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tion of a genuine patterning process that can be ob-
served in very different developmental situations,
including those found in Drosophila itself.

But the stripes on the fish still call for more ex-
planation: those shown in Figure 1 of the paper by
Kondo and Asai [1] are very narrow with respect to
the spaces in between. All the models I know of can
only produce stripes and interstripes of the same
size,
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A Reaction-Diffusion Wave on the Skin of the Marine Angelfish
Pomacanthus

Nature, 376 (1995) 765-768.
Shigeru Kondo, Rihito Asai

In 1952, Turing proposed a hypothetical molecu-
lar mechanism, called the reaction-diffusion Sys-
tem [1], which can develop periodic patterns from
an initially homogeneous state. Many theoreti-
cal models based on reaction-diffusion have been
proposed to account for patterning phenomena in
morphogenesis {2-4], but, as yet, there is no con-
clusive experimental evidence for the existence
of such a system in the field of biology {5-8]. The
marine angelfish, Pomacanthus, has stripe pat-
terns which are not fixed in their skin. Unlike
mammal skin patterns, which simply enlarge pro-
portionally during their body growth, the stripes
of Pomacanthus maintain the spaces between the
lines by the continuous rearrangement of the pat-
terns. Although the pattern alteration varies de-
pending on the conformation of the stripes, a

simulation program based on a Turing system
can correctly predict future patterns. The strik-
ing similarity between the actual and simulated
pattern rearrangement strongly suggests that a
reaction-diffusion wave is a viable mechanism for
the stripe pattern of Pomacanthus.

When juveniles of Pomacanthus semicirculatus
are smaller than 2 ¢cm long, they have only three
dorsoventral stripes (Figure 1(a)). As they grow, the
intervals of the stripes get wider proportionally un-
til the body length reaches 4 cm, At that stage, new
stripes emerge between the original stripes (Figure
1(b)). As aresult, all the spaces between the stripes
revert to that of the 2-cm juvenile. New lines are
thin at first, but gradually get broader. When the
body length reaches 8-9 cm, an identical process is
repeated (Figure 1(c)).

Author affiliations: S. Kondo: Kyoto University Centre for Molecular Biology and Genetics, Kyoto, Japan.
R. Asal: Kyoto Universily Seto Marine Biological Laboratory, Wakayama, Japan.
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Fig. 1 Rearrangement of the stripe pattern of Pomacanthus semicirculatus and its computer simulation. a-c, Pho-
tographs of the juvenile of P. semicirculatus. Ages are approximately 2 months (a), approximately § months (b)
and approximately 12 months (¢). Scale bars, 2 cm. d, Computer simulation of the reaction-cdiffusion wave on
the growing one-dimensional array of cells. One of the five cells is forced to duplicate periodically {once in 100
iterations). Concentration of activator is represented as the vertical height. The equations for calculation are as
follows:
32 : 42
an =CcijA+cpl+c3~ w»mwmw —g4A, mm = C4A + C5 ~ DKWW ~ gl

where A and I are the concentration of the activator molecule and the inhibitor molecule, respectively, D4 and Dy
are the diffusion constants, g and g; are the decay constants, and Dy =0.007, Dy = 0.1, g4 = 0.03, g1 = 0.06,
¢ = 0.08, ¢ = 0.08,¢c3 = 0.05 ¢4 = 0.1, ¢5 = 0.15. Upper and lower limits for the synthesis rates of the
activator (¢ A + cpI + ¢3) and inhibitor (c4A + ¢5) are set as 0 < ¢ A + 3] + ¢y < 0.18 and 0 < ¢4A + ¢5 < 0.5.
These upper and lower limits are set to avoid unrealistic situations. A moderate upper-imit value of the activator
synthesis rate is required to get a pattern of stripes rather than spots [15] {spots are obtained if this value is
exceeded). We used the kinetics of Turing [1]. Other stripe-forming interactions [12, 15}, in which the upper and
lower limit is a natural outcome of the kinetics, can simulate the fish pattern rearrangement reported here.

