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Chaotic current and voltage in a nonlinear
circuit? Take a look at the scroll circuit in
the WEB SPOTLIGHT ON CHAOS IN A

NONLINEAR CIRCUIT. Nonlinear Systems:

Cycles and Chaos

In this chapter we look at the long-term behavior of orbits of systems of
ODEs (usually autonomous and nonlinear, often planar). We will see orbits
attracted to a cycle (an orbit of a periodic solution) or to a cycle-graph (a
strange combination of equilibrium points and orbits on a closed graph).
We will see bounded orbits that wander chaotically between regions of os-
cillatory behavior. We will also see unusual behavior that suddenly appears
as a parameter is pushed beyond a bifurcation point. The material in this
chapter takes us to the edge of understanding of dynamical behavior.

9.1 Cycles

... the aeolian harp, a pneumatic hammer, the scratching noise of a knife on a
plate, the waving of a flag in the wind, the humming noise sometimes made by a
water-tap, ..., the periodic recurrence of epidemics and of economic crises, the
periodic density of an even number of species of animals living together and the
one species serving as food for the other . .., and finally, the beating of a heart.

—Balthazar van der Pol
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EXAMPLE 9.1.1

¥ Refer to
Section 7.2,
formula (12). for
another way to
transform a planar
system from
rectangular to polar
coordinates.

Each of these phenomena has a repeating event at its core. Ordinary differential equa-
tions model these systems with varying degrees of accuracy. Van der Pol designed
circuits that sustained currents and voltages which steadily oscillated without any pe-
riodic driving force, and he recognized the universality of this kind of behavior.! Ac-
cording to van der Pol, nonlinear autonomous systems of the type x' = F(x) (where
F(x) is a continuously differentiable function vector) can model many physical sys-
tems that exhibit this kind of behavior. So, the Fundamental Theorem 7.1.1 holds.

Cycles and Limit Cycles

A cycle is the orbit in state space of a periodic oscillation. We have already seen
many cycles, for example, the cycles of a linear harmonic oscillator such as the model
of an undamped Hooke’s Law Spring and the nonlinear cycles of the Lotka—Volterra
predator-prey system. We focus now on a special kind of cycle, a limit cycle.

< Limit Cycle. A cycle of an autonomous system is a limit cycle if some non-
periodic orbit tends to it as t — 400 or as t = —oo. A limit cycle is an attractor
if every nearby orbit approaches it as t — +o00, and a repeller if every nearby
orbit approaches it in reverse time, that is, as t - —oo.

The cycles of the linear harmonic oscillator (Section 3.4) and of the nonlinear Lotka-
Volterra system (Section 2.6) are not limit cycles because all orbits near each of these
cycles are also cycles. This prevents them from approaching one another as t = +00
or as t — —oo. In this section and the next we will search for limit cycles of planar
autonomous systems x’ = f(x,y), y = g(x,y), where f and g are continuously
differentiable.

Polar Coordinates and Cycles
Let’s show that the following system has an attracting limit cycle:

X=x—y—x(?+y), Y=x+y—y@+)) (1)

We use polar coordinates to conveniently describe the orbits. Differentiate 2 = x* + y*
and tan 6 = y/x via the chain rule:

2rr = 2xx' +2yy = 2x[x — y — x(:F + y)]+ 2y[x + y — y(x* + ¥7)]
— 2(.X2 + y2) o 2(.’C2 __I__ y2)2 — 2r2 _ 2r4

xv/_ xl l v
(sec’0)8 = A i [x+y—y@+y)] - S5 [x—y—x(Z+ )]
x2 X S
9) 2 2
:l—l—(z> = +2y = sec’ 6
x X

The Dutch physicist and engineer Balthazar van der Pol (1889-1959) did pioneering work on the first com-
mercially available radios in the 1920s. His mathematical models for the behavior of a radio’s internal currents
and voltages are still in use, and we will look at one of them later in this section.
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FIGURE 9.1.1 Attracting limit cycle at » = 1 en- FIGURE 9.1.2 Attracting and repelling limit cycles
closes an unstable equilibrium point (Example 9.1.1). enclose an unstable origin (Example 9.1.2).

Cancel common factors and obtain the system in polar coordinates equivalent to (1):
Y =r(1-7r%), =1 2

Antidifferentiate the 6 equation to obtain 8(t) =t + C. So O(t+2m) = 6(t) + 2,
and orbits move counterclockwise around the equilibrium point of system (1) at the
origin in a full rotation every 27 units of time. The ODE for r in (2) tells us that r =0

r and r = 1 are solutions. The solution r = 0 corresponds to the equilibrium point at
‘ the origin, while r = 1 corresponds to the circular cycle x2 + y* = 1 for system (1). If
1 oA 0 < r(0) < 1, then sign analysis of the ODE r = r(1 — r?) tells us that r(¢) decreases

10 zero as t — —oo and increases to 1 as t — +o00. For ry > 1, r(¢) decreases to 1 as
y t — 400 and increases to +o00 as ¢ decreases (see the state line in the margin). The

unit circle is thus a limit cycle of period 27 that attracts (A) all nonconstant orbits of
0 lR system (1), but the origin repels (R). See Figure 9.1.1 for eight orbits.

In the next example, we go directly to a system in polar coordinates and use sign
analysis to examine the qualitative behavior of its orbits.

