CHAPTER

This time-state curve envelops a wineglass.
Take a look at Example 7.1.1.

Nonlinear
Differential Systems

In this chapter we focus on natural processes that are modeled by non-
linear differential systems. We use numerical solvers to create displays of
solutions of initial value problems and examine the sensitivity of the solu-
tion of an IVP to changes in the initial data and the rate functions.

7.1 Chemical Kinetics: The Fundamental Theorem

A chemical reaction is a process in which reactants combine, interact, and recombine
to form products or other reactants. A chemical reactor is a vessel in which the re-
action takes place. Chemists want to know how the concentrations of the reactants in
the reaction evolve over time. Mathematical models are often as useful as empirical
studies for this purpose.

Chemical Reactions: Law of Mass Action

Suppose a reactant in a chemical reaction changes into intermediate reactants, and the
intermediates change into a final product. We adapt the compartment model idea and
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the Balance Law to model this process. Capital letters denote the various reactants,
lowercase letters the corresponding concentrations measured in appropriate chemical
units. We assume that the volume of the solution in the reactor remains constant.

In the reaction diagrammed below, reactant W becomes the intermediate X (writ-
ten as W — X) at the rate of aw concentration units of W per unit of time. Simul-
taneously, X — Y at the rate bx, and Y turns into the final product Z at the rate cy.
Let’s use a compartment model to describe how these concentrations change with time
during reactions, writing the reaction rates over the arrows:

bx

cy
X >

aw
w >

A
N

The constants a, b, and ¢ are positive. Since the transformation rate of each reac-
tant into another is proportional to its concentration, the reactions are first-order. The
Balance Law for each reactant gives four linear rate equations in the concentrations:

(1)

System (1) is a linear cascade. Let’s impose the initial conditions w(0) = wy,
x(0) =0, y(0) =0, z(0) = 0 and describe how to solve the cascade from the top
down. In particular, start with the reactant W to obtain w(f) = wee . Substitute this
expression for w into the linear rate equation for x and then, setting x(0) = 0, solve
the second ODE in (1) for x(¢), and so on, step by step down the line. Typical graphs
for x(¢) and y(#) are sketched in the margin. These intermediate concentrations reach
maximum values, and then diminish exponentially (see Problem 18).

In recent times nonlinear autocatalytic reactions have attracted a great deal of at-
tention. In an autocatalytic reaction a chemical reactant promotes its own production.
Here’s an example: two units of Y react with one unit of X to produce three units of
Y, a net gain of one unit of Y. In this reaction the rate of transformation from one
reactant into another does not follow a first-order rate law.! In order to model this kind
of reaction, we use the following empirically-based principle:

w' = —aw, x' = aw — bx, y =bx—cy, =

Chemical Law of Mass Action. Suppose that n reactant molecules Xy, ..., X,
react to produce m product molecules Py, ..., P, in one step of a reaction. Then
the rate of decrease of the concentration of each reactant molecule and the rate
of increase of the concentration of each product molecule is proportional to the
product of the concentrations of the n reactants.

'In 1951, the Russian chemist Boris Pavlovich Belousov (1894-1970) discovered a specific chemical reaction
that behaved like the autocatalator, but no one believed him and his work was ignored. In disgust he abandoned
his chemical research, and it was only years later that the importance of his work was acknowledged. Belousov
had a turbulent life, starting out as a young revolutionary in the tsarist days. After the Communist Revolution of
1917, he joined the Soviet Army and rose to the rank of Brigade Commander. It was only after retirement from
the army that he began his career as a research chemist. A decade after his death his work was recognized with
the highest civilian award of the Soviet era. For more on the chemistry and the mathematics of these reactions,
see P. Gray and S. K. Scott, Chemical Oscillations and Instabilities (Oxford: Clarendon Press, 1990), and S. K.
Scott, Chemical Chaos (Oxford: Clarendon Press, 1991).
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I~ Boxes include their
boundaries.

For example, in each of the reactions modeled by the ODEs in system (1), there s
one reactant and one product (so n = 1, m = 1 in the above law).

