; 
 % Iterate over all elements (interior domain) 
for triangle = triangles 
 % Get nodes, coordinates, and domain number 
  nodes = triangle(1:3); 
  coord = points(:,nodes); 
  d = triangle(4); 
 % Compute Jacobian of map and area of element 
  J = coord(:,1)*dphi(1)' + coord(:,2)*dphi(2)' + coord(:,3)*dphi(3)'; 
  dx = 0.5 * abs(det(J)); 
  % Assemble matrix 
  for p = midpoints 
 x = coord(:,1)*phi(1,p) + coord(:,2)*phi(2,p) + coord(:,3)*phi(3,p);  
 if ~isempty(W) 
      w  = evalfunctions(W(nodes,:), p); 
      dw = evalderivatives(W(nodes,:), p); 
    else 
      w  = []; 
      dw = []; 
    end 
    for i = 1:3 
      v = phi(i,p); 
      dv = J' \ dphi(i); 
      integral = feval(pde, 0, v, w, [0;0], dv, dw, dx, 0, x, d, time, 2) / 3.0; 
      b(nodes(i)) = b(nodes(i)) + integral; 
    end 
  end 
 end 
 % Iterate over all edges (boundary) 
for edge = edges 
 % Get nodes, coordinates, and domain number 
  nodes = edge(1:2); 
  coord = points(:,nodes); 
  d = edge(5); 
  
  % Compute length of edge 
  ds = norm(coord(:,1) - coord(:,2)); 
 % Assemble matrix 
  for p = gausspoints 
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 x = coord(:,1)*phiedge(1,p) + coord(:,2)*phiedge(2,p); 
 if ~isempty(W) 
      w  = evalfunctionsedge(W(nodes,:), p); 
      dw = evalderivativesedge(W(nodes,:), p); 
    else 
      w  = []; 
      dw = []; 
    end 
    for i = 1:2 
 v = phiedge(i,p); 
      integral = feval(pde, 0, v, w, [0;0], [0;0], dw, 0, ds, x, d, time, 2) / 2.0; 
      b(nodes(i)) = b(nodes(i)) + integral; 
 end 
  end 
 end 
 %--- Basis functions on the reference element --- 
function y = phi(index, x) 
 switch index 
  case 1 
    y = 1 - x(1) - x(2); 
  case 2 
    y = x(1); 
  case 3 
    y = x(2); 
end 
 %--- Basis functions on the reference edge --- 
function y = phiedge(index, x) 
 switch index 
  case 1 
    y = 1 - x; 
  case 2 
    y = x; 
end 
  %--- Gradients of basis functions on the reference element --- 
function y = dphi(index) 
 switch index 
  case 1 
    y = [-1; -1]; 
  case 2 
    y = [1; 0]; 
  case 3 
    y = [0; 1]; 
end 
 %--- Gradients of basis functions on the reference edge --- 
function y = dphiedge(index) 
 switch index 
  case 1 
    y = -1; 
  case 2 
    y = 1; 
end 
 %--- Evaluate functions at the given quadrature point --- 
function w = evalfunctions(W, p) 
 n = size(W,2); 
w = zeros(1,n); 
  
for i = 1:n 
 w(i) = W(1,i)*phi(1,p) + W(2,i)*phi(2,p) + W(3,i)*phi(3,p); 
end 
 %--- Evaluate derivatives of functions at the given quadrature point --- 
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function dw = evalderivatives(W, p) 
 n = size(W,2); 
dw = zeros(2,n); 
 for i = 1:n 
  dw(:,i) = W(1,i)*dphi(1) + W(2,i)*dphi(2) + W(3,i)*dphi(3);    
end 
 %--- Evaluate functions at the given quadrature point --- 
function w = evalfunctionsedge(W, p) 
 n = size(W,2); 
w = zeros(1,n); 
 for i = 1:n 
 w(i) = W(1,i)*phiedge(1,p) + W(2,i)*phiedge(2,p); 
end 
 %--- Evaluate derivatives of functions at the given quadrature point --- 
function dw = evalderivativesedge(W, p) 
 n = size(W,2); 
dw = zeros(2,n); 
 for i = 1:n 
  dw(1,i) = W(1,i)*dphiedge(1) + W(2,i)*dphiedge(2); 
end 
  

12.3. GasGlass 

function integral = GasGlass(u, v, w, du, dv, dw, dx, ds, x, d, t, eq) 
 if eq == 1 
  integral = a(x,d,t)*du'*dv*dx + g(x,d,t)*u*v*ds; 
else 
  integral = f(x,d,t)*v*dx + (g(x,d,t)*gd(x,d,t) - gn(x,d,t))*v*ds; 
end 
 %--- Conductivity (penalty factor) --- 
function y = g(x, d, t) 
if d==1 
    y=0; 
elseif d==4 
    y = 0; 
elseif d==5 
    y = 0; 
elseif d==6 
    y = 0; 
elseif d==7 
    y = 0; 
else 
    y = 1e7; 
end 
 %--- conductivity coefficient---- 
function y = a(x, d, t) 
if norm(x)< 0.44  
  y = 0.0314; 
else 
  y = 1; 
end 
 %--- Dirichlet boundary condition ---- 
function y = gd(x, d, t) 
%if d == 1 
 %   y =150; 
if d==2 
    y = 123;  
elseif d==3 
     y = 123;  
else 