Two Limit Cycles: One Attracts, the Other Repels
p The system in polar coordinates

¥ =0.1r(1 — ) (4 — %), g =1

2 oR
has a repelling equilibrium point (» = 0), an attracting limit cycle (r = 1), and a re-
1 6A pelling limit cycle (» = 2). The sign changes of ' as r passes throughr =1andr =2
suggest these results (see the state line in the margin). As in the previous example,
0 eR each cycle has period 27, and orbits turn counterclockwise because ¢’ is positive (Fig-

ure 9.1.2). We inserted the factor of 0.1 in the rate function for r to make the graphs in
Figure 9.1.2 attractive (try some other factors and see what happens).
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Capacitor 4

C

@ L% Inductor

R

Resistor 2

=" Look back at
Section 4.4 for these laws.

33" From solutions
I(t) and V(1) = Vi3(t)
of (5), use (3) and (4) to
obtam V3 and Vj,.

33" A negative resistor
g

pumps energy into the

circuit.

Let’s look at the planar system van der Pol used to model radio circuits.

Van der Pol Circuits and Limit Cycles

How would we design an electrical circuit with a periodic output current of prescribed
amplitude and period toward which the current would return quickly after a distur-
bance? One idea is to create a new circuit by replacing the passive resistor in an RLC
loop with an active semiconductor.

Passive RLC Circuit
Attach and then remove a voltage source to the circuit shown in the margin and then
take it away. How do the current I(¢) and the voltages across the circuit elements
change with the passage of time? According to Kirchhoff’s Voltage Law (Section 4.4),
the voltages across the three circuit elements satisfy

Viz= Vi + V3 3)

where V;; denotes the voltage drop from node i to node j. Faraday’s Law, Ohm’s Law
and the differential form of Coulomb’s Law, respectively, relate the voltages to the
corresponding circuit elements, where L, R, and C are positive constants:

Vio=LI
Vos = RI
23 , (4)
Vi,=—=1I
13 C
The minus sign in the last equation follows from the relation Vi3 = —Vj3,. The two

state variables / and V = V}5 characterize the dynamics of the circuit via the linear
system
pa—— 1 1

I'=—Vip=—-(=Vy+V)=—(—RI+V)
L L L

1 ©)

Vi=—=I

C
The system matrix for (5) has the characteristic polynomial A* + RA/L+-1/LC. Since
the characteristic roots have negative real parts, the current 7(¢) and the voltage V()
tend to zero as t — +o00. There are no periodic solutions, so there are no cycles. The

physical reason for this decay is that the resistor dissipates electrical energy.

Active RLC Circuit
The circuit is active if energy is pumped in whenever the amplitude of the current i
too low. Replace the resistor by an active element that acts as a negative resistor at low
current levels but dissipates energy at high levels. Now modern semiconductor devices
do just this.

We obtain the rate equations for the active circuit from the passive circuit sys-
tem (5) when we replace the Ohm’s Law voltage drop RI by a nonlinear function
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F (1) that models the behavior of the active circuit element:
1
I = Z(—F(I) +V)
: (©)
Vi=——1I
C

Capacitor 4

C

I(1) )} L

Nonlinear

Resistor 2

Va3
. .

-

Inductor

If we rescale time ¢, current /, and the voltage V across the capacitor to dimensionless
form, system (6) takes on the form of a van der Pol system

dx
d—T:y—Mf(x)

dy
dr

(7

—X
where

r:t/\/E, x=1\/Z, y= V/C
p=~C,  f(x)=F@x/VL)

We continue to refer to the new dimensionless variables z, x, and y as, respectively,
time, current, and voltage.

The margin figures show an active van der Pol circuit and the nonlinear voltage-
current relationship of a typical semiconductor device. In particular, note that voltage y
and current x have opposite signs if |x| < a. The nonlinear nature of the semiconductor
is enough to completely change the long-term behavior of the current in the circuit and
the voltage across the capacitor.

Here is the mathematical result based on van der Pol’s work:

THEOREM 9.1.1 The van der Pol Cycle

ISy We sketch the
proof is in the Student
Resource Manual.

EXAMPLE 9.1.3

[ The two orbits
in Figure 9.1.4
approach the limit
cycle so fast that what
you see in the figure is
a good approximation
of the limit cycle.

Suppose that the continuous and piecewise smooth function f(x) has the prop-
erties: (a) f(—x) = — f(x); (b) for some positive constant a, f(x) is negative
for 0 < x < a, but positive for x > a; and (¢) f(x) - 400 as x — +oo. Then
for each positive value of 14 the van der Pol system x’ = y — J(x), ¥ = —xhas
a unique limit cycle that encloses the equilibrium point x = 0, y = 0. This cycle
attracts all nonconstant orbits.

Let’s see what the limit cycles look like.

A Particular Van der Pol System
Van der Pol originally used the function

[
fx) = §x3 —X )

which meets the conditions of Theorem 9.1.1 with a = /3. Figures 9.1.3 and 9.1 .4
show the x-nullcline, y = u(x*/3 — x) for . = 1, 20, and two orbits that wind toward
the attracting limit cycle (one from the inside and one from the outside). The figures
also show the corresponding x- and y-component graphs. For large enough values of
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Voltage y
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FIGURE 9.1.3 1 = 1: two orbits approach the limit FIGURE 9.1.4 ;. = 20: two orbits approach the
cycle. The x-nullcline is the dashed curve (Exam- limit cycle The x-nullcline is the dashed curve. (Ex-

ple 9.1.3).