The reaction-diffusion system used here con-
sists of two hypothetical molecules (activator and
inhibitor) which control the synthesis rate of each
other. Figure 1(d) shows a computer simulation
of a reaction-diffusion wave on a growing array of

enlarges, all waves widen evenly., When the field
length reaches about twice the original length, new
peaks appear in the middle of the original peaks, as
observed in P. semicirculatus, and the wavelength
reverts to that of the original.

cells. At time 0, the field width is adjusted to be
twice the intrinsic wavelength, calculated from the
equations used in this simulation. One of the five
cells is forced to duplicate periodically. As the field

The juvenile of P. imperator has concentric
stripes, which increase in number in a manner sim-
ilar to that of P. semicirculatus. But when the P
imperator becomes an adult, the stripes become
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Fig. 2 Rearrangement of the stripe pattern of Pomacanthus imperator (horizontal movement o,w branching uc‘_Emv
and its computer simulation. a, An adult P, imperator (approximately 10 months old). b, Close-up o.m aamwo.i
ina. ¢ d, Photographs of region 1 of the same fish taken two {¢) and three (d) months later. e, Starting stripe
conformation for the simulation (region 1. f, g, Results of the calculation after 30,000 (f) m.am mo,wco (g) itera-
tions. h, Close-up of region I in a. i, Photographs of region II of the same fish Sxa.a 30 4), 50 (), 75 (k) and
90 (I days later, respectively. m, Starting stripe conformation for the simulation (region E..n.a. w.mmz:w of the
calculation after 20,000 (n), 30,000 (0}, 40,000 (p) and 50,000 (q) iterations, respectively. Fish Améw World Co.
Ltd (Osaka)) were maintained in artificial sea water (Martin Art, Senju). Skin patterns were recorded with a n.maca
video camera and printed by a Polaroid Slide Printer. In the simulated patterns, darker colour _.,%gmmam higher
concentrations of the activator molecule. Fguations and the values of the constants used, as Figure 1.

parallel to the anteroposterior axis by a process of
continuous cutting and joining of the lines (data
not shown). As they grow, the number of lines in-
creases proportionally to body size, and the spaces
between the lines are kept at an even width. The
stripe pattern of P. imperator usually contains sev-
eral branching points (Figure 2(a)). During growth,
the branching points move horizontally like a zip,
resulting in addition of new lines. Figure 2(b-d)
shows a branching point moving in the anterior di-
rection until it fuses with the border of the stripe
region. In Figure 2(h-}), two branching points meet
and disappear leaving a new line. This type of re-

arrangement also happens in the simulation of the
reaction-diffusion system, by setting a homologous
conformation as a starting pattern (Figure 2{(e-g, m-
). In Figure 2(e), the field height is adjusted to be
six times the intrinsic wavelength. The waves in the
right half are slightly extended, which causes loss
of stability in this region. The rightward movement
of the branch restores the stability of the righthand
region. It is notable that not only the final con-
formation, but also each intermediate stage (Fig-
ure 2(n-p)), look quite similar to the actual pattern
change that occurs in the fish (Figure 2(i-k)).
Branching points located on more dorsal or ven-
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Fig. 3 Rearrangement of the stripe pattern of P. imperator (switch of joint) and its computer simulation. &, Pho-
tograph of a young P. imperator (approximately 7 months old). b, ¢, Photographs of the same fish taken 6 (b) and
12 (c) days later. d, Starting stripe conformation for the simulation. Pattern changing in the reglon surrounded by
the white box was simulated. e, f, Results of the calculation after 2,000 {e) and 5,000 (f) iterations, respectively.

tral regions behave differently. As shown in Figure
3(a-c), they move vertically by switching at a joint.
This phenomenon can be simulated by the program
used in Figure 1 and Figure 2 only by setting a dif-
ferent starting pattern (Figure 3(d-D)). In the simula-
tion, a local region that contains a branching point
is less stable than a region without a branch point,
and joint switching tends to occur. The direction
of joint switching is determined by the conforma-
tion of neighbouring lines. In our simulation, the
line under the branching point is straighter than
the line above. Because the curving line is less sta-
ble than the straight line, the joint switches in the
upper direction. If both upper and lower lines are
symmetrical to the branched line, horizontal move-
ment of the branch point cccurs (Figure 2). In the
case of actual young fish, the lines in the middle re-
glon are usually straight, but in the dorsal and ven-
tral regions the lines are curved. Branching points
always move farther away from the middle region
which consists of straight lines.