 42 

  y=0; 
end 
 %--- Neumann boundary condition --- 
function y = gn(x, d, t) 
if d==1 
    y=20; 
else 
    y =20; 
end 
 %--- Right-hand side, source term --- 
function y = f(x, d, t) 
if norm(x)< 0.1  
  y = 1700; 
else 
  y = 0; 
end 
 
 
 

12.4. Solver 

% Load the mesh 
unibulb 
 % Assemble matrix 
A = AssembleMatrix(p, e, t, 'GasGlass', [], 0); 
 % Assemble vector 
b = AssembleVector(p, e, t, 'GasGlass', [], 0); 
 % Solve the linear system 
U = A \ b; 
 % Plot solution 
figure(1); clf 
pdesurf(p,t,U) 
shading faceted 
title('Computed solution') 
  
 

12.5. Life-time 

% declaration of variables 

clear all; 

r = 22.85e-6;   % initial radius of filament (m) 

rc = 0.95*r;   % initial radius at critical spot of filament (m) 

t_step =5*3600;  % timestep (s) 

T0 = 293;    % reference temperature (K) 

Tm = 273+3410;   % melting point of tungsten (K) 

U = 120;     % Voltage (V) 

P = 60;     % Power rating of light bulb (W) 

l = 0.533;    % length of filamnet (m), assumed constant 

rho = 5.5e-8;   % resistivity of tungsten at T0 (ohm m) 

alfa = 4.9e-3;   % temperature koefficient (1/K) 

dw = 19400;    % density of tungsten at T0 (kg/m^3), assumed constant 

%-------------------------------------------------------------------------- 

rb = 0.035;       % radius of light bulb (m) 

V = 4*pi*rb^3/3;     % volume of light bulb (m^3) 

rn = 0.074e-9;      % covalent radius of N atom (m) 

n = 101325*V/(8.314*T0);  % amount of N2-molecules at T0, assuming  

normal pressure (mole) 

dg = 2*n*6.022e23*rn^3/rb^3; % volume ratio occupied by N2-molecules 

rw = 0.178e-12;     % atomic radius of tungsten (m) 

Vw = 4*pi*rw^3/3;     % volume of tungsten atom (m^3) 
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%-------------------------------------------------------------------------- 

% temperatures and evaporation rates from Phys. Educ. 33(1)January 1998:55-

58 (actually from CRC Handbook...) 

K = 

[10;11;12;13;14;15;16;17;18;19;20;21;22;23;24;25;26;27;28;29;30;31;32;33;34

;35;36;36.55]*100; 

E = [5.32e-33 2.17e-29 3.21e-26 4.35e-23 2.51e-21 2.37e-19 1.25e-17 4.17e-

16 8.81e-15 1.41e-13 1.76e-12 1.66e-11 1.25e-10 8.00e-10 ... 

      4.26e-9 2.03e-8 8.41e-8 3.19e-7 1.10e-6 3.30e-6 9.95e-6 2.60e-5 

6.38e-5 1.56e-4 3.47e-4 7.54e-4 1.51e-3 2.28e-3]'; 

% calculated temperatures for different radius's from the same reference 

Pq=[60 75 100 100 150 200 200 300 300 500 500 1000 ... 

      1000 1000 1500 2000 5000]'; 

Tq=[2560 2600 2610 2820 2630 2640 2640 ... 

      2660 2640 2670 2620 2750 2710 2840 2720 2890 2950]'; 

Uq=120; 

Iq=Pq/Uq; 

rq=0.5e-6*[45.7 53.3 63.5 61 83.8 96.5 101.6 ... 

      127 129.5 180.3 185.4 271.8 279.4 289.6 381 457.2 736.6]'; 

Aq=pi*rq.^2; 

%-------------------------------------------------------------------------- 

clf; 

t = 0; 

kk = 0; 

while kk < 5000 

   c = Iq.^2./Aq;   % T is assumed approximately proportional to I^2/A 

   Q = polyfit(c,Tq,1); 

   Tc = Q(1)*(P/U)^2/(pi*rc^2)+Q(2);% working temperature at critical spot  

   if Tc > Tm 

      break 

   else 

      if rc < 1e-9 

         break 

         else 

     J = interp1q(K,E,Tc);    % Evaporation rate (kg/(m^2 s)) 

     drc_dt = -J/dw;      % Decrease rate of radius (m/s) 

         TC(kk+1,1) = Tc; 

         rC(kk+1,1) = rc; 

         kk = kk + 1; 

         rc = rc + drc_dt*t_step; 

      

         %average values 

         T = Q(1)*(P/U)^2/(pi*r^2)+Q(2); 

         R = (rho*(1-alfa*(T0-T))*l/(pi*r^2)); 

         I = U/R; 

         P = R*I^2; 

         J = interp1q(K,E,T);      % Evaporation rate (kg/m^2 s) 

    dr_dt = -J/dw;        % Decrease rate of radius 

         TA(kk,1) = T; 

         rA(kk,1) = r; 

         r = r + dr_dt*t_step;    

         t(kk,1) = (kk-1)*t_step/3600; 

      end 

  end 

end 

lifetime = t(kk,1) 

radius = rc 

temp = Tc 

plot(t,TC,'+r-',t,TA,'k:');xlabel('time (h)');ylabel('temperature 

(K)');title('Filament temperature (K)'); 

figure 
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plot(t,rC,'r-',t,rA,'k:');xlabel('time (h)');ylabel('radius 

(m)');title('Radius of filament(m)'); 

 

 

 


