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9.3

EXAMPLE 9.3.1

Bifurcations

Cycles and equilibrium points are distinctive features of orbital portraits of planar
autonomous systems. If the rate functions of the system are changed slightly, you
expect the new portrait to resemble the old: a cycle might contract, an equilibrium
point shift, a spiral tighten or loosen, but the dominant features of the portrait would
remain. This seems reasonable, but it is not always true. As a parameter changes, an
equilibrium point may suddenly appear and spawn a second equilibrium point, or a
stable equilibrium point may destabilize and eject an attracting limit cycle. These are
bifurcations. In the field of ODEs the word “bifurcation” has come to mean any marked
change in the structure of the orbits of a system (usually nonlinear) as a parameter
passes through a critical value. We describe several kinds of bifurcation that occur in
planar autonomous systems.

Saddle-Node Bifurcation

The simplest bifurcations involve the appearance, disappearance, or splitting of an
equilibrium point as a parameter changes. One example is given here; other types
appear in Problem 1. Some of these bifurcations are direct extensions to planar systems
of bifurcations of first-order ODEs described in Section 2.9 and its problem set.

An Example of a Saddle-Node Bifurcation
The system

¥=c+x,  Y=-y )
has no equilibrium point if the parameter c is positive. See Figure 9.3.1 for orbits if
¢ = 1. If ¢ =0, a strange hybrid of saddle point and stable node suddenly appears at
the origin, resembling a node on the left, a saddle on the right (Figure 9.3.2). This is
a saddle-node equilibrium point. It is not an elementary equilibrium point like those
in Section 6.5 because A = 0 is an eigenvalue of the Jacobian matrix of system (1)
at the origin. As ¢ decreases below zero, the origin splits into two equilibrium points
(£+/—¢, 0), one a saddle point and the other an asymptotically stable node. These
points move in opposite directions away from the origin as ¢ decreases (Figure 9.3.3).
Figure 9.3.4 shows the bifurcation diagram for system (1). The diagram plots
the x-coordinates of the equilibrium points as functions of ¢. The solid curve denotes
the x-coordinate of the stable equilibrium point and the dashed curve denotes the x-
coordinate of the unstable equilibrium point. This bifurcation diagram describes the
evolution of a system’s orbits as a parameter changes. The saddle-node bifurcation is
an example of a tangent bifurcation (see Section 2.9).

Now let’s take a look at a very different kind of bifurcation.
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FIGURE 9.3.1 No equilibrium point before the FIGURE 9.3.2 Saddle-node equilibrium point at bi-

saddle-node bifurcation: ¢ = 1 (Example 9.3.1). furcation: ¢ = 0 (Example 9.3.1).
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FIGURE 9.3.3 Saddle and node after the saddle- FIGURE 9.3.4 The saddle-node bifurcation dia-
node bifurcation: ¢ = —1 (Example 9.3.1). gram (Example 9.3.1).

The Hopf Bifurcation

In the next example an equilibrium point expands into a limit cycle as a parameter
changes.

Bifurcation to a Limit Cycle
For all values of the parameter c, the origin is an equilibrium point of the system
¥ =cx+ 5y —x(*+ )

2
Y =—=5x+cy— y(x*+y*) )
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2 - ¥ =cx+5y — x(x2 +3?) c=—1 2 7 X =cx+5y —x(x* + y?) c=0
y'==5x+cy—y(+y%) Y'==5x+cy =y +y%)

FIGURE 9.3.5 Asymptotic stability before the Hopf FIGURE 9.3.6 Asymptotic stability at the Hopf bi-

bifurcation: ¢ = —1 (Example 9.3.2). furcation value: ¢ = 0 (Example 9.3.2).

I35 Linearizations The linearization at the origin for system (2) is the system

are described in

Section 8.2. X =cx+5y .

The eigenvalues of the matrix of the linear system (3) are ¢ & 5i. As the parameter ¢
increases through zero, the equilibrium point of system (3) at the origin changes from
an asymptotically stable spiral point (¢ < 0), to a neutrally stable center (¢ = 0), and
then to an unstable spiral point (¢ > 0).