The times required for these pattern changes
also suggest a mechanistic homology between ac-
tual fish and the simulations. In the simulation of

- joint switching, one change of joint can take place

very quickly (in less than 1,000 iterations of calcu-
lation), because the change in pattern is quite lo-
cal. For the horizontal movement of the branch-
ing point {(from Figure 2(e to g)), raore than 50,000
iterations are required because it is necessary for
the upper lines and Jower lines to ‘slide’ in order to
evolve to a new pattern of stripes that are evenly
spaced. In the case of real fish, the joint changes
also vccur guickly. In the fastest case we have ob-
served, it tock place in two davs (data not shown),
whereas the change from Figure 2{b to d) took more
than three months. )

Although we do not have any information about
the molecules which are involved in the pattern-
forming reaction, it is possible to estimate voughly
the diffusion coefficients of the molecules by com-
paring the simulation and the actus! pattern chang-
ing of fish stripe. The stripe spacing is approxi-
mately 0.5 cm in P, imperator, and approximately
10 grids in the simulated patterns (Figure 2); a grid
in the simulation therefore represents (.05 cm. The
pattern change from Figure 2(h to 1} took 90 days
(7,776,000 seconds) in reality, and 50,000 iterations
in the simulation. The time step for the simulation
therefore corresponds to 155.5 seconds. These val-
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ues give ditfusion coefficients of 1.125x 107 cm?g -1
and L.608 x 10~5cm?s! for the activator and the
inhibitor, respectively. Both values are in the range
of the diffusion coefficients of proteins in agueous
media [9]. However, the diffusive moleculey may be
smaller than proteins, because the diffusion rate of
molecules is usually much smaller in real biological
systems than in aqueous media.

In some other biological systems, the inser-
tion of new structures during growth have been
observed and simulated [3, 10-14]. The novel
features of the work reported here are that the
inserted structure is a stripe and that the under-
lying mechanism is operative for a long period.
The reaction-diffusion wave is a kind of standing
wave. Therefore, to determine that a given pat-
tern is consistent with a reaction-diffusion wave,
it is necessary to impose some disturbance on the
field and to see how the pattern responds. The pat-
tern alteration of the Pomacanthus, accompanied
by skin growth, can be taken as a natural experi-
ment to help elucidate the underlying mechanisms
which govern pattern formation. From the strik-
ing similarity between the actual and the simulated
pattern alteration, it is highly probable that the
mechanism is a reaction-diffusion system. Because
the pattern-forming mechanism is maintained in
adult skin, it should be possible to identify the
molecules involved.
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Letters to Nature

Nature, 380 (1996) 678,
T. Hofer and P. K. Maini
S. Kondo and R. Asai

SIR—Kondo and Asai [1] interpret observations
on the time evolution of skin patterns of the an-
gelfish (Pomacanthus) as the first instance of a Tur-
ing (reaction-diffusion) pattern in biology. But we
believe that reaction-diffusion systems per se can-
not provide a mechanistic basis for one of the main
patterns reported in [1].

Reaction-diffusion systems are characterized by

an intrinsic spatial wavelength of the self-organized
concentration pattern, that is, the distance between
adjacent peaks of chemical concentrations is de-
termined solely by the system parameters (kinetic
constants and diffusion coefficients). Although on
a two-dimensional domain such as the fish skin,
several equidistant geometrical arrangements of
the concentration peaks are possible, the nonlin-

Author affiliations: Thomas Hofer and Philip K. Maini: Centre for Mathematical Biology, Mathematical Insti-
tute, University of Oxford. Shigeru Kondo: Kyoto University Centre for Molecular Biology and Genetics, Kyoto,
Japan. Rihito Asai: Kyoto University Seto Marine Biological Laboratory, Wakayama, Japan.
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Fig. 1 Behaviour of the Turing system proposed in ref. 1 on a growing sguare domain (with the signs of the
diffusion terms corrected). a, Concentration plot of A in a horizontal cross-section of the domain; time in-
creases from bottom to top (see separate scales). The 4-stripe pattern produced by the first period-doubling
is unstable, rearranges into a 3-stripe pattern perpendicular to the original pattern, and the stripe contours
terminate. b-d, Snapshots of the stripe patterns corresponding to a {domains scaled to same size): b, initial