Apply this principle to the autocatalytic reaction X + 2Y — 3Y which augments
the first-order reaction X — Y. The Chemical Law of Mass Action implies that the
rate of decrease of X in the autocatalytic step is axy? (« is a positive rate constant),
while the rate of increase of Y is 3axy? — 2axy?* = axy?. (The rate of decrease of
X and the rate of increase of Y are equal by coincidence in this model.) Now let’s
augment the autocatalytic reaction X + 2Y — 3Y with two other reactions W — X
and ¥ — Z which follow first order rate laws. The augmented compartment model
with the relevant rates is

aw bx cy

axy?

> 2

g

Y

S
YY
<

Start with a positive initial concentration of W and zero initial concentrations for
the other reactants and the end product to obtain the nonlinear initial value problem:

w = —aw, w(0)=wy

x =aw — bx — axy?, x(0)=0 a
y =bx — cy+ axy?, y(0)=0

7 =cy, z2(0)=0

Since the system in IVP (2) is nonlinear there is very little hope of finding a solution
formula. However, given numerical values for the data wy, a, b, ¢, and «, we can usea
numerical solver to see how the four concentrations w(t), x(t), y(t), and z(¢) behave.
We do just that in Example 7.1.1 and the chapter opening figure.

States, Systems, and Solutions

Many processes lead to first-order systems of ODEs in normal form
dxl/dt = fl(t, X1y X2y 0 e vy -xn)
dXZ/dt = f2(ts X1 X25 e vy xn)

dx,/dt = f,(t,x1, X2, ..., Xp)

in the state variables x,, . . ., x,, and the independent variable ¢, representing time. The
rate functions f; are defined on some common box B of #x;x; - - - x,-space. A box in
R**! generalizes an interval in R! and a rectangle in IR?.
Including initial conditions, we get the initial value problem
x;=f1(t7xl’x27"'7xn)a -xl(tO):al

.x,2=f2(t,XI,XZ,...,xn), xZ(tO)ZaZ

x:;:fn(tvxlv-XZa---,xn)a xn(tO)Zan
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where the initial data point (¢, ay, ..., a,) lies in the box B. The Fundamental The-
orem at the end of this section states that IVP (4) has a unique solution x; = x; (¢),
X2 = x2(1), - - -, X, = x,(¢) if the rate functions are continuously differentiable in B.

Geometry of Solutions of Systems

We introduce a compact notation for system (3) by working first with three state vari-
ables. Locate each point in the state space R? by its position vector x = [x; x, x3]7
where x;, x,, and x; are the cartesian coordinates of the point. If the coordinates are
functions of #, the derivative of x(¢) is the vector x'(¢) = [x|(¢) x, (1) x5 ()17, The
vector x'(?) is tangent to the curve traced out by the position vector x(¢). See the
figure in the margin. In other words,

x1 (1) xy (1)
x(t) = | x(t) and® SiEE=NeLG)
x3(1) x5(t)

The discussion above generalizes to n state variables. Denote the state vector x, the
initial state vector x°, and the rate function vector f by the column vectors

X a, h
x=1:|. x(t) =" = S, Ji=hl &
Xn a, )

and define the derivative x” entrywise. Using this compact notation, IVP (4) becomes

X = f(t,x),  x(t)=x" (5)

This is exactly what we did in Chapter 6 for linear systems (but using a system matrix
to express the rate function vector).

A function vector x(¢) defined on some #-interval I which contains the initial point
fy is a solution of IVP (4) if x'(¢) = f(z, x(t)) for all £ in I and x(#;) = x°. Sometimes
there are formulas for solutions of systems (as we saw in Chapter 6 for linear systems
with constant coefficients), but for a system which models an intricate natural process,
that is rarely true. So the focus we take in this chapter is on numerical solutions and
qualitative properties of solutions, not on solution formulas.

A solution of a system of first-order ODEs determines curves whose behavior
highlights properties of the solution.

< Time-State Curves, Component Curves, Orbits. Suppose that x = x(¢)
is a solution of the system x’ = f(¢, x). The point (z, x(¢)) traces out a time-
state curve in the time-state space R™"! of the variables 7, x;, x,, ..., x,. The
projection of a time-state curve onto the ¢x ;-plane is the x ;- component curve.
The projection of a time-state curve onto the xx; - - - x,, state space is an orbit. A
collection of orbits is an orbital portrait.