I5” The period 6.5
for . = 1 is close to
2. That’s not
surprising since all
nonconstant orbits are
sinusoids with a period
of 27 for u = 0.

ample 9.1.3).

w, the limit cycle has slanting sides nearly along arcs of the x-nullcline. For these
values of u, the top and the bottom of the cycle correspond to rapid changes in the
magnitude of the current x (see the nearly vertical segments of the x-component graph
in Figure 9.1.4). Slow changes along the sides of the cycle result as the current relaxes
and the voltage reverses its sign. This is why the limit cycle of a van der Pol system
for large values of u is a relaxation oscillation.

We can tune the circuit by changing the value of p. This alters the period of the
cycle, but it has little effect on the amplitude of the current. For example, we see
from the graphs in Figures 9.1.3 and 9.1.4 that the period is approximately 6.5 units
of dimensionless time 7 if © = 1 and about 33 units if ; = 20. In each graph, the
dimensionless current has amplitude 2. In contrast to the current, the amplitude of the
dimensionless voltage y across the semiconductor does increase with .

The Jacobian matrix at the origin for the van der Pol system x' = y — . (x* /3 — %),

y =—xis J = Ii_’ul“ (1)] with eigenvalues [t &+ (u? — 4)'/2]/2. Since p is positive,

the eigenvalues are real and positive if > 2, but they are complex conjugates with
positive real parts if 0 < . < 2. By the results of Section 6.5 we know that the origin
is a repelling and unstable equilibrium point, so we conclude that nearby orbits move
outward from the origin as time advances.

Looking Back

Van der Pol’s limit cycles and the limit cycles of the examples are internally generated
by the dynamics of the corresponding autonomous systems and are not the response to
some external periodic driving force. It is no accident that these systems are nonlinear.
Indeed, an autonomous linear system x’ = Ax has no attracting and no repelling limit
cycles. For, if x = x(¢) is a periodic solution of x’ = Ax, then by linearity so is x =
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cx(r) for all real constants c. This means that any cycle of a linear system is part of a
family of cycles, so it can’t attract (or repel) all nearby orbits.
Cycles of a planar autonomous system have two distinctive properties:

e Each cycle encloses one or more equilibrium points.?

e Each cycle divides the plane into two regions (i.e., the interior and exterior regions
of the cycle), and no orbit that starts in one region can penetrate the other without
violating uniqueness.

The first property tells us that if we want to find cycles, we should locate the equilib-
rium points first. The second property implies that we can regard the dynamics and
orbital behavior in the interior region bounded by a cycle as independent from that in
the exterior region, and vice versa.

PROBLEMS

Cycles and Limit Cycles. Find the equilibrium points and the cycles of the following systems
written in polar coordinates. As in Examples 9.1.1 and 9.1.2, draw labeled state lines for . Sketch
the cycles and other orbits in the xy-plane, x = rcos 0, y = rsin6. Use arrowheads to show the direc-
tion of increasing time. Is the equilibrium point at the origin asymptotically stable, neutrally stable,
or unstable? Determine whether each cycle is a limit cycle, and if it is, whether it attracts or repels.

1. /=4 —nG-r), 0 =1

2. F=rr—-1)Q2-r)B—-r), ¢ =-3

3. ¥=r(1—=r@4—7r*, ¢ =1—r*[Hint: ¥ and @ are 0if r = 1.]
4. r=r(1 —r>)(9—1?), @ =4 —? [Hint: @ = 0 but #0ifr=2]

5. F=vrcosar, 0 =1

Limit Cycles. Find all limit cycles and identify each as an attractor or a repeller. Use polar coordi-
nates as in Example 9.1.1 and draw labeled state lines for r.

6. X=y—x(x*+y"), y=—x—y(x*+y)

7. ¥ =x+y—x(x+y), y=—x+y—y(x2+y?)
8. X=2—y—x@-x"—y), y=x+2y—y3—-x2—)?)

00 9. ¥=r(1—-r)@—r*)(9—1r?)/1000, ¢ = 1. Plot orbits in the rectangle |x| < 6, |y| < 4,
— where x = rcos6, y =rsiné.

Center-Spiral Equilibrium Points.

[0 10. Center-Spiral Consider the system in polar coordinates ' = r3sin( | /r), 6 =1, where r

E= o o S . -
is defined to be zero at r = 0. Show that the corresponding nonlinear xy-system has infinitely
many circular limit cycles around the neutrally stable equilibrium point at the origin, the
sequence of shrinking cycles converges onto the origin, the cycles alternately attract and
repel, and all other orbits spiral away from one cycle and toward another as 7 increases. The
origin of the xy-system is a center-spiral. Explain the name. [Hint: plot xy-orbits in an
rcos 6, rsiné plane.]

ZFor a proof, see page 252 of Differential Equations, Dynamical Systems, and Linear Algebra by Morris W.
Hirsch and Stephen Smale (New York: Academic Press, 1974).
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11.

Explain why the origin of the xy-plane is a center-spiral equilibrium point for the system
r =rsin(w/r), 0 = —2, where ' is defined to be zero if r = 0.

Unusual Cycles.

12.
=

13.

14.

15.
E=

Nonisolated, Nonlinear Cycles and a Center ~ Show that the nonconstant orbits of the system
x =33, y' = —x3 are cycles that enclose the equilibrium point at the origin and fill the xy-
plane. Plot the orbits and component curves corresponding to initial points (0, 0), (0.5, 0),
(1,0), (2,0). Are the periods of distinct cycles the same?

Semistable Cycles Some cycles repel on one side and attract on the other; they are one kind
of semistable cycle. Find all cycles of ' = r(1 —r?)2(4 — r*)(9 — r?), ¢ = 1 and identify
each as attracting, repelling, or semistable. Sketch orbits and draw a labeled state line for r.