For the nonlinear system (2) the origin is an asymptotically stable spiral point
if ¢ < 0 (Figure 9.3.5), because the eigenvalues of the coefficient matrix of the lin-
earized system (3) are complex with negative real parts (Theorem 8.2.1). The origin
is an unstable spiral point if ¢ > 0 (Figure 9.3.7), because the complex eigenvalues
have positive real parts. Something different happens at ¢ = 0: the origin is still an
asymptotically stable spiral point of system (2), but orbits spiral inward very slowly
(Figure 9.3.6). As the value of c¢ increases through zero, the origin destabilizes and
emits an attracting circular limit cycle of radius /¢ (Figure 9.3.7). This behavior is
casier to understand if you write system (2) in polar coordinates:

r =r(c—r?), ¥ =% )

. From system (4), you see that the circle » = 4/c is indeed an orbit if ¢ > O (the state line
for r is in the margin). The system traverses the circle clockwise (since & is negative)
NG and attracts all other nonconstant orbits since 1’ is positive if 0 < r < /¢ and negative
ifr > /c.

Figure 9.3.8 shows a bifurcation diagram for system (2) and the equivalent sys-
tem (4). The horizontal c-axis is solid for ¢ < 0, because the origin is an asymptoti-
0 cally stable equilibrium point, and dashed for ¢ > 0, because the origin is unstable for
positive c. The solid curve r = \/c depicts the amplitude of the attracting limit cycle.
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FIGURE 9.3.7 Attracting limit cycle r = /c after FIGURE 9.3.8 Hopf bifurcation diagram (Exam-

the Hopf bifurcation: ¢ = 0.5 (Example 9.3.2).

ple 9.3.2).

Example 9.3.2 shows an example of a general mechanism for creating limit cycles
that the Dutch mathematician Eberhard Hopf discovered. Look at the system

x¥'=a(c)x+ B(c)y+ P(x, y,c)
y==B()x+a(c)y+ Q(x, y, c)
where P and Q are at least second order in x, y and twice continuously differentiable

in x, y, and ¢, and «(c) and B(c) are continuously differentiable functions of ¢. The
eigenvalues of the Jacobian matrix of system (5) at the origin are a(c) £ iB(c).

®)

THEOREM 9.3.1 Hopf Bifurcation

[33° The matrix J is

Jz[ a(c) ﬁ(c)]
—B(e) alc)

Suppose that o(0) = 0, o’ (0) > 0, and B(0) # 0 and that system (5) is asymptot- |
ically stable at the origin for ¢ = 0. As c increases through zero, the origin desta- |
bilizes and ejects an attracting limit cycle of diameter K(c), where K(0) = 0,
and K(c) is a continuous and increasing function of ¢ if ¢ > 0 is sufficiently
small. The period of the cycle is approximately 27t/|8(0)| for small ¢ > 0.

This transition from an asymptotically stable equilibrium point to an unstable
equilibrium point enclosed by an attracting limit cycle is a supercritical Hopf bifurca-
tion. In the statement of Theorem 9.3.1, the equilibrium point stays fixed at the origin
as the parameter ¢ changes, and the Jacobian matrix J of the vector rate function at
the origin has the special form given in the margin. In fact, all that is necessary is the
following:

(1) the system has an equilibrium point for a range of values of c; this point may move

along a curve as c changes;

(2) the Jacobian matrix J at the equilibrium point has the complex conjugate eigen-

values a(c) + iB(c);
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FIGURE 9.3.9 Populations approach an equilib- FIGURE 9.3.10 Populations approach a limit cycle
rium point: k = 0 (Example 9.3.4). after Hopf bifurcation: k = 0.9 (Example 9.3.4).

EXavPLE 935

23" See Problem 10

EXAMPLE 9.3.4

I See Section 7.3.

(3) at some value ¢, of the parameter, a(co) = 0, «'(co) > 0, and B(cy) # 0;

(4) the system is asymptotically stable at the equilibrium point if ¢ = c;.

Under these conditions, as ¢ increases through ¢y, a bifurcation to an attracting
limit cycle must occur.

A Hopf Bifurcation

System (2) of Example 9.3.2 is a special case of system (5) with a(c) = ¢, B(c) =
5, P=—x(x*+ %), and Q = —y(x> + y*). P and Q have order 3 and are twice
continuously differentiable. The other conditions, «(0) = 0, «’(0) > 0, and B(0) #0,
for a Hopf bifurcation are also satisfied. So, the attracting cycle in Figure 9.3.7 is a
limit cycle generated by a Hopf bifurcation as ¢ increases through 0.

In a subcritical Hopf bifurcation, an unstable spiral point stabilizes and spawns
a repelling Hopf limit cycle as the parameter ¢ changes (here o’ (0) < 0). There are
other types of Hopf bifurcations in which the equilibrium point moves as ¢ changes.
Software can test a system for the presence of a Hopf bifurcation, but we will be
satisfied with the visual evidence from numerical solvers. Here is an example.