448 Chapter 7/ Nonlinear Differential Systems |

The Fundamental Theorem for Systems

| Theorem 7.1.1 guarantees that, under mild conditions on the rate function f, IVP (5)

' _______ Bl has exactly one maximally extended solution and that solution is a continuous function
e = 0
1 of the data x” and f.
x-space
THEOREM 7.1.1 Fundamental Theorem for Systems

Consider the I'VP for n state variables

| X' = f(t,x), x(tp) = x°

where all the functions f; and 9f;/dx; are continuous on a box B in (n + 1)-
dimensional fx-space, and (z,. x°) is a point of B.

Existence: The IVP has a solution on some #-interval containing z,.
Uniqueness: The IVP has at most one solution on any #-interval containing .
Extension: We can extend the solution to a 7-interval containing ¢, for which the

055 Togemtmsigat time-state curve lies in B and extends to the boundary of B as ¢ tends to either

the data for first-order endpoint of the interval.
ODE:s see

the SPOTLIGHT ON
CONTINUITY IN THE
DATA in Chapter 2.

Continuity in the Data: The solution is continuous in the data x° and f.

From now on, we only consider systems for which the Fundamental Theorem 7.1.1
applies. We always assume that the solution of an IVP and the corresponding time-
state curve are maximally extended. The Fundamental Theorem implies that a maxi-
mally extended time-state curve can’t suddenly die inside a box B where the conditions
on f hold, so the curve must cross B from boundary to boundary. Another conse-
quence of the Fundamental Theorem is that no two time-state curves can touch inside
a box where the hypotheses on f hold, but this is not generally true for component
curves and orbits.

As an illustration of the Fundamental Theorem, let’s look at a nonautonomous sys-
tem for the concentrations of the chemical intermediates in the autocatalytic reaction
modeled by system (1).

EXAMPLE 7.1.1 Component Curves, Orbit, Time-State Curve for a Nonlinear IVP
[ See the WEB We scale the variables, coefficients, and initial data for the model system (2) of an
SPOTLIGHT ON autocatalytic reaction to get dimensionless quantities ¢, w, wy, x, y, z, a, b, ¢, and
SCALING AND ) . ! . )
UNITS for the details a. We use the same names for the dimensionless variables as in (2), and give to the
of the scaling process. dimensionless constants the values used by P. Gray and S.K. Scott (see footnote 1 on

page 445):

wo =500, a=0.002, »=0.08, c=1,a=1 (6)

From the ODE for w(r) and the value of w, in (6), we see that w(¢) = 500e %% so
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FIGURE 7.1.1 Autocatalytic oscillations turn on
and then switch off (Example 7.1.1).

time interval 7 < t < 377.

= %% _0.08x — xy?,

y’ =3 f2(ta X, y) :0.0SX— y—l—xyz

of;/0x = —0.08 — y?,
0f,/0x = 0.08 + y?,

x(0)=0
y0)=0

G e (o=

' =0.08x — y + xy°,

FIGURE 7.1.2 The orbit of the autocatalytic inter-
action between the intermediates (Example 7.1.1).

the second and third IVPs in (2) decouple to become

% = fi@, A8

x(0)=0

y(0)=0 2

The rate functions f, and f, are continuous functions for all ¢, x and y. In addition,
the first-order partial derivatives with respect to x and y

af1/dy = —2xy
afa/dy = —1+2xy

are continuous for all ¢, x, and y. So a maximally extended time-state curve of IVP (7)
reaches backward and forward across every box it intersects in txy-space.

Figure 7.1.1 shows unusual and unexpected oscillations in the concentrations in
the intermediates. These oscillations are internally generated and are not due to oscil-
lations in external factors such as temperature or pressure. After some initial swings
the concentrations behave almost normally until around # = 170 when the violent os-
cillations in the concentrations begin. The oscillations stop around r = 600 and the
concentrations of the intermediates gradually decline.

The corresponding orbit (Figure 7.1.2) self-intersects, but this does not contradict
the Fundamental Theorem because the first rate function in IVP (7) depends explic-
itly on ¢. The orbit transits each point of self-intersection at different times. The
appearance of the orbital arc in Figure 7.1.2 when it emerges from the tangle of the
oscillations suggests that the orbit is heading back to the origin as the reaction nears
completion. The chapter opening figure shows the time-state curve of IVP (7) over the
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=3 In Example 2.7.1
we called this behavior
“escaping to infinity in
finite time.”

