Extra Notes 2 (16/4)

It is a well-known fact (see any textbook on Group Theory) that every permutation of a finite set has a unique representation as a product of disjoint cycles, that is, as a composition of cyclic permutations which involve pairwise disjoint subsets of the set and hence commute.

For $n \in \mathbb{N}$ and a subset $\{x_1, x_2, \ldots, x_k\} \subseteq [n]$, we will use the notation

$$(x_1 x_2 \dots x_k) \tag{0.3}$$

to denote the cyclic permutation $\pi : [n] \to [n]$ such that

$$\pi(x_1) = x_2, \ \pi(x_2) = x_3, \ \dots, \ \pi(x_k) = x_1, \ \pi(y) = y \ \forall y \in [n] \setminus \{x_1, \ \dots, \ x_k\}.$$
(0.4)

Remark E.2. This is one of two conventions common in the literature. Sometimes the notation (0.3) is used to denote the inverse of the permutation in (0.4).

Example E.3. Let $\pi : [8] \rightarrow [8]$ be given by

i	1	2	3	4	5	6	7	8
$\pi(i)$	4	1	7	2	8	5	3	6

Then, in cycle notation,

$$\pi = (1\,4\,2)(3\,7)(5\,8\,6).$$

Definition E.4. Let k, n be non-negative integers with $k \leq n$. The *Stirling number* of the first kind s(n, k) is the number of permutations of [n] consisting of exactly k disjoint cycles.

Remark E.5. Once again, there are other conventions in the literature regarding the definition of Stirling numbers of the first kind. Check the Wikipedia entry, for example.

Theorem E.6. With the definition as in E.4 above, we have the recurrence

$$s(n, n) = 1 \ \forall n \ge 0; \quad s(n, 0) = s(0, n) = 0 \ \forall n \ge 1; \tag{0.5}$$

$$s(n+1, k) = n \cdot s(n, k) + s(n, k-1) \ \forall n \ge 0, \ 1 \le k \le n.$$
(0.6)

Proof: Eqs. (0.5) are obvious: note that, if $n \ge 1$, the only permutation of [n] consisting of n cycles is the identity permutation. So we turn to (0.6). Let π be a permutation of [n + 1] containing k cycles. We consider two cases:

CASE 1: n + 1 forms a cycle on its own. In other words, $\pi(n + 1) = n + 1$. Then the restriction of π to [n] is a permutation of the latter involving k - 1 cycles. So the number of possibilities for π in Case 1 is s(n, k - 1).

CASE 2: $\pi(n+1) = j$, for some $j \in [n]$. Let π^* be the following permutation of [n]:

$$\pi^*(i) = \begin{cases} \pi(i), & \text{if } \pi(i) \neq n+1, \\ j, & \text{if } \pi(i) = n+1. \\ 1 \end{cases}$$

2

We consider in turn two subcases:

Subcase 2.A: j forms a cycle on its own in π^* . This means that $\pi(j) = n + 1$ and hence one of the cycles in π is the involution $(j \ n + 1)$. It is easy to see that all other cycles are the same in π and π^* . Hence, if π has k cycles then so does π^* .

Subcase 2.B: j is part of a cycle of length at least 2 in π^* . Say that the cycle is

$$(j x_1 x_2 \ldots x_r)$$

In terms of π this means that

$$\pi(j) = x_1, \ \pi(x_1) = x_2, \ \dots, \ \pi(x_{r-1}) = x_r, \ \pi(x_r) = n+1$$

Together with the fact that $\pi(n+1) = j$, this means that π contains the cycle

$$(n+1 j x_1 \ldots x_r).$$

It is also easy to see in this case that all remaining cycles of π and π^* coincide so, once again, if π has k cycles then so does π^* .

To summarise, the map $\pi \to \pi^*$ establishes a 1-1 correspondence between the permutations of [n+1] which involve k cycles and send n+1 to some fixed element of [n]and all permutations of [n] involving k cycles. Hence, given $j \in [n]$, there are s(n, k)possibilities for π . Since there are n choices for j, the total number of possible permutations in Case 2 is $n \cdot s(n, k)$.

A final application of the addition principle then yields (0.6).