A Strange Cycle Explain why the system r' = r(r — 1)?sin[z/(r — 1)], 6 = 1, where
r’ is defined to be zero if r = 1, has a cycle r = 1, which is not a limit cycle, and every
neighborhood of which contains other cycles as well as spirals between successive cycles.
[Hint: asr — 1. (r—1)?sin[n/(r—1)] > 0; ¥ =0atr=1andatr=1x1/n]

Cycles in Space  Describe the orbits near the cycle r = 1. z = 0 of the system (in cylindrical
coordinates) ¥’ = r(1 — r?), 6 =25, 7 = az, where « is a constant. Consider separately the
three cases o < 0, =0, a > 0. Plot orbits in xyz-space for« = —0.5, 0, 1.

[J Van der Pol Systems. Verify that each system in Problems 1622 satisfies the conditions of The-

== S = g o .
orem 9.1.1. For each value of u plot the limit cycle and some orbits that are attracted to it. Estimate
the period and the x- and the y-amplitude of each cycle; verify that the larger the value of y, the
longer the period and the larger the y-amplitude of the cycle. The x-amplitude?

16.
17.
18.
19.
20.
21.
22.

23.

Liénard Equation.
g(x) are continuous and piecewise smooth, is the Liénard equation .

I35 Named for the
French mathematician
and applied physicist,
Alfred Liénard
(1869-1958)

24.

v

0
&

In

x=y—pn(*—10x), y=-x; w=0.1,2

X =y—px(|x] —1), y =—x; u=0.5,5,50

X =y— px(x* +x* = 1)/10, y=-x p=0.1.1

X =y — ux(2x* —sin® wx — 2), y=—x; =055
¥=y—px—|x+1+|x—1), y=-x n=05,550

X =y—p@—x), y=-x; n=0.1.3,5.7,10
¥ =y— p(lxlx® —x), g el TR (5} | a2 oyl U

Bifurcation in a van der Pol System Use a numerical solver to show that as p decreases
from +1 to -1, the equilibrium point of system (7) changes its stability at ;= = 0. Describe
what happens to the limit cycle as ;. sweeps from +1 to -1.

The nonlinear, second-order ODE x” + f(x)x' + g(x) = 0, where f(x) and

Show that if y = x' 4+ F(x), where F(x) = fox f(s)ds, then the Liénard equation can be
written in Liénard system form as x' = y — F(x), ¥y = —g(x). Verify that the van der Pol
system is a Liénard system. |Hint: the xy-plane here is the Liénard plane.]

Show that V = y?/2 + G(x), where G(x) = f(f g(s)ds, is a weak Lypanov function for the
Liénard system of Problem 24 if g(x)F(x) is positive for x 7 0. Explain why the origin of
the xy-plane is a stable equilibrium point of the Liénard system. [Hint: see the SPOTLIGHT
ON LYAPUNOV FUNCTIONS.]

Plot the orbit of the periodic solution of x” + (x* — 1)x’ + x = 0 both in the xx"-plane and in
the Liénard xy-plane, where y is defined as in Problem 24.

The Rayleigh equation is 7’ + u[(z')* — 11z’ + z = 0. Differentiate the Rayleigh equation
with respect to ¢, then set x = /37, and show that x” + (x> — 1)x’ + x = 0. Explain why
the ODE in x reduces to a Liénard system if we set y = x’ + u(x*/3 — x). Show that the
Rayleigh equation has a unique attracting limit cycle for each 1 > 0. Plot the cycle and orbits
through the points (1.5, 1.5) and (0.5, 0.5) in the zz'-plane for u = 0.1, 1, 5, 10.
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9.2

EXAMPLE 9.2.1

Jules Henri Poincaré

Solution Behavior in Planar Autonomous Systems

The maximally extended orbits of a planar autonomous system are curves in the state
plane. If the rate functions of the system are continuously differentiable, then the orbits
completely fill up the plane. By uniqueness no two orbits ever cross or touch, but they
may behave in an incredible variety of ways. However, if an orbit is bounded, then,
remarkably enough, we can limit our interpretation of its long-term behavior ed to one
of only three alternatives. Poincaré?® saw to the heart of this behavior, and his ideas
underlie much of what we have to say in this section.

Cycle-Graphs

Orbits of a damped Hooke’s Law spring tend to an equilibrium point as 1 — +o0.
Orbits of a van der Pol system spiral toward a limit cycle as 7 — +o00. In the example
below orbits approach a strange hybrid of equilibrium point and cycle that is neither
constant nor periodic.

Consider the planar autonomous system

X =x(1—-x=3.75y+2xy+ y%)
Yy = y(=14y+3.75x — 2x* — xy)

The x- and y-axes and the line y = 1 — x are composed of orbits. We can show this
by replacing y with 1 — x on the right sides of the rate equations and observing that
Y’ = —x'; we omit the calculations. The axes and the line y = 1 — x intersect at the
equilibrium points (0, 0), (1, 0), and (0, 1). Figure 9.2.1 shows the counterclockwise
direction of motion along the sides of the orbital triangle that connects these points.
Each edge orbit tends to an equilibrium point at a vertex as t — 400 and as t — —o0.
The triangle can’t be traversed in finite time since it takes infinitely long to trace out
each side, so the triangle is not a periodic orbit of system (1).