EXAMPLE 7.1.2

Even though the rate functions of a differential system are continuous and contin-
uously differentiable for all values of time and the state variables, that does not mean
that all solutions are defined for all time. The first-order example, y’ = y?, y(0) =1,
with a maximally extended solution y = 1/(1 — 1), t < 1, shows what can happen. The
solution approaches infinity as time increases to 1 even though the rate function y? is
continuous and continuously differentiable throughout the ry-plane.

Over a long time span small changes in the data may may lead to very large
changes in the solution (e.g., see the WEB SPOTLIGHT ON PENDULUM MOTION: SENSI-
TIVITY).

Hlustration of the Conclusions of the Fundamental Theorem
The uncoupled system

Xy = x%, x1(ty) = by
Xy =2x, X2(fp) = by

()

meets the conditions of the Fundamental Theorem in all of R*. The unique solution of
system (8) may be obtained by separating variables in each rate equation and solving.
For example, the solution formula for x is

X (1) = b0 —o0 <t <00 (9)

Solving the rate equation for x; is more involved. First note that x,(z) = O for all 78
the solution corresponding to b, = 0. If b; # 0, the variables may be separated. After
integrating, using the initial data, and solving for x, in terms of ¢,

x1(1) = b, R t<ty+1/b; ?fbl >0 (10

1L —by(t—t) t>1t+1/by ifb <0

Formula (10) also gives the solutions x; () =0, —o0 < t < 00, if b; = 0. The changein
the z-interval, depending on the sign of b, is dictated by the need to keep ¢, inside the
interval where the solution is defined. In either case, the solution has finite escape time
since x, () becomes unbounded as ¢ tends to the finite value (4 1/b;. This restriction
on the ¢-interval of the definition of x; (¢) forces the same restriction on the interval of
definition of x,(#) since the full solution of IVP (8) requires both x; (¢) and x,(¢) to be
defined on a common interval. For each value of z, b, and b, IVP (8) has a unique
solution, although the solution formula and the -interval depend on the values of fg
and b,. Moreover, the solution given by formulas (9) and (10) is a continuous function
of t, t, by and b, because quotients of continuous functions are also continuous (except
where the denominator is zero).

Looking Back

According to the Fundamental Theorem 7.1.1, the solution x(¢) of the IVP x” = f(¢, %),
x(tp) = x°, is continuous in the data f and x° if the components of f and their first-
order partial derivatives are continuous. So small changes in x(¢) can be guaranteed
(at least over a sufficiently small time span containing #,) by putting bounds on the
allowable changes in f and xV.
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PROBLEMS

The Fundamental Theorem. For Problems 1-7 verify that each IVP satisfies the hypotheses of
the Fundamental Theorem. Then solve the IVP.

1. x| =x,, X, =—x1 —2x2; x1(0) =1, x(0)=1][Hint: note x| +2x| + x; =0.]
2. x| =x,, Xy =—x1—2x; x1(0)=a, x0)=>b

3. xp=2x+ e, Xy = —4x3; x1(0)=a, x»0)=>b

4. x| =x,, BE===1 x10)=a, x»0)=>b

5. x}=x, Xy = —x3; x1(0)=a, x»0)=>

6. x| =-—xi, X, =—xpsint;  x(0)=1, x0)=1

7. xXj=x, xy=-26x—2x, x,=x3/2; x1(0)=x(0)=x30)=1

8. Here Is the Solution; What Is the System?  Alex Trebek hands you two function vectors

u=I[sint 117, v=[te t3]T

and asks you for continuously differentiable functions f(x. y,t) and g(x, y, t) for which u
and v solve the system of ODEs x' = f, y" = g. Can you do it? Explain why, or why not.