Satiable Predation and Hopf Bifurcation: Figures 9.3.9-9.3.12

When food is plentiful, a predator’s appetite is soon satiated, so an increase in the prey
population has little effect on the interaction terms in the rate equations. One model for
the interactions of a satiable predator population x and a prey population y susceptible
to overcrowding is

x =[-a+by/(c+ky)lx

Y =I[d—ey— fx/(c+ky)ly ©)
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1.2 1 X =105 Hy/0.3+ ky)lx, k= 1.35 1.30 T X =[-0.5+ y/(0.3+ ky)]x.
¥ &I =Y /(0.3 ky)] £ Y =[1—y—x/(03+ky)ly
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FIGURE 9.3.11 Approach to equilibrium pointafter FIGURE 9.3.12 Hopf bifurcation diagram for sa-
reverse Hopf bifurcation: k = 1.35 (Example 9.3.4). tiable predation (Example 9.3.4).

[ Since the
Jacobian matrices at
(0,0) and (0, 1) have
real eigenvalues with
opposite signs, each of
these points is a saddle
point.

where a, b, ..., k are positive constants. Hopf bifurcations occur for certain ranges of
values of the coefficients. In Figures 9.3.9-9.3.11, the coefficient k is the bifurcation
parameter, and the values of the other constantsarea = 0.5, b=d =e = f =1, and
¢ = 0.3. The larger the value of k, the more rapidly the predator’s appetite satiates as
¥ increases, so k is known as a satiation coefficient.

Figures 9.3.9-9.3.11 show how the population orbits behave for three values of k:
k = 0 (no satiation effect), k = 0.9, and k = 1.35. In the first and third cases, all or-
bits inside the population quadrant spiral toward an asymptotically stable equilibrium
point. In the second case, orbits are pulled toward an attracting limit cycle. As the
parameter k continues to increase through 0.5 (approximately) a supercritical Hopf bi-
furcation takes place. An equilibrium point destabilizes and spawns an attracting limit
cycle. As k continues to increase, the cycle’s amplitude first increases, but around
k = 0.85 the amplitude begins to shrink. At k = 1.2 the equilibrium point restabilizes
and absorbs the cycle in a reverse supercritical Hopf bifurcation. For k > 1.2, only an
asymptotically stable equilibrium point remains inside the quadrant (Figure 9.3.11).

Figure 9.3.12 shows a bifurcation diagram for system (6)., where the values of the
constants a, b, ..., f are as given in Example 9.3.4. The vertical axis represents the y-
coordinate of each of the three equilibrium points of system (6) and the y-amplitude of
cycles as measured from the enclosed equilibrium point. The equilibrium points (0, 0)
and (0, 1) are always unstable, so we represent them by dashed equilibrium lines. The
equilibrium point inside the first quadrant has y-coordinate 0.15/(1 — 0.5k). As k
increases from zero, this y-coordinate increases. For0 < k < 0.5and 1.2 < k < 2, the
internal equilibrium point is asymptotically stable (solid curve). For 0.5 < k < 1.2,
the point is unstable (dashed curve), and there is an attracting limit cycle (the solid-line
hump of the extreme y-value on the cycle).
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I35 See Section 9.4 and
the WEB SPOTLIGHT
ON CHAOS IN A
NONLINEAR CIRCUIT.
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Looking Ahead

Contemporary research suggests that bifurcations can often explain mysterious oscil-
lations and behavioral changes in physical systems. Oscillations in the concentrations
of chemicals in a chemical reactor, the life cycles of a cell, and the van der Pol limit
cycle in a electrical circuit seem to be triggered as a system parameter is changed and
a Hopf or some other kind of bifurcation takes place.

The conditions for a bifurcation are often hard to verify. Once we have identified a
possible bifurcation parameter in the system, we can use computer graphics to display
visual evidence that a bifurcation event has occurred.

PROBLEMS

Saddle-node, Transcritical, Pitchfork Bifurcations. Describe the bifurcations in each system.
Find the values of ¢ at which a bifurcation occurs, and identify the bifurcation as of saddle-node,
transcritical, or pitchfork type. Saddle-node bifurcations are discussed in the text. As a parameter
is changed in a transcritical bifurcation, an asymptotically stable node and a saddle point move to-
ward each other, merge, and then emerge with the node now a saddle, and the saddle a node. As a
parameter is changed in a pitchfork bifurcation, an asymptotically stable equilibrium point suddenly
splits into three equilibrium points, two of which are asymptotically stable and the third unstable.
Plot graphs of orbits for values of ¢ before, at, and after the bifurcation. Sketch bifurcation diagrams.
[Hint: use values of ¢ near zero. See Section 2.9.]