Visual evidence suggests that every orbit inside the triangle spirals outward from
the equilibrium point (0.25, 0.25) toward the triangle as  increases (Figure 9.2.1). Fig-
ure 9.2.2 shows the component graphs of the spiraling orbit of Figure 9.2.1. The time

ey

3History regards the French mathematician Jules Henri Poincaré (1854-1912) as the “last universalist,” the last
person to understand all the mathematics and much of the physics of his era. He spent most of his professional
life at the University of Paris and the Ecole Polytechnique, where he was professor of mathematical physics,
probability, celestial mechanics, and astronomy. Every year he lectured on a different subject, his students taking
notes that were later published. His research covered most of the areas of the mathematics of his time: groups,
number theory, theory of functions, algebraic geometry, algebraic topology (which he developed), mathematical
physics, celestial mechanics, partial differential equations, and ordinary differential equations. His first research
paper (1878) and his last (1912) were on ODEs. Poincaré and A. M. Lyapunov created the modern approach
to ODEs with its emphasis on the general behavior of orbits and solutions, rather than on solution formulas.
Poincaré had a talent for good exposition, wrote many popular books on mathematics and science, and was the
first (and, so far, the only) mathematician elected to the literary section of the French Institute.
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X =x(1—x—3.75y+2xy+y%)
¥ = y(—1+ y+3.75x — 2x> — x¥)

-0.1 0.1 0.3 0.5 0.7 0.9

FIGURE 9.2.1 A triangular cycle-graph approached
by an outward spiraling orbit (Example 9.2.1). The
cycle-graph consists of three vertex equilibrium
points and three orbits along the edges.
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FIGURE 9.2.2 Component graphs of the spiral orbit
of Figure 9.2.1: these graphs show that the orbit goes
slowly around the corners of the triangle and speeds
up near the sides. (Example 9.2.1).

N
V

intervals where both component graphs are horizontal correspond to the slow motion
near the vertices. The nearly vertical segments of the component graphs correspond to
rapid changes in x or y away from the vertices.

The triangle of Figure 9.2.1 is an example of an unusual array of orbits and equi-
librium points defined below.

% Cycle-Graph. A cycle-graph (or polycycle) of a planar autonomous system
is a closed curve in state space that consists of N vertices (N > 1) and at least
N edges. The vertices are equilibrium points of the system and the edges are
orbits that tend to vertices as 1 — —oo and as t — +-o00. The graph is coherently
oriented along the edges by time’s increase (i.e.. we can make a round trip around
the graph, covering each edge once, by following the arrows).

The triangular cycle-graph of Example 9.2.1 has three vertices and three edges and is
oriented counterclockwise. Cycle-graphs may have more edges than vertices as the
clockwise-oriented, lazy-eight cycle-graph (one vertex and two edges) in the margin

shows (see Problem 22).

Where Do the Orbits Go?

So far in this chapter, orbits that remain bounded as t — 400 approach an equilibrium
point, a cycle, or a cycle-graph. There are no other alternatives. Poincaré and Ivar
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THEOREM 9.2.1

I Also known as the
Poincaré-Bendixson
Theorem.

I A maximally
extended orbit is bounded
if it lies in a box.

I The positive limit
set of the spiraling orbit
in Figure 9.2.1 is the
triangular cycle-graph,
and the negative limit set
is the equilibrium point
(0.25,0.25).

Bendixson* proved the following fundamental result about long-term behavior:

Long-Term Behavior in the Plane

Suppose that I' is a maximally extended orbit of the system x' = f(x, y), y =
g(x, y), where f and g are continuous and continuously differentiable. Suppose
that as t+ — +oo, I' stays inside a rectangle containing only a finite number
of equilibrium points. Then, as t — 400, ' must tend to exactly one of the
following:

e an equilibrium point, e acycle. e acycle-graph

The same alternatives hold as t — —oo if I stays inside a rectangle as t — —o0.

These alternatives give us all the possible histories and futures of a bounded and
maximally extended orbit I'. For example, I" might tend to an equilibrium point as
t - —o¢ and to a cycle as t — 400, or may tend to a cycle as t — —oo and to a
cycle-graph as t — +oo. If T is itself an equilibrium point or a cycle, then it tends
to itself as 1 — —oo and as t — +o0. If T'; is a nonconstant orbital edge in a cycle-
graph I', then I'; approaches an equilibrium point of the cycle-graph as t — —oo
and an equilibrium point of the cycle-graph (possibly the same point) as t — +oo0.
One thing I' cannot do as t — +00 is tend to a pair of equilibrium points or to a
single nonconstant, nonperiodic orbit. Nor can I" wander around inside its bounding
rectangle without any apparent destination. As time advances (or regresses), I must
head toward one of the three alternative sets of the theorem. If T" approaches a cycle
or a cycle-graph, it must do so in a spiraling fashion that is consistent with the time
orientation of the cycle or cycle-graph.

The set of points an orbit I approaches as 1 — +o0 is its positive limit set w(T").
We define the negative limit set o(T") similarly, except that t — —oo. The letters «
and w are the first and the last letters of the Greek alphabet, so «(I") tells us how and
where the orbit I' is born, and w(T") tells how and where it dies.

What can we say about the long-term behavior of T if " isn’t bounded? If, for
example, I" stays in no rectangle as 1 — —oo, but remains in some rectangle for all
t > 1o for some fy, then the alternatives of Theorem 9.2.1 apply only to w(I"). We
saw this behavior in Example 9.1.1 where orbits outside the limit cycle r = 1 become
unbounded as 7 decreases but spiral toward the limit cycle as t — +oc. The orbits
in Example 9.1.2 reverse this behavior: the orbits born outside the limit cycle r = 2
become unbounded as ¢ increases.

The alternatives of Theorem 9.2.1 have profound implications.