Q. Orbits. For each IVP in the indicated problem plot the nine orbits corresponding to all possible

combinations of a, b = —1, 0, 2. Identify any orbits that are equilibrium points or cycles.
9. Problem 1 10. Problem 2 11. Problem 3
12. Problem 4 13. Problem 5 14. Problem 6

Chemical Rate Equations. Given the diagrams below for the chemical reaction steps, write out
the ODE:s for the concentrations. The quantities &, k,, k are positive rate constants. [Hint: the rate
equation for the concentration x of reactant X in Problem 15 is X' = —k;xy.]

k k q
15. X+Y -5 75 W 16, X+2Y 57  17. X+2¥ s 6v+ W

The Autocatalator. The rate constant « in the autocatalator system (2) “turns on” the autocatalytic
reaction if its value is positive. The reaction “turns off” if & = 0 (see system (1)).

18. Solve the cascade in system (1) with the initial conditions. w(0) = wg > 0, x(0) = y(0) =
z(0) =0.

[l 19. Comparison of Linear Model ODE with Autocatalator ~Compare the w, x, y. and z-component
curves of the nonlinear autocatalytic system (2) where o = 0.002 with those of the linear sys-
tem (1) as follows: Use the data in (6) and plot each component curve over the time span
0 < ¢ <1000. Overlay the @ = 0 and @ = 0.002 curves for each of the four reactants. How
much does the autocatalytic reaction affect the long-term behavior of the various concentra-
tions? The short-term behavior? Explain what you see.

Q} 20. Sensitivity to Changes in Data: Chemical Intermediates Replace the coefficient 0.002 in
IVP (7) by a and let o have the value 0.002, then 0.02, and finally 0.2. Plot the #x- and
ty-component curves for 0 < ¢ < 10, then for 0 < ¢ < 1000. Are the curves sensitive to the
changes in « over the short time span? Over the long time span? Explain.

<

éﬂm Changing the Data. The two-dimensional autocatalator orbit of Figure 7.1.2 is the projection of
the time-state curve of IVP (7) onto the xy-plane. Problems 21-25 extend IVP (7) by varying the ini-
tial concentration w(0) = wy of the reactant w. [Hint: see Multimedia Module 8 in ODE Architect;
also see the Library entry The Autocatalator Reaction under Chemical Models.]

21. Solve system (2), using the data in (6), but with wg = 50, then 100. What unusual features do
you see in the x- and y-component graphs in comparison to what is visible in Figure 7.1.1?

22. Find the value of wy for which you first see sustained oscillations in the component graphs.

23. Plot time-state curves like the chapter opening figure, for wy = 50, 250, 500, 800.
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Describe the behavior of solutions for various values of wjp over the range 100 < wg < 500.

Two-Dimensional Autocatalator, Turning Oscillations On and Off It may be possible to turn
the x and y oscillations on or off by changing any one of the five parameters uy, a, b, c, and
. That is the aim of the project: change a parameter up or down from the value given until
the oscillations of the concentrations of the intermediates X and Y disappear. Then explain
why you think that happens. Some suggestions:

e Duplicate Figures 7.1.1 and 7.1.2.

e Duplicate the wineglass in the opening figure of the chapter. What happens if you plot
the solution curve for 0 < ¢ < 2000 rather than the truncated curve of the wineglass,
T=<t=<3777?

e Vary the coefficient b from 0.08 up to 0.14, keeping all other parameters fixed. What
happens? Any explanation?

e Vary the coefficients a from 0.002 and ¢ from 1, but keep the other parameters fixed at
the values given. Can you turn off the oscillations?

7.2 Properties of Autonomous Systems, Direction Fields

33" See Sections 2.8
and 3.8 for these
properties in the context
of first- and second-order
autonomous ODE:s.

A differential system is autonomous if its rate functions do not explicitly depend on
time. Autonomous systems allow us to use special techniques that give valuable infor-
mation about solution behavior. Let’s look at the autonomous IVP

=, x(t) =x° 1)

where the conditions of the Fundamental Theorem hold in a box B of tx-space (see
the margin figure). Since f doesn’t depend on ¢, we use a box S in x-space, the state
space of the system, instead of the box B in tx-space. Think of S as the projection
of the box B into the x-space along the f-axis. Suppose that x° is in S, and ¢, is any
real number. We now interpret the four conclusions of Fundamental Theorem 7.1.1 in
terms of S instead of B. There are some differences: for example, even if the box S is
bounded, the orbit of the unique maximally extended solution curve of IVP (1) need
not meet the boundary of S. Indeed, the orbit may stay inside S as t — +o0o (or as
t — —00), as we saw in Section 6.5 for some planar linear systems.

