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1. Linear systems.

Consider the following ODE:

d�!r (t)
dt

= A�!r (t), �!r (t) =
�
r1(t)
r2(t)

�
with A =

�
�1 �4
1 �1

�
,

Find the evolution operator for this system. (2p)

Find which type has the stationary point at the origin and give a sketch of the phase portrait
with marked directions of trajectories. (2p)

Solution

The evolution operator is 't(
�!r (0)) = exp(t A)�!r (0) where exp(t A) =

P+1
k=0

Aktk

k! . Solution
reduces to a reasonable calculation of exp(t A): We start from computation of eigenvalues to
the matrix A.�
�1 �4
1 �1

�
, eigenvalues: �1 = �1� 2i; �2 = �1 + 2i.

In the case with complex eigenvalues it is easier to use the method by Sylvester to compute
exp(t A).

De�ne matrices Q1 and Q2:

Q1 =
A��2I
�1��2 =

1
(�1�2i)�(�1+2i)

��
�1 �4
1 �1

�
�
�
�1 + 2i 0
0 �1 + 2i

��
= 1

4 i

�
�2i �4
1 �2i

�
=�

1
2 �i
1
4 i

1
2

�
,

Q2 =
A��1I
�2��1 =

1
(�1+2i)�(�1�2i)

��
�1 �4
1 �1

�
�
�
�1� 2i 0
0 �1� 2i

��
= �14 i

�
2i �4
1 2i

�
=�

1
2 i
�14 i

1
2

�
with properties: Q1Q2 = 0; Q21 = Q1; Q

2
2 = Q2;

A = �1Q1 + �2Q2;

The evolution operator is 't(
�!r (0)) = exp(t A)�!r (0) where

exp(t A) =
P
k
Aktk

k! =
P
k
(�1Q1+�2Q2)

k tk

k! =
P
k
(�1)k tk

k! Q1 +
P
k
(�2)

k tk

k! Q2 = et�1Q1 +

et�2Q2 = e
t(�1�2i)Q1 + et(�1+2i)Q2 =

et(�1�2i)
�

1
2 �i
1
4 i

1
2

�
+et(�1+2i)

�
1
2 i
�14 i

1
2

�
=

�
1
2e
�(1+2i)t + 1

2e
�(1�2i)t �ie�(1+2i)t + ie�(1�2i)t

1
4 ie

�(1+2i)t � 1
4 ie

�(1�2i)t 1
2e
�(1+2i)t + 1

2e
�(1�2i)t

�
=

e�t
�

1
2e
�(2i)t + 1

2e
�(�2i)t �ie�(2i)t + ie�(�2i)t

1
4 ie

�(2i)t � 1
4 ie

�(�2i)t 1
2e
�(2i)t + 1

2e
�(�2i)t

�
= e�t

�
cos 2t �2 sin 2t
1
2 sin 2t cos 2t

�
The �xed point in the origin is the stable focus because the real part of the eigenvalues is
negative. Spirals go counterclockwise around the origin that is easy to see from the formula
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for the evolution operator by inspecting solutions for simple initial vectors�!r (0) =
�
1
0

�
or

�!r (0) =
�
0
1

�
.

2. Ljapunovs functions and stability of stationary points.

Consider the system of equations:
�
x0 = �x+ 2xy2
y0 = �(1� x2)y3

Show that the origin is an stable �xed point. (4p)

Solution

V (x; y) = x2 + y2

V 0 = 2x
�
�x+ 2xy2

�
+ 2y

�
�(1� x2)y3

�
= �2x2 + 4x2y2 � 2y4

�
1� x2

�
=

�2x2
�
1� 2y2

�
� 2y4

�
1� x2

�
We see that V 0 < 0 for jxj < 1 and jyj <

p
1=2

3. Periodic solutions to ODE.

Use Poincare - Bendixsons theory to show that the system of equations�
x0 = x� 2y � x

�
x2 + y2

�
y0 = 2x+ y � y

�
x2 + y2

�
has at least one periodic solution. (4p)

Solution

r2 =
�
x2 + y2

�
0:5
�
r2
�0
=
�
x2 + y2

� �
1�

�
x2 + y2

��
= r2

�
1� r2

�
r0 = r

�
1� r2

�
> 0, r < 1

r0 = r
�
1� r2

�
< 0, r > 1

the only �xpoint is the origin.r0 = 0 if r = 0 or r = 1. In the second case x0 = �2y, y0 = 2x
therefore the only �xpoint is in the origin x = y = 0. Therefore the ring 0:5 < r < 2 is an
invariant set without �xpoints and must include at least one periodic trajectory.

