- 4. Find the linearizations of the following systems, at the fixed points indicated, by:
 - (a) introducing local coordinates at the fixed point;
 - (b) using Taylor's theorem.
- (i) $\dot{x}_1 = x_1 + x_1 x_2^3 / (1 + x_1^2)^2$, $\dot{x}_2 = 2x_1 3x_2$, (0, 0);
- (ii) $\dot{x}_1 = x_1^2 + \sin x_2 1$, $\dot{x}_2 = \sinh (x_1 1)$, (1, 0);
- (iii) $\dot{x}_1 = x_1^2 e^{x_2}$, $\dot{x}_2 = x_2 (1 + x_2)$, $(e^{-1/2}, -1)$.

State the preferred method (if one exists) for each system.

- 5. Use the linearization theorem to classify, where possible, the fixed points of the systems:
- (a) $\dot{x}_1 = x_2^2 3x_1 + 2$, $\dot{x}_2 = x_1^2 x_2^2$;
- (b) $\dot{x}_1 = x_2$, $\dot{x}_2 = -x_1 + x_1^3$;
- (c) $\dot{x}_1 = \sin(x_1 + x_2), \quad \dot{x}_2 = x_2;$
- (d) $\dot{x}_1 = x_1 x_2 e^{x_1}, \quad \dot{x}_2 = x_1 x_2 1;$
- (e) $\dot{x}_1 = -x_2 + x_1 + x_1 x_2$, $\dot{x}_2 = x_1 x_2 x_2^2$;
- (f) $\dot{x}_1 = x_2$, $\dot{x}_2 = -(1 + x_1^2 + x_1^4)x_2 x_1$;
- (g) $\dot{x}_1 = -3x_2 + x_1x_2 4$, $\dot{x}_2 = x_2^2 x_1^2$.

Answers:

- 4. (i) $\dot{v}_1 = v_2, \ \dot{v}_2 = 2v_1 3v_2;$

 - (ii) $\dot{y}_1 = 2y_1 + y_2$, $\dot{y}_2 = y_1$; (iii) $\dot{y}_1 = 2e^{-\frac{1}{2}}y_1 e^{-1}y_2$, $\dot{y}_2 = -y_2$.
- 5. (a) (1, -1), saddle; (1, 1), stable node; (2, -2), unstable focus; (2, 2), saddle.
 - (b) $(\pm 1, 0)$, saddle; (0, 0), centre;
 - (c) $(m\pi, 0)$, unstable improper node (m even), saddle (m odd);
 - (d) (0, -1), stable focus;
 - (e) (0, 0), non-simple; (2, -2), saddle:
 - (f) (0, 0), stable focus;
 - (g) (-1, -1), stable focus; (4, 4), unstable focus.