“The Swedish mathematician Ivar Otto Bendixson (18611 935) started his career by making important con-
tributions to set theory and point set topology. Later he became intrigued with the qualitative properties of curves
generated by planar autonomous systems. Poincaré first proved the alternatives cited in Theorem 9.2.1, but
Bendixson gave a more rigorous proof under weaker hypotheses in 1901.
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THEOREM 9.2.2 Unbounded Orbits-

[~ As always, we Suppose that the system x' = f(x, y), y' = g(x, y) has no equilibrium points.

A5IE tha{ fand gare Then all orbits become unbounded as time increases and decreases.
contiuously

differentiable on [RZ.

Proof. Suppose, to the contrary, that an orbit I" is bounded for all ¢ > 1, for some
fo. Then, by Theorem 9.2.1, w(I") must be a cycle because the other two alter-
natives involve equilibrium points. The interior region of a cycle must contain at

[ Without least one equilibrium point (see page 527), but this contradicts our assumption
equilibrium points in the that the system has no equilibrium points. This contradiction implies that I" can-
system, orbits are born at not be bounded as ¢ increases. Similarly, I cannot be bounded as 7 decreases. So
infinity and return there to . . . : 5

die I" becomes unbounded for increasing time and for decreasing time. W

THEOREM 9.2.3 Bounded Orbits

|

Every bounded orbit of the system x" = f(x, y), y' = g(x, y) has an equilibrium
point or a cycle in its negative limit set and in its positive limit set. If a limit set
contains no equilibrium points, then the limit set is a cycle.

Proof. If a limit set is not a cycle, then it must either be an equilibrium point or
a cycle-graph, and cycle-graphs contain equilibrium points. H

To see how a bounded orbit behaves as time tends to +00 or to —oo, first locate all
of the equilibrium points, cycles, and cycle-graphs. Find the equilibrium points by
solving the equations f(x, y) =0, g(x, y) = 0 simultaneously. Solvers (such as ODE
Architect) use Newton’s Method to approximate the coordinates of the equilibrium
points.

Are There Any Cycles or Cycle-Graphs?

Here is one way to locate a cycle. Suppose that S is a ringlike region without any
equilibrium points, and that all orbits intersecting the inner or outer edges of S move
into S as time increases. Then there must be at least one cycle in S that also encloses
the hole. The cycle must also enclose one or more equilibrium points, but S doesn’t
have any, so there must be at least one equilibrium point in the hole. The following
example illustrates one way to find a ring with the desired properties.

EXAMPLE 9.2.2 Where Is the Cycle?

The system

X =y+x(l—2x— %yz)
2

’

1
y=—-x+y(l-2x- Eyz)
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I 1t takes some has a single equilibrium point at the origin. If there is a cycle, then the cycle must
algebra to show that encircle the origin. Let’s construct a ring around the origin with the property that
there is only one Sk vhichid bl . it e ti . B h
Wi point. orbits which touch its per%meters. move into the ring as time increases. Because there
are no equilibrium points in the ring itself, every orbit I" that enters the ring must have

a cycle in the ring as its positive limit set.

Put V = x* + y?, the square of the distance from an orbital point x(¢), y(¢) to the
origin. Then the derivative of V following the motion is

V= 2xx 4 2yy = 2(x* + y) (1 — 2x* — y?/2)

V' is positive if x> + y? < 1/3 and V' is negative if x> + y? > 3, because
[ These 7 > ) ) ) 5 )
inequalities are not 1-2x"—y/2>1-3x"4+y)>0 if x+y" <1/3

bvious!

3 1-28%—y*/2<1—(2+y)/3<0 if 2+)°>3

These rough estimates give us the circular inner and outer perimeters (e.g., x> + y* =
0.3 and x* + y* = 3.1) of a ring with the property that orbits touching either perimeter

must move into the ring as time increases (Figure 9.2.3). So, the ring has to have a
limit cycle inside. Figure 9.2.3 suggests that this cycle is unique and attracting.

EXAMPLE 9.2.3 Competing Species: No Cycles

The system
X =x(1-0.1x—0.1y), y = y(2—0.05x—0.025y) 3)
5" We presented models the populations of two competing species.The four equilibrium points (0, 0),
competing species (0, 80), (10, 0), and (70, —60) of the system lie on the boundary of (or outside) the

dels in Section 7.3. ; S -
" ecin population quadrant x > 0, y > 0, which is why there are no cycles inside the popula-

tion quadrant and no cycles intersecting the quadrant. The first assertion follows from
the fact that a cycle inside the quadrant must enclose an equilibrium point, but there
are no equilibrium points inside the quadrant. The second assertion follows because
the x- and y-axes are unions of orbits, so orbits can’t enter the first quadrant from any
other quadrant because they would have to intersect orbits on the axes.

Bendixson discovered a criterion for the absence of cycles and cycle-graphs in a
simply connected region of the xy-plane. A connected region in the plane is said to be
simply connected if it has no holes. So we determine that the rectangle described by
Ix|] <1, |y| <2 is simply connected, but the ring of Example 9.2.2 is not.

THEOREM 9.2.4 Bendixson’s Negative Criterion
Suppose that the function df/dx + dg/dy has a fixed sign in a simply connected

region R of the xy-plane. Then the system x' = f(x, y), y = g(x, y) has no
cycle or cycle-graph in R.
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X =v+x(l —2x* —y?/2)

2 Y = —x+4y(1 — 22— ¥*/2)
N
\\
N
1 ary
\
\
\
\
\
\
>~ 0 4/:
|
|
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/
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-1 A //
A
//
-2 " T
-3 -2 -1 0 1 2 3

FIGURE 9.2.3 An attracting limit cycle inside a ring (Example 9.2.2).