2-stripe pattern (t = 500); ¢, after period-doubling (¢ =

3,000); and d, after rearrangement into 3 siripes (2 + 2

half-stripes, t = 4,000, corresponding to the dark region in a). Simulations: equations scaled to the form
du/dt = s2f(u) + D¥V2u, and solved with a standard ADI scheme on a fixed domain {mesh size 0.2, time step
0.05) with zero flux boundary conditions; increase in s is equivalent to increase in {domain fength)? (2], here

s(t) = v0.15 + 10772, Patterning sequence is sensitive to

the speed of domain growth and for faster growth

rates the transitions become less controlled; we found transitions from 2 stripes to higher modes (5 stripes and

more) with subsequent rearrangements.

ear terms of the reaction dynamics usually select
only one of these possibilities—for the system cho-
sen by Kondo and Asai, a regular array of stripes.
These two features, an intrinsic wavelength and a
strong tendency to form stripes, are the essential
ingredients of the simulations they presented in [1].
Many pattern-forming systems other than reaction-
diffusion are known which select an intrinsic spatial
wavelength and pattern geometry {2}, among them
biologically relevant mechanisms involving chemo-
tactic or haptotactic cell movement and mechanical
forces [3]. Therefore, there is no Justification for
equating observed patterns with a particular mech-
anism, as suggested in [1].

Although our point does not exclude the possi-
bility that a Turing system underlies the Pomacan-
thus skin patterns, we demonstrate here that its
broperties are not sufficient to explain perhaps the
most striking observation of the paper, the regular
insertion of new stripes between older ones dur-

ing the growth of Pomacanthus semicirculatus. We
have solved the authors’ reaction-diffusion equa-
tions on a growing, two-dimensional domain—a
more realistic representation of the fish skin than
the one-dimensional domain used in {1].

Our results show that regular stripe-doubling
sensitively depends on the artificial geometrical
constraints of the one-dimensional domain (see Fig-
ure 1). As the restriction of one-dimensionality
is removed, complete spatial rearrangement of
the pattern occurs on the growing domain, which
clearly is not seen in the fish. This behaviour is
readily explained by the two properties of Turing
systems emphasized above. As the domain grows
bigger, new stripes should be added, one at a time,
approximately conserving the spatial wavelength.
Initially, the preexisting pattern appears to force
a different sequence of stripe additions to oceur,
corresponding to the ‘period-doubling’ behaviour
sometimes seen in one-dimensional systems 31



288 The Diffusion Bquation and Pattern Formation

However, this situation turns out to be unstable,
and the whole pattern rearranges perpendicularly
to the old one to form a new stripe pattern enlarged
by one stripe. This behaviour does not depend on
the aspect ratio of the domain; we have found com-
plete perpendicular rearrangement of pattern even
on very narrow {quasi-one-dimensional) domains.
Thus, the patterning dynamics must involve an in-
terplay of the mechanism that sets the distance
between adjacent stripes and some form of ‘mem-
ory’ that conserves the location of old stripes. The
‘memory’ could be provided by pigment cells form-
ing stable aggregations [4]. More specific quanti-
tative models based on experimentally implicated
mechanisms are needed to formulate testable pre-
dictions on the origin of the dynamic Pomacanthus
skin patterns.

KONDO AND ASAI REPLY--With respect to
Hofer and Maini’s first criticism, we agree that
many pattern-forming systems can explain the phe-
nomenon we observed, These models have in com-
mon a set of interactions involving local activa-
tion/lateral inhibition coupled with the appropriate
nonlinearities [5]. The most important message of
our report {1} is that a dynamical mechanism like
Turing's is viable for the fish patterns. It should
therefore be possible to identify the real molecular

Ch. 18

mechanism by experiments. Of course, at present
the details of the fish-patterning mechanism are
unknown, and will not be understood until experi-
ments are done.