Orbits, Equilibrium Points, Cycles of Autonomous Systems

Suppose that x = x(t), a <t < b, is a solution of the autonomous system, x’ = f(x).
Then, for any constant ¢, the function x = x(t +c¢), a—c <t < b —c, is also a
solution. The two solutions determine exactly the same orbit in state space because
the two time-state curves have the same projection onto the state space. So, it doesn’t
matter when the clock is started to generate an orbital arc of an autonomous system;
only the total time span b — a matters.

Next, we show that distinct orbits of an autonomous system never meet.
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THEOREM 7.2.1

EXAMPLE 7.2.1

Separation of Orbits

Suppose that the autonomous system is x’ = f(x) and that the functions f; and
afi/0x;, i, j=1,..., n, are continuous on a box S in state space. Then orbits of
two different maximally extended solutions never meet in S.

Proof. Suppose that two orbits do meet at a point. Since the rate functions don’t
depend on time, reset the clock so that both orbits are at the point at the same
time. By the uniqueness property for IVPs, the orbits coincide. Il

If a solution x(¢) stays constant for all time, it is an equilibrium solution. The corre-
sponding time-state curve is a straight line in zx-space parallel to the z-axis. The orbit
is a point in state space (an equilibrium point). No nonconstant orbit ever touches
an equilibrium point, because to do so would violate the Separation of Orbits Theo-
rem 7.2.1.

Equilibrium points correspond to the zeros of the rate function f(x). There are
computational techniques for finding these zeros, but we mostly determine them by
mspection. Here’s an example.

Equilibrium Points for a Planar System
The equilibrium points for the planar autonomous system

X =x—y+x*—xy

2
Y =—y+a @

are the points (x, y) in the xy-plane at which both rate functions are zero:
x—y+x—xy=0, and —y+x>=0 3)

Since y = x?, replace y in the first equation of (3) by x%:
x—x+x¥—-x=0, or x(1—-x*)=0

So. the x-coordinate of an equilibrium point for system (2) must be 0, +1, or —1. The
second equation in (3) now yields the three equilibrium points (0, 0), (1, 1), (-1, 1).

If an orbit of an autonomous system intersects itself after the passage of 7 units of
time, then restarting the clock at the intersection point guarantees that the same path
is traversed again in 7" units of time, and so on ad infinitum. Therefore, a closed curve
orbit arises from a periodic solution.

% Cycles. Periodic solutions of an autonomous system generate closed orbits,
or cycles, in state space.

Cycles have the following properties:




454 Chapter 7/ Nonlinear Differential Systems

THEOREM 7.2.2 Properties of Cycles

Suppose that the autonomous system is x” = f(x) and that the functions f; and
afi/0x;,1, j=1, ..., n, are continuous in a box S in state space. Then

e Cycle Property 1: no other orbit can touch a cycle in S.

e Cycle Property 2: a nonconstant orbit in S that meets itself is a cycle.

Proof. Cycle Property 1 follows from the Separation of Orbits Theorem 7.2.1.
Cycle Property 2 holds because at the meeting point, we can reset the clock and
regenerate the same closed curve over the same time span. W

We find cycles by inspecting the system. by constructing solution formulas, and some-
times by more intricate theoretical means. Frequently, however, the main clues that
periodic behavior exists show up on the computer screen in the graphs of component
curves and orbits. Let’s go to the two dimensional state space of a pair of autonomous
ODESs, where we can provide visual examples of these concepts.

Planar Autonomous Systems, Direction Fields

For the rest of this chapter, we mostly look at planar autonomous systems

X = f(x,y)
Yy =g(x, )

where the real-valued rate functions f and g and their first-order partial derivatives are
continuous on a box S in xy-space. We know that precisely one maximally extended
orbit passes through each point (xq, yo) in S.