1. X' =c+10x% y=x—-5y 2. ¥=cx—x% y =2y
3. X=cx+10x%, y =x—2y 4. X =cx—10x°, y' = -5y
5. ¥=cx+x, y=—y

Hopf Bifurcation. Show that each system in Problems 6-9 experiences a Hopf bifurcation at ¢ =0.
Plot orbits before, at, and after the bifurcation. Draw bifurcation diagrams for Problems 6 and 7
showing the y-amplitude of the limit cycle and the y-coordinate of each equilibrium point as func-
tions of c. [Hint: write the ODEs in polar coordinates. |

6. ¥ =cx+2y—x(x*+y"), ¥y =-2x+cy—y(x*+ %)

X =cx =3y —x(x*+y)3, ¥ =3x+cy— y(x2+y?)?
X=y—2, y==x+cy—~y

> M )

Rayleigh’s Equation ~ The Rayleigh ODE z” + c[(z)? — 117’ + z = 0, which is equivalent
tothe system x’' =y, ¥ = —x+c(l1 —x*)yifwesetz=x, 2’ = y.

Hopf Bifurcation Investigation.

[0 10. Subcritical Bifurcation  Show that the origin for x¥' = —cx+ y+x(x* +y?), ¥y = —x—
==

cy + y(x* + »?) bifurcates from an unstable spiral point to a stable spiral point surrounded by
a repelling limit cycle as ¢ increases through zero. Plot orbits and a bifurcation diagram.

11. Hopf Bifurcation: Moving Equilibrium Point The system
X' =c(x—5¢)+ (y —5¢) — (x — 5¢)[(x — 5¢)® + (y — 5¢)?]
Y =—(x=5¢)+c(y=5¢) = (y = 50)[(x = 5¢)* + (y — 5¢)’]
has the unique equilibrium point P(5¢, 5¢) for each value of c.

(@) Rewrite the system in terms of «, v coordinates centered at P: u = x —5¢, v=y—5c.
Then write the new system in polar coordinates based at u = 0, v =0.
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» X =c(x—5¢c)+ (y—5¢) — (x = 5¢)[(x — 5¢)? + (y — 5¢)?]
P07y =—(x=5c)+c(y —5¢) — (y — 56)(x = 5¢2 4 (y—5¢)?] 6 7

c=0.9

a 21 @ c=04
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FIGURE 9.3.13 Orbit at the Hopf bifurcation: c=0 FIGURE 9.3.14 Orbits before and after the Hopf bi-
[Problem 11(b)]. furcation [Problem 11(c)].

(b) Use (@) and show that the system has a supercritical Hopf bifurcation at ¢ = 0. Show that
for ¢ > 0, the circle of radius /c centered at P(5c, 5¢) [in x-, y-coordinates] is an orbit. See
Figures 9.3.13 and 9.3.14.

(c) Plot orbits for ¢ = —0.1, 0.1, 0.4, 0.9 and describe what is happening. [Hint: see Fig-
ure 9.3.14 where we plot orbits for each of these values of ¢ on a single graph.]

Modeling Problems.

12.  Satiable Predation and Bifurcation This problem continues the exploration of Example 9.3.4.
B Leta=0.5, d=e= f=1, c=0.3, k=0.9, and let b be the bifurcation parameter. Explore
what happens as b increases from 0.75 to 3. Any Hopf bifurcations?

% 13. The Autocatalator and Bifurcation — The autocatalator models a chemical reaction in which
= the concentration of a precursor W decays exponentially, generating a new species X in the
process. Species X decays to Y and at the same time reacts autocatalytically with Y, the latter
reaction creating more Y than is consumed. Y decays in turn to Z. The rate equations for the

concentrations w, x, y, z are

w =—aw, ¥ =aw-—bx—oaxy’. y =bx+axy*—cy. Z =cy
where the rate coefficients a, b, ¢, and « are positive parameters and the independent variable
I=¥” See Section 7.1 for is time. In what appears to be a kind of Hopf bifurcation, the concentrations of the chemical
more on the autocatalator. intermediates X and Y undergo violent oscillations for certain ranges of the parameters and
certain levels of species W. The goal of this project is to understand the behavior of the
reaction, given various sets of data and parameters. Address the following points:

e Treat the system as a nonautonomous planar system by setting w = w(0)e * and
ignoring the rate equation for z. This reduction may help with your solver graphics.

e Why is it reasonable to set x(0) = y(0) = z(0) = 0?

e After some initial oscillations in x and y, all four concentrations behave as expected
as time increases if w(0) =500, a =0.002, b=0.14, c =c=1.0, 0 < < 1500.
What levels do the four concentrations approach as ¢ becomes large?

e Repeat with b = 0.08 instead of 0.14, and w(0) = 5000. What is happening here?