Second, Hofer and Maini claim that a two.
dimensional simulation of the P. semicirculatus pat.
tern is more realistic than the one-dimensional sim.
ulation in our paper, This is by no means clear. All
the stripe lines of P, semicirculatus are perpendicu.
lar to the body axis and there are no branch points,
These features suggest the presence of a directional
preference forcing the stripes to run in the same
direction. A one-dimensional simulation captures
some of the character of this system better than
does an isotropic two-dimensional simulation.
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READING 18.3
Complex Patterns in a Simple System

Commentary:

For the purposes of this book, the point of this article is to illustrate

the sorts of bizarre patterns that can arise with a pair of diffusion equations. The
article considers functions U{(r, x, y) and V (1, x, ¥), which are meant to represent the
concentrations as functions of time ¢ and space coordinates x and y of two different
but interacting chemical species. Their time evolution is modeled by a pair of diffusion

equations:
d 8? R 2
]z Dy | = U Ul~-UV*+F1-U)
%Q gzt dy?
3 9? 9 2
Vo= Dy g Vb s VI UVE — (F + V.
Bt D. dx? + dy? (

[This is Eq. (2) in the article.] Here, D, is the diffusion coefficient for U ,and D, the
same for V. Meanwhile, F and k are constants. The author runs these equations on
a computer and learns that his computer approximation to the true solutions produces
bizarre patterns when D, and D, F and k are chosen appropriately.
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In any event, the equations above are f, x, v generalizations for two unknowns
g i
of our simpler, ¢, x diffusion equation Mm, u = L u 4 ru for the one unknown u. {In

Bxé

the case of the paper, the term ru is replaced by a more complicated expression in {/

and V)

Complex Patterns in a Simple Systemn

Sclence, 261 (1993) 189--192,
John B, Pearson

Numerical simulations of a simple reaction-
diffusion model reveal a surprising variety of ir-
regular spatiotemporal patterns, These patterns
arise in response to finite-amplitude perturba-
tions. Some of them resemble the steady irregu-
lar patterns recently observed in thin gel reactor
experiments. Others consist of spots that grow
until they reach a critical size, at which time they
divide in two. If in some region the spots become
overcrowded, all of the spots in that region decay
into the uniform background.

Patterns occur in nature at scales ranging from
the developing Drosophila embryo to the large-
scale structure of the universe. At the familiar M-
dane scales we see snow-flakes, cloud streets, and
sand ripples. We see convective roll patterns in
hydrodynamic experiments. We see regular and
almost regular patterns in the concentrations of
chemically reacting and diffusing systems [1]. Asa
consequence of the enormous range of scales over
which pattern formation occurs, new pattern for-
mation phenomenon is potentially of great scien-
tific interest. In this report, I describe patterns
recently observed in numerical experiments on a
simple reaction-diffusion model. These patterns
are unlike any that have been previously observed

.in theoretical or numerical studies.

The system is a variant of the autocatalytic
Selkov model of glycolysis {2} and is due to Gray
and Scott [3]. A variety of spatio-temporal patterns
form in response to finite-amplitude perturbations.
The response of this model to such perturbations
was previously studied in one space dimension by
Vastano et al. [4], who showed that steady spatial
batterns could form even when the diffusion coef-
ficients were equal. The response of the system
In one space dimension is nontrivial and depends

both on the control parameters and on the initial
perturbation. It will be shown that the patterns that
occur in two dimensions range from the well-known
regular hexagons to frregular steady patterns sim-
ilar to those recently observed by Lee et gl [5] to
chaotic spatio-temporal patierns. For the ratio of
diffusion coefficients used, there are no stable Tur-
ing patterns.

Most work in this field has focused on pat-
tern formation from a spatially uniform state that
is near the transition from linear stability to lin-
ear instability,  With this restriction, standard
bifurcation-theoretic tools such as amplitude equa-
tions have been developed and used with con-
siderable success {6]. It is unclear whether the
patterns presented in this report will vield to these
now-standard technologies,

The Gray-Scott modet correspomds to the follow-
ing two reactions:

U2V - 3v 1)
VP

Both reactions are irveversible, so P is an inertprod-
uct, A nopequilibrium constraint is represented by
a feed term for U, Both IV and V are removed by
the feed process, The resnl reacton-diffusion
equations In dimensionless units are:

w% = DuV2U - UV 4 F(1 - 1)
@M\. 2 & -w i >
5 = DuVAV UV - (F 4 kv @)

where k is the dimensionless rate constant of the
second reaction and F is the dimensionless feed
rate. The system sizeis 2.5 by 2.5, and the diffusion
coefficients are Dy, = 2 % 1075 and Dy, = 1075, The