The state space of system (4) is the xy-plane. An orbit is a curve described by
the endpoint of the position vector from the origin [x(¢) y(z)]7, where x(t), y(t) is
a solution of the system (4). As the endpoint of the position vector traces out the
orbit in time, the velocity vector v(r) = [x'(t) y'(r)]" of the endpoint is tangent to
the orbit (see the figure in the margin). The tangent vector v at the point (x, y) is
[f(x,y) g(x,y)]". Since the time 7 that the orbit arrives at (x. y) is irrelevant, think
of v as a function of x and y, and not of ¢. The length ||v(x, y)|| of v gives the speed at
which a point traverses the orbit as it passes through (x, y).

Here is another device for visualizing orbital behavior. Place a grid of points on
the rectangle @ < x < b, ¢ < y < d. Draw a tiny line segment centered at each grid
point (x, y) and parallel to the vector v = f(x, y)i+ g(x, y)j. Then scale the segments
so that they all have the same length, and no two segments intersect. The resulting field

<3 We introduced of line segments is a direction field.?
direction fields in

Section 3.3 for a special

kind of planar

autonomous system.

“)

2The slope fields in Section 2.4 for first-order scalar ODEs ¥ = f(t, y) lie in the ty-plane and should not be
confused with the xy-direction fields for the orbits of planar autonomous systems.
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FIGURE 7.2.1 A direction field and three equilib- FIGURE 7.2.2 See how the orbits fit the direction
rium points (Example 7.2.2). field of Figure 7.2.1 (Example 7.2.2).

I35 A sneaky way to
visualize orbits. Useful,
too!

EXAMPLE 7.2.2

A continuously differentiable curve in the xy-plane is an orbit of system (4) if the
tangent vector at any point (x, y) on the curve is parallel to the velocity field vector
S, Y)i+ g(x, y)j. So, a smooth curve in the xy-plane is an orbit of system (4) if it
fits a direction field. The direction field line segment centered at the grid point (x, y)
is often oriented with an arrowhead that points in the direction of the velocity vector
v(x, y) to show the direction in which orbits are traced out as t increases; we use dots
instead of arrowheads.

An Unusual Direction Field and Some Orbits
Figure 7.2.1 shows a direction field for the system in Example 7.2.1:

X =x—y+x*—xy, y=—y+x

The direction field suggests the nature of the orbits. This view is especially interesting
near the system’s three equilibrium points: (0,0), (1, 1), and (—1, 1). Figure 7.2.2
shows orbits that approach (0, 0), but then they seem to veer off. Orbits that head
toward (—1, 1) don’t turn away, but they can’t reach that equilibrium point in finite
time. Orbits seem to emerge (as ¢ increases from —oo) from the equilibrium point
(1, 1) in a spiral, counterclockwise motion and then head off toward the equilibrium
point (—1, 1). Figure 7.2.2 shows how closely orbits fit the direction field.

Let’s now take a look at special curves in the state plane that help us understand
just where orbits of a planar autonomous system rise, fall, and change direction.

Nullclines

The curves in the xy-plane defined by f(x, y) = 0 are the x-nullclines for system (4).
The curves defined by g(x, y) = 0 are the y-nullclines. The x-nullclines meet the y-
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FIGURE 7.2.3 Nuliclines, time-directed orbital arcs FIGURE 7.2.4 Orbits, direction field, nullclines

crossing nullclines (Example 7.2.3).

[ This process is like
the sign analysis of
Section 2.8.

EXAMPLE 7.2.3

(Example 7.2.3).

nullclines at the equilibrium points, so sketching the nullclines gives us a way to locate
the equilibrium points of system (4). The rate function f(x, y) has a fixed sign on each
side of an x-nullcline. Similarly, g(x, y) has a fixed sign on each side of a y-nullcline.
The nullclines divide the xy-plane into regions where orbits move to the right ( f > 0),
move to the left (f < 0), rise (g > 0), or fall (¢ < 0). Knowing where these regions
are and the signs of f and g inside them helps us visualize the portrait of the orbits
before the actual orbits are even constructed.

Nullclines of a Planar Autonomous Linear System
The nullclines of the linear system

X=x+y—4

Y =x—2y—1 ®)

are the straight lines

x-nullcline: x+y—4=0, y-nullcline: x—2y—1=0

The two lines cross at the equilibrium point (3, 1) in the xy-plane. The dashed lines
in Figure 7.2.3 are the nullclines that give a good indication of orbital behavior. Label
each sector formed by x- and y-nullclines according to whether x” and y’ are positive
or negative in the sector. For example, x’ = x + y — 4 is positive above the x-nullcline
(just check the sign at one point in the sector), so sign analysis tells us that an orbit must
move to the right as ¢ increases. Above the y-nullcline the derivative y’' = x — 2y —1
is negative, so above both nullclines orbits move to the right (x’ > 0) and downward
(' < 0). A similar sign analysis applies to the other sectors.

