Suggested ODE problems from Chapter 1.

Problem 1.1. Consider the case of a stone dropped from the height h.
Denote by r the distance of the stone from the surface. The initial condition
reads r(0) = h, 7(0) = 0. The equation of motion reads

yM

P = N (ezact model)

respectively

F=—g (approzimate model),
where g = vyM/R? and R, M are the radius, mass of the earth, respectively.

(i) Transform both equations into a first-order system.

(ii) Compute the solution to the approzimate system corresponding to
the given initial condition. Compute the time it takes for the stone
to hit the surface (r =0).

(iii) Assume that the exact equation also has a unique solution corre-
sponding to the given initial condition. What can you say about
the time it takes for the stone to hit the surface in comparison
to the approximate model? Will it be longer or shorter? FEstimate
the difference between the solutions in the exact and in the approz-
imate case. (Hints: You should not compute the solution to the
exact equation! Look at the minimum, mazimum of the force.)

(iv) Grab your physics book from high school and give numerical values
for the case h = 10m.



Problem 1.3. Classify the following differential equations. Is the equation
linear, autonomous? What is its order?

(i) '(z) + y(x) = 0.
(if) Lru(t) =t sin(u(t)).
(iil) y(t)? + 2y(t) = 0.
. 2 n2
(lV) %g'li-(;l?.} y) + %}U($ y) = 0.
(V) &=-y, y=uz
Problem 1.4. Which of the following differential equations for y(x) are
linear?
(i) y' = sin(x)y + cos(y).
(ii) ¥' = sin(y)x + cos(x).
(i) 3" = sin(x)y + cos(x).
Problem 1.5. Find the most general form of a second-order linear equation.

Problem 1.6. Transform the following differential equations into first-order
systems.

(i) & +t sin(z) = =.
(ii) &= —y, § = =x.

The last system is linear. Is the corresponding first-order system also linear?
Is this always the case?

Problem 1.7. Transform the following differential equations into autonomous
first-order systems.

(i) &+t sin() = x.
(ii) & = —cos(t)x.

The last equation s linear. Is the corresponding autonomous system also
linear?

Problem 1.8. Let %) = f(z, 21 .., z*=1)) be an autonomous equation

(or system). Show that if ¢(t) is a solution, then so is &(t —tg).



Problem 1.9. Solve the following differential equations:

(i) = 2.

(i) & = z(1 — x).

(ili) ¢ =z(l —x) —c.

Problem 1.11 (Separable equations). Show that the equation (f,g € C!)
& = f(z)g(t), z(to) = o,

locally has a unique solution if f(xg) # 0. Give an implicit formula for the
solution.

Problem 1.14. Charging a capacitor is described by the differential equation

RO() + 5Q(0) =V,

where Q(t) is the charge at the capacitor, C is its capacitance, Vj is the
voltage of the battery, and R is the resistance of the wire.

Compute Q(t) assuming the capacitor is uncharged at t = 0. What
charge do you get ast — oc?

Problem 1.15 (Growth of bacteria). A certain species of bacteria grows
according to

N(t)=rN(),  N(0)= No,
where N (t) is the amount of bacteria at time t, kK > 0 is the growth rate,
and Ng is the initial amount. If there is only space for Ny.c bacteria, this
has to be modified according to

Ny = - YDNe),  NO) = N

N max
Solve both equations, assuming 0 < Ng < Nmax and discuss the solutions.
What is the behavior of N(t) ast — c0?

Problem 1.16 (Optimal harvest). Take the same setting as in the previous
problem. Now suppose that you harvest bacteria at a certain rate H > 0.
Then the situation is modeled by

N(t)

J.?\Tma_x

N(t) =rx(1 - )N(t)— H,  N(0)=N,.




Rescale by
N(t)
z(T) =
(7) N
and show that the equation transforms into

T =Kt

H
h:;mrmax )
Visualize the region where f(x,h) = (1 —x)x —h, (z,h) e U = (0,1) x
(0,00), is positive respectively negative. For given (xg,h) € U, what is the

behavior of the solution ast — oo ? How is it connected to the regions plotted
above? What is the mazximal harvest rate you would suggest?

(1) = (1 —z(7))z(r) — h, h =

Lemma 1.1. Consider the first-order autonomous initial value problem
(1.61), where f € C'(R) is such that solutions are unique.

(i) If f(xo) =0, then x(t) = x¢ for all t.

(ii) If f(xo) # 0, then x(t) converges to the first zero left (f(xg) < 0)
respectively right (f(xo) > 0) of xo. If there is no such zero the
solution converges to —oo, respectively oc.

Problem 1.27. Let x be a solution of (1.61) which satisfies lim;—o z(t) =
xy. Show that limy_, . &(t) = 0 and f(zy) = 0. (Hint: If you prove
limy ., #(t) = 0 without using (1.61) your proof is wrong! Can you give
a counter example?)

Problem 1.28. Prove Lemma 1.1. (Hint: This can be done either by using
the analysis from Section 1.3 or by using the previous problem.)

Problem 1.32. Generalize Theorem 1.3 to the interval (T,to), where T <
to.



To complete our analysis suppose h < h, and denote by 1 < x9 the
two fixed points of P(z). Define the iterates of P(z) by P°(x) = z and
P™(z) = P(P"1(x)). We claim

lim P*(z)=qx1, o=, (1.84)

— 0O

Problem 1.33. Suppose P(x) is a continuous, monotone, and concave func-
tion with two fized points x1 < xo. Show the remaining cases in (1.84).

Problem 1.34. Find lim,,_,,, P"(x) in the case h = h, and h > h,.

Problem 1.35. Suppose f € C*(R) and g € C(R) is a nonnegative periodic
function g(t + 1) = g(t). Show that the above discussion still holds for the
equation

&= f(z)+h-g(t)
if f"(x) <0 and g(t) = 0.
Problem 1.36. Suppose a € R and g € C(R) is a nonnegative periodic
function g(t + 1) = g(t). Find conditions on a,g such that the linear inho-
mogeneous equation

i =azx + g(t)

has a periodic solution. When is this solution unique? (Hint: (1.40).)

Problem 1.20. Pick some differential equations from the previous prob-
lems and solve them wusing your favorite computer algebra system. Plot the
solutions.

Problem 1.30. Discuss the equation i = x> — %5

e Make a numerical analysis.

e Show that there is a unique solution which asymptotically approaches
the line = = 1.

e Show that all solutions below this solution approach the line x =
—1.

e Show that all solutions above go to oo in finite time.