Author affiliation: John E. Pearson: Center for Nonlinear Studies, Los Alamos National Luboratory,
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Fig. 1 Phase diagram of the reaction kinetics. Outside the region bounded by the solid line, there is a single spa-
tially uniform state (called the trivial state) (U = 1, V = 0) that is stable for all (F, k). Inside the region bounded
by the solid line, there are three spatially uniform steady states. Above the dotted line and below the solid line,
the system is bistable: There are two linearly stable steady states in this region. As F is decreased through the
dotted line, the nontrivial stable steady state loses stability through Hopf bifurcation. The bifurcating periodic
orbit is stable for k less than 0.035 and unstable for k more than 0.035. No periodic orbits exist for parameter

values outside the region bounded by the solid line.

boundary conditions are periodic. Before the nu-
merical results are presented, consider the behav-
ior of the reaction kinetics which are described by
the ordinary differential equations that result upon
dropping the diffusion terms in Eq. 2.

In the phase diagram shown in Figure 1, a triv-
ial steady-state solution U = 1, V = 0 exists and
is linearly stable for all positive F and k. In the re-
gion bounded above by the solid line and below by
the dotted line, the system has two stable steady
states. For fixed k, the nontrivial stable uniform
solution loses stability through saddle-node bifur-
cation as F is increased through the upper solid line
or by Hopf bifurcation to a periodic orbit as F is de-
creased through the dotted line. (For a discussion
of bifurcation theory, see chapter 3 of {7].) In the
case at hand, the bifurcating periodic solution is
stable for k less than 0.035 and unstable for k more
than 0.035. There are no periodic orbits for param-
eter values outside the region enclosed by the solid
line. Outside this region the system is excitable.
The trivial state is linearly stable and globally at-
tracting. Small perturbations decay exponentially
but larger perturbations result in a long excursion
through phase space before the system returns to
the trivial state.

The simulations are forward Euler integrations
of the finite-difference equations resulting from
discretization of the diffusion operator. The spa-
tial mesh consists of 256 by 256 grid points. The
time step used is 1. Spot checks made with meshes
as large as 1024 by 1024 and time steps as small
as 0.01 produced no qualitative difference in the
results.

Initially, the entire system was placed in the triv-
ial state (U = 1, V = 0). The 20 by 20 mesh point
area located symmetrically about the center of the
grid was then perturbed to (U = 1/2, V = 1/4).
These conditions were then perturbed with +1%
random noise in order to break the square symme-
try. The system was then integrated for 200,000
time steps and an image was saved. In all cases,
the initial disturbance propagated outward from
the central square, leaving patterns in its wake, un-
til the entire grid was affected by the initial square
perturbation. The propagation was wave-like, with
the leading edge of the perturbation moving with
an approximately constant velocity. Depending on
the parameter values, it tock on the order of 10,000
to 20,000 time steps for the initial perturbation to
spread over the entire grid. The propagation veloc-
ity of the initial perturbation is thus on the order of

_u.wm. 2 The Wmfo the map. The patterns shown in the figure are d
Figure 3 to indicate the pattern found at a given point in parame

1x 1074 space units per time unit. After the initial
period during which the perturbation spread, the
system went into an asymptotic state that was ei-
ther time-independent or time-dependent, depend-
ing on the parameter values.

Figures 2 and 3 are phase diagrams; one can view
Figure 3 as a map and Figure 2 as the key to the
map. The 12 patterns illustrated in Figure 2 are
designated by Greek letters. The color indicates the
concentration of U with red representing U = 1 and
blue representing U ~ 0.2; yellow is intermediate to
B.a and blue. In Figure 3, the Greek characters in-
dicate the pattern found at that point in parameter
space. There are two additional symbols in Figure 3,
R and B, indicating spatially uniform red and blue
States, respectively. The red state corresponds to
(U =1,V = 0) and the blue state depends on the
€xact parameter values but corresponds roughly to
U =03,V =0.25).