Proof. Suppose that df/dx + dg/dy is positive in a simply-connected region
R and, contrary to the assertion of Theorem 9.2.4, a cycle or cycle-graph I' lies

inside R. Apply Green’s Theorem (Theorem B.2.13 in Appendix B.2) to df/dx+
dg/dy over the region S consisting of I" and its interior:

0< f/(af/ax + 0dg/dy)dxdy [since df/dx + dg/dy > 0in S]
s
= ¢ (gdx— fdy) [Green’s Theorem]
r

However, dx = fdt and dy = gdt along I', because I is an orbit (if it is a cycle)
or a union of orbits (if it is a cycle graph) of X' = f, y’ = g. This implies that
gdx— fdy= gfdt— fgdt =0 everywhere on I', which is a contradiction:

0 < %(gdx—fdy) =0
r

So there is no cycle or cycle-graph inside the region R where df/0dx + 0g/dy 18
positive. A similar proof works if df/dx 4 dg/dy is negative. Hl

Here is a practical application of Bendixson’s Negative Criterion.
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EXAMPLE 9.2.4

I Friction

dissipates energy,
which is physically
why there are no

cycles or cycle-graphs.

{O {0

IO

Bendixon’s Criterion: Damping Means No Cycles or Cycle-Graphs
ODEs of the form x” = g(x, x") model the motion of a simple pendulum, a block on
the end of a spring, and the current in an RLC circuit. The equivalent system is

bel =%} y=gx,y)

In this case f =y, so the function df/dx + dg/dy reduces to dg/dy. If dg/dy has a
fixed sign in the xy-plane, there can be no cycles or cycle-graphs. For example, the
system that models a damped simple pendulum is

X =y, y = —asinx — by
where a and b are positive constants. The term —by models the effect of friction on
the motion of the pendulum, and the function dg/dy is the negative constant —b. So
by Theorem 9.2.4 the damped pendulum system has no cycles and no cycle-graphs.

Looking Back and Ahead

The tests and alternatives of this section are qualitative, not quantitative. We described
the long-term behavior of the orbits of a planar system in words and in graphs, but
not by solution formulas. Results such as these are appropriate at the early stages of
an analysis of a complex system that models a physical phenomenon. For example,
if the aim is to construct a planar autonomous system with a cycle or a cycle-graph,
the system must have an equilibrium point. We use a numerical solver to help analyze
orbital structure. Attracting or repelling cycles, cycle-graphs, and equilibrium points
are (usually) visible on the screen, and they give useful information about long-term
orbital behavior.

We have already described long-term behavior for a single scalar ODE, x’ = f(x)
by the sign analysis and state-line techniques of Section 2.8. Every nonconstant and
bounded orbit on a state line tends to an equilibrium point as t — —oo and to another
equilibrium point as t — +oo; there is no room for cycles or cycle-graphs. What
happens in three-dimensional state space? That’s the subject of Section 9.4. Expect to
see unusual behavior of solutions!

PROBLEMS

Limit Sets. Use analytical or graphical techniques to find the positive and the negative limit sets of
the orbits through the listed initial points. Sketch some orbits for Problems 3, 4 and 6.

1. XY=y y=-x (0,0),(,1) 2. X=y y=x(1,1,1,-1),1,0)

3. VanderPol x =y— (X*/3—x), y =—x; (0.1,0), (3,0) [Hint: see Section 9.1.]
4. Undamped Simple Pendulum x' =y, y = —sinx; (0, 1), (0, /2), (0, 2)

5. PolarForm ¢ =r(1—r)(4—1r?), 0 =5; ro=1/2,3/2,5/2; 6, =0

6. x' =[x(1—x*—y)—yI[(Z =1’ +)°], ¥y =[y(J —x* — y*) +x][(& — 1)* +y’):

(1/2,0), (0, £1), (3/2, 0) [Hint: the unit circle is a cycle-graph consisting of two equilibrium
points joined by two orbital arcs.]
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Bendixson Negative Criterion. Show that each ODE has no cycles and no cycle-graphs. [Hint:

convert each ODE to a system. ]
7. Damped Pendulum mLx" 4 cLx' + mgsinx =0; m, L, ¢, and g are positive constants.

8. Damped Nonlinear Spring  mx" + ax’' + bx + c¢x’ = 0, where m, a, and b are positive con-
stants and c¢ is any constant.

9. X"+ (2+sinx)x’ + g(x) = 0, where g(x) is any continuously differentiable function.
10. X"+ f(x)x'+ g(x) =0; f and g are continuously differentiable and f(x) has a fixed sign.

Bendixson Negative Criterion. Show that each system has no cycle or cycle-graph in the region
indicated.

11. X =2x—y+36x° —15y%, ¥y = x+2y+x%y+y’; xy-plane
12. X' =12x+10y+x’y+ysiny— x>, y =x+ 14y — xy*> — y*; thedisk x>+ y?> <8
13. X =x—xy’+ysiny, ¥ =3y—x*y+e*sinx: the interior of the disk x* + y* < 4
No Limit Sets. Explain why all orbits of each system are unbounded. [Hint: use Theorem 9.2.2.]
14. X =x—y+10, y=x>+3y>—1 15. XY=y, y=—sinx—y+2
16. X =x*+2y"—4, Yy =2x24+3y"—-16

Any Cycles? Determine whether the following systems have cycles. Find all cycles (graphically or
analytically), if any exist. If there are no cycles, explain why not.

17. x' =e"+y?, ¥y = xy [Hint: does x ever decrease?)