With all this information about the signs of x” and y” at hand, sketch arcs of orbits
as they cross the nullclines. For example, the arc at the upper left of Figure 7.2.3 starts
in the upper sector near the x-nullcline, moves down and to the right, crosses the x-
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FIGURE 7.2.5 Direction field, nullclines (the axes), FIGURE 7.2.6 Time-state curves in xyt-space for
equilibrium point (origin), cycles for a harmonic os-  the harmonic oscillator and the corresponding planar
cillator (Example 7.2.4). cycles (Example 7.2.4).

EXAMPLE 7.2.4

2" See Problem 1.

nullcline vertically (since x” = 0 on the nullcline), and then turns to the left since in
this new sector x’ < 0. The arrowhead shows the direction of time’s increase on each
orbital arc. See Figure 7.2.4 for some computer-generated orbits of system (5); the
orbits do indeed fit the direction field.

Now let’s take a system we saw in Section 3.4 as a second-order ODE and find its
nullclines, direction field, orbits, and time-state curves.

The Harmonic Oscillator
The harmonic oscillator system of Section 3.4 is

x' = Y, y, — _C()2x (6)
where w is a nonzero constant. The nullclines are
x-nullcline: y =0, y-nullcline: x =0

and (0, 0) is the single equilibrium point. The first-order system (6) is equivalent to
the second-order ODE x” + w?x = 0. The nonconstant solutions of x” + w?x = 0 are
all periodic with a common period 277/ w, and the orbits are cycles.

Figure 7.2.5 shows the nullclines crossing at the equilibrium point at the origin. It
also shows a direction field and three cycles in the case @ = 1. Figure 7.2.6 illustrates
the time-state curves with the orbits below. The constant time-state curve x =0, y =0,
corresponding to the equilibrium point at the origin in Figure 7.2.5, shows up as a
straight line parallel to the #-axis in Figure 7.2.6. We plot the orbits in Figure 7.2.6 in
the plane 7 = —10 so that orbits and time-state curves don’t appear to meet.
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FIGURE 7.2.7 Direction field, nullclines (dashed), FIGURE 7.2.8 Some orbits are cycles, other orbits
and four equilibrium points. The y-nullcline opens enter the computer screen and then leave as ¢ in-
upward (Example 7.2.5). creases (Example 7.2.5).

System (6) is linear, so we can solve it explicitly. The next system is neither linear,
nor solvable in terms of elementary functions, but the direction field and nullcline
approach still give us information about orbital behavior.

EXAMPLE 7.2.5 An Intriguing Direction Field: Nullclines, Orbits
The direction field and the nullclines in Figure 7.2.7 for the system

/

X =—x+ysiny
y =y—x"cosx
shows something unusual happening near four equilibrium points. The plotted orbits
of Figure 7.2.8 verify our suspicions. Two of the equilibrium points turn approaching
orbits away. Nested cycles surround the other two equilibrium points.

See how orbits change direction as they cross the nullclines x = ysiny and y =
x* cos x. The nullclines divide the rectangle, 1 < x < 6, —12 < y < —4, into regions,
inside each of which x’ and y’ have fixed signs. As an orbit moves horizontally across
a y-nullcline (or vertically across an x-nullcline), y’ (or x’) changes sign. For example,
both x" and y’ are negative in the region at the upper right, so orbits fall to the left
as t increases. In particular, the orbit in Figure 7.2.8 that enters the screen at x = 6,
y = —4.5, moves down and to the left, crosses an x-nullcline vertically, enters a region
where x’ is positive, continues to fall (because y’ < 0), and moves to the right until it
crosses another arc of the x-nullcline, and so on. Eventually, this orbit exits the screen
through the point (1.42, —12).

We can analyze planar autonomous systems using direction fields and nuliclines,
but these techniques are not available for nonautonomous planar systems or for any
system with more than two state variables.