Pattern o is time-dependent and consists of
fledgling spirals that are constantly colliding and
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esignated by Greek letters, which are used in
ter space.

annjhilating each other: full spirals never form.
Pattern f is time-dependent and consists of what is
generally called phase turbulence {81, which occurs
in the vicinity of a Hopf bifurcation to # stable peri-
odic orbit. The medium is unable to synchronize so
the phase of the oscillators varies as a function of
position. In the present case, the small-amplitude
periodic orbit that bifurcates is unstable, Pattern Y
is time-dependent. It consists primarily of stripes
but there are small localized regions that oscillate
with a relatively high frequency (=10-%). The ac-
tive regions disappear, but new ones always appear
elsewhere. In Figure 2 there is an active region near
the top center of pattern y. Pattern & consists of
regular hexagons except for apparently stable de-
fects. Pattern n is time-dependent: a few of the
stripes oscillate without apparent decay, but the re-
mainder of the pattern remains time-independent,
Pattern ¢ is time-dependent and was ohserved for
only a single parameter value.

Parterns 6, x, and g resemble those observed by
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Fig. 3 The map. The Greek letters indicate the location in parameter space where the patterns in Figure 2 were
found; B and R indicate that the system evolved to uniform blue and red states, respectively.

Lee et al. [5]. When blue waves collide, they stop, as
do those observed by Lee ef al. In pattern g, long
stripes grow in length. The growth is parallel to
the stripes and takes place at the tips. If two dis-
tinct stripes that are both growing are pointed di-
rectly at each other, it is always observed that when
the growing tips reach some critical separation dis-
tance, they alter their course so as not to collide. In
patterns 0 and «, the perturbations grow radially
outward with a velocity normal to the stripes. In
these cases if two stripes collide, they simply stop,
as do those observed by Lee et al. 1 have also ob-
served, in one space dimension, fronts propagating
toward each other that stop when they reach a criti-
cal separation. This is fundamentally new behavior
for nonlinear waves that has recently been observed
in other models as well [9).

Patterns &, T, and A share similarities. They con-
sist of blue spots on a red or yellow background.
Pattern A Is time-independent and patterns e and T
are time-dependent. Note that spots occur only in
regions of parameter space where the system is ex-
citable and the sole uniform steady state is the red
state (U = 1, V = 0). Thus, the blue spots cannot
persist for extended time unless there is a gradient

present. Because the gradient is required for the
existence of the spots, they must have a maximum
size or there would be blue regions that were essen-

tially gradient-free. Such regions would necessarily -

decay to the red state. Note that these gradients
are self-sustaining and are not imposed externally.
After the initial perturbation, the spots increase in
number until they fill the system. This process is
visually similar to cell division. After a spot has
divided to form two spots, they move away from
each other. During this period, each spot grows
radially outward. The growth is a consequence of
excitability. As the spots get further apart, they
begin to elongate in the direction perpendicular to
their motion. When a critical size is achieved, the
gradient is no longer sufficient to maintain the cen-
ter in the blue state, so the center decays to red,
leaving two blue spots. This process is illustrated
in Figure 4. Figure 4A was made just after the ini-
tial square perturbation had decayed to leave the
four spots. In Figure 4B, the spots have moved
away from each other and are beginning to elon-
gate. In Figure 4C, the new spots are clearly visi
ble. In Figure 4D, the replication process is com-
plete. The subsequent evolution depends on the

I}’
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Fig. 4 Time evolution of spot multiplication. This figure was produced in a 256 by 25
dimensions of 0.5 by 0.5 and a time step of 0.01. The times ¢ at which the

t=0;B)t =350, (C) t = 510; and (D) t = 650.

control parameters. Pattern A remains in a steady
state. Pattern  remains time-dependent but with
long-range spatial order except for local regions of
activity. The active regions are not stationary. At
any one instant, they do not appear qualitatively
different from pattern £ Fig. 2 but the location of
the red disturbances changes with time, Pattern ¢
appears to have no long-range order either in time
or space. Once the system is filled with blue Spots,
they can die due to overcrowding. This occurs when
many spots are crowded together and the gradient
over an extended region becomes too weak to sup-
port them. The spots in such a region will collapse
nearly simultaneously to leave an irregular red hole.
There are always more spots on the boundary of
any hole, and after a few thousand time steps no
sign of the hole will remain. The spots on its border
will have filled it. Figure 5 illustrates this process.
Pattern ¢ is chaotic. The Liapunov exponent
(which determines the rate of separation of nearby
trajectories) is positive. The Liapunov time (the in-

256 simulation with physical
figures were taken are as follows: (A}

verse of the Liapunov exponent) is 660 time steps,
roughly equal to the time it takes for a spot to repli-
cate, as shown in Figure 4. This time period is also
about how long it takes for a molecule to diffuse
across one of the spots. The time average of pat-
tern epsilon is constant in space.