18. x' =2x*y*+35, y' = 2ye* + x* |[Hint: use Bendixson's Negative Criterion. ]

19. A System in Polar Coordinates r' = rsin(i?), ¢ =1
Poincaré-Bendixson Investigation.

20. Green’s Theorem and Averages  Prove that the average value of the function F(x,y) =
df/0x + dg/dy on the region R inside a cycle I" of the system x' = f(x,y), y = g(x,y)
must be zero. [Hint: the average value of F on R is [ [, F(x, y)dxdy/A, where A is the
area of R. Use Green’s Theorem (Theorem B.2.13 in Appendix B.2).]

21. Contradicting Bendixson? The quantity df/0dx + dg/dy for the system ¥’ = f = x — 10y —
x(x+ %), ¥y =g=10x+y— y(x* + y*) is 2 — 4x> — 4y?, which is negative in the region
R, x* + y* > 0.5. Show that the unit circle is a cycle that lies entirely in R. Why does this
not contradict Bendixson’s Negative Criterion?

Cycle-Graphs. The following problems explore the nature of cycle-graphs.

<
Smﬂ 22, Lazy-Eight Cycle-Graph ~ Show that the system x’' = y + x(1 — x2)(y? — x> + x*/2), ¥y =

x—x* — y(3% — x% + x*/2) has equilibrium points at (0, 0) and (&1, 0). Use a numerical
solver and plot the orbits through the point (—3, 2) forward in time. Repeat with the orbits
through (40.5. 2), but carry these orbits forward and backward in time. Explain what you
see. [Hint: look at the graph in the margin on page 530 and at “The Lazy-Eight Cycle Graph”
file in the “Golden ODEs” folder in the ODE Architect Library.]

23. Triangle Cycle-Graph  System (1) has a triangular cycle-graph that is the positive limit set
of orbits inside the triangle. Let’s explore the regions outside the triangle.

[ (@) Plot a comprehensive portrait of the orbits of the system in the region |x| <2, |v| <2.
Mark the six equilibrium points in that region. On the basis of what the nearby orbital arcs
look like, label each point as stable or unstable, and name each as a node (stable, unstable?),
a saddle, or a spiral point (stable, unstable?).

(b) Use the Jacobian matrix technique of Section 8.2 to verify that the equilibrium points
(0,0), (1/4,1/4), (4/3,4/3) have the stability characteristics claimed in (a).

IQ] (€) Cycle-Graph Sensitivity: Bifurcation Replace the coefficient 3.75 in the first equation of
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24.

system (1) by the parameter c, but leave the second equation as is. For ¢ = 4 and 3.5, plot
portraits of the orbits. On the basis of your graphs, what do you think happens to the orbits
as ¢ increases through the critical value ¢ = 3.75?

Dulac’s Criterion for No Cycles  Suppose that R is a simply connected region in the plane.
Suppose that f, g, and K are continuously differentiable in R. Suppose that d(Kf)/dx +
d(Kg)/dy has a fixed sign in R. Show that the system x’ = f, y’ = g can’t have a cycle or
a cycle-graph in R. [Hint: read the proof of Bendixson’s Negative Criterion. Then adapt the
proof to d(Kf)/0x+ d(Kg)/dy.]

Modeling Problems.

] 25.
| S|

26.

[ 27.

==

Competing Species ~ Explain the meaning of each term in the rate functions using the vocab-
ulary of a model for competing species: X' = x(1 —0.1x—0.1y), y' = y(2—0.05x — 0.025y).
Plot orbits in the population quadrant, and then make a complete analysis of the ultimate fate
of each species in terms of the initial values of your orbits.

Ragozin’s Negative Criterion for Interacting Species  Suppose that a two-species interac-
tion is modeled by the system x' = xF(x,y), y' = yG(x,y). The two species are self-
regulating it 0F /0x and dG/dy are each negative throughout the population quadrant. If the
x-species, say, is self-regulating, then the negativity of dF/dx implies that the per unit growth
rate F' diminishes as x increases. Use Dulac’s Criterion (Problem 24) to show that the system
of ODE:s of a pair of self-regulating species has no cycles in the population quadrant. [Hint:
let K = (xy)_1 forx >0, y>0.]

Use ODEs to draw the face of a cat.

Scaling Time.

28.

In

L e RV,

0.0 2.5 5.0 7.5 10.0

Y A

Suppose that x(7), y(7) is a solution of the system x' = f(x, ), ¥ = g(x, y). Rescale the
time variable from f to s by setting dt/ds = h(x(t), y(¢)) for a given function h(x, y) that has
a fixed sign. The scaled system has the form dx/ds = fh, dy/ds = gh.

(@) If h(x, y) is positive everywhere, explain why the two systems have identical orbits with
the same orientation induced by time’s advance. What if 2(x, y) is everywhere negative?

(b) Suppose that h(x, y) is positive everywhere except that % is zero at a point p that lies on a
nonconstant orbit I" of the unscaled system. What happens to the corresponding orbit of the
scaled system?

(c) Suppose that f = x — 10y — x(x* + y*) and g = 10x + y — y(x® + y?), while the factor
h=1—exp[—10(x — 1)?> — 10y?]. Explain why the unscaled system has a limit cycle (graphs
(c1) and (c2)) and the scaled system has a cycle-graph (with one vertex and one edge) on the
unit circle. Plot the orbit through the point (0.5, 0) and the corresponding component curves
for each system (graphs (c1) and (c3)). Do the cycle and the cycle-graph attract? Explain

what you see in these graphs.
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