4. Hopf bifurcation.

Explain the notion Hopf bifurcation.

Show that the system
�
x0 = �x+ y
y0 = �x� y3

has a Hopf bifurcation at � = 0: (4p)

Solution

The matrix
�
� 1
�1 0

�
of the linearised system has eigenvalues: �1 = 1

2� �
1
2

p
�2 � 4; �2 =

1
2�+

1
2

p
�2 � 4.

For j�j < 2 Re�1;2(�) = 1
2�.

d
d��1;2(�)

���
�=0

= 1=2 > 0.

The asymptotic stability of the �xed point in the origin for � = 0 is necessary to investigate.�
x0 = y
y0 = �x� y3

We try the function V (x; y) = x2 + y2 to check the stability.
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V 0 = 2xy � 2yx� 2y4 = �2y4 � 0. It implies the neutral stability of the �xed point. V 0 = 0
on the line y = 0.

This line does not include whole trajectories exept the origin because the velocities of the
system cross the line y = 0 in all points exept the origin: y0 = x 6= 0 for all points exept the
origin.

5. Chemical reactions by Gillespies method

Consider the following reactions: X +2Z

c1
!
 
c2

W; W +Z

c3
!
 
c4

P +Z where ci dt is the

probability that during time dt the reaction with index i will take place i = 1; 2; 3; 4.

a) Write down di¤erential equations for the number of particles for these reactions. (2p)

b) Give formulas for the algorithm that shell model these reactions stochastically by Gillespies
method. (2p)

Solution

Equations for the numbers of particles are:

X 0 = �c1X 1
2Z

2 + c2W

Z 0 = �c1XZ2 + c22W
W 0 = c1X

1
2Z

2 � c2W � c3WZ + c4PZ
P 0 = �c4PZ + c3WZ
b) Gillespies method.

P (� ; �)d� is the probability that the reaction of type � will take place during the time interval
d� after the time � when no reactions were observed.

P (� ; �) = P0(�)h�c�d� .

Here P0(�) is the probability that no reactions will be observed during time � .

h�c�d� is the probability that only the reaction � will be observed during the time d� .

h� is the number of combinations of particles necessary for the reaction �. For reaction 1
in the example h1 = X 1

2Z
2, for reaction 2 h2 = W , for reaction 3 h3 = WZ, for reaction 4

h4 = PZ.

For P0(�) = exp(�a�) with a =
P4
�=1 h�c�.

Algorith to model reactions:

0) initialize variables X, Z, W , P for time t = 0.

1) Compute hi, a for actual values of variables.

2) Generate two random numbers r and p uniformly distributed over the interval (0; 1).

Random time � before the next reaction is � = 1=a ln(1=r).

Choose the next reaction � so that
P��1
i=1 hici � p a �

P�
i=1 hici.

3) Add � to the time variable t.Change the numbers of particles after the chosen reaction:

� = 1 ! X = X � 1, Z = Z � 2, W =W + 1.

� = 2 ! X = X + 1, Z = Z + 2, W =W � 1.
� = 3 ! P = P + 1, W =W � 1:
� = 4 ! P = P � 1; W =W + 1:
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3) If time is larger then the maximal time we are interested in - �nish computation, otherwise
go to the step 1.

Max. 20 points;

For GU: VG: 15 points; G: 10 points. For Chalmers: 5: 17 points; 4: 14 points; 3: 10 points;
Total points for the course will be an average of points for the project (60%) and for this exam

(40%).
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