All of the patterns presented here arose in re-
sponse to finite-amplitude perturbations. The ratio
of diffusion coefficients used was 2. 1t is now well
known that Turing instabilities that lead to sponta-
neous pattern formation cannot vecur in systems
in which all diffusion coefficients are equal. (For a
comprehensive discussion of these issues, see Pear-
son and co-workers [10, 11]; for a discussion of Tur-
ing instabilities in the model at hand, see Vastano
et al. [12]) The only Turing patterns that can oe-
cur bifurcate off the nontrivial steady uniform state
{the blue state). Most of the patterns discussed in
this report occur for pararmeter values such that the
nontrivial steady state does not exist. With the ra-
tio of diffusion coefficients used here, Turing pat-
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i i i F i i t. In the corners (which map to the same
Fig. 5 Time evolution of pattern £. The images are 250 time units apar .
m%cm in physical space), one can see a yellow region in (A) 8. (C). It has decayed to red in (D). In (A) and (B), the
center of the left border has a red region that is nearly filled in (D).

terns occur only in a narrow parameter region in
the vicinity of F = k = 0.0625, where the line of
saddle-node bifurcations coalesces with the line of
Hopf bifurcations. In the vicinity of this chr the
branch of small-amplitude Turing patterns is un-
stable [12].

With equal diffusion coefficients, no patterns
formed in which small asymmetries in the initial
conditions were amplified by the dynamics, This
observation can probably be understood in terms
of the following fact: Nonlinear plane waves in two
dimensions cannot be destabilized by diffusion in
the case that all diffusion coefficients are equal [13].
During the initial stages of the evolution, the cor-
ners of the square perturbation are rounded off.
The perturbation then evolves as a radial wave, ei-
ther inward or outward depending on the param-
eter values. Such a wave cannot undergo sponta-
neous symmetry breaking unless the diffusion co-
efficients are unequal. However, [ found symmetry
breaking over a wide range of parameter values for
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a ratio of diffusion coefficients of 2. Such a ratio
is physically reasonable even for small molecules
in aqueous solution. Given this diffusion ratio and
the wide range of parameters over which the repli-
cating spot patterns exist, it is likely that they will
soon be observed experimentally.

Recently Hasslacher et al. have demonstrated
the plausibility of subcellular chemical patterns
through lattice-gas simulations of the Selkov EEE
[14]. The patterns discussed in the present arti-
cle can also be found in lattice-gas simulations of
the Selkov model and in simulations carried out in
three space dimensions. Perhaps they are related to
dynamical processes in the cell such as centrosome
replication.
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READING 18.4

Direct and Continuous Assessment by Cells of Their Position in o

Morphogen Gradient;

Activin Signalling and Response to a Morphogen Gradient

Commentary: A central question in bio
developing embryo. For example, how do

logy is what determines the fate of cells in a

cells that become skin “know” they are 1o be

skin, while those that become bone know that they are to be bone? Current belief has it
that signaling molecules (called morphogens) are produced by certain cells and diffuse
through the embryo. The morphogen concentration (or, more probably, concentrations
of some number of morphogens) determines the cell fate by determining which genes

become active.

Of course, the signaling molecules are produced by cells which are

‘told to do so’ by the concentrations of other signaling molecules, »ﬁ:ﬁ? there is a
Y 8 &
§ in the embr yo that initiate gene ‘Qam/&ﬁv\ at dif-

cascade of diffusable, chemical signal
ferent times and places depending on the

appearance.

This article describes an expe
respond directly to changing mo

That is, the response of the cells is not a
tion; rather it is a step function where a given response occurs when the morphogen
» and when increased or decreased above or be-

concentration lies between two values
low these values, a distinetly different res

protein called Activin.

The term “gradient” in the title

Interpretation: First, the term refe
morphogen concentration.

ir relative concentrations and timing of their
riment that determines that certain armphibian cells

rphogen concentrations in a “ratchet-like” manner,
inear function of the morphogen concentra-

ponse occurs. The morphogen used here is a

of this article and the next has the following

1S to the

gradient of the function which measures the
Second, the gradient of any function of some coordinates



