
Extra Notes 2 (16/4)

It is a well-known fact (see any textbook on Group Theory) that every permutation

of a finite set has a unique representation as a product of disjoint cycles, that is, as a

composition of cyclic permutations which involve pairwise disjoint subsets of the set

and hence commute.

For n ∈ N and a subset {x1, x2, . . . , xk} ⊆ [n], we will use the notation

(x1 x2 . . . xk) (0.3)

to denote the cyclic permutation π : [n] → [n] such that

π(x1) = x2, π(x2) = x3, . . . , π(xk) = x1, π(y) = y ∀ y ∈ [n]\{x1, . . . , xk}.
(0.4)

Remark E.2. This is one of two conventions common in the literature. Sometimes the

notation (0.3) is used to denote the inverse of the permutation in (0.4).

Example E.3. Let π : [8] → [8] be given by

i 1 2 3 4 5 6 7 8
π(i) 4 1 7 2 8 5 3 6

Then, in cycle notation,

π = (1 4 2)(3 7)(5 8 6).

Definition E.4. Let k, n be non-negative integers with k ≤ n. The Stirling number

of the first kind s(n, k) is the number of permutations of [n] consisting of exactly k

disjoint cycles.

Remark E.5. Once again, there are other conventions in the literature regarding the

definition of Stirling numbers of the first kind. Check the Wikipedia entry, for ex-

ample.

Theorem E.6. With the definition as in E.4 above, we have the recurrence

s(n, n) = 1 ∀n ≥ 0; s(n, 0) = s(0, n) = 0 ∀n ≥ 1; (0.5)

s(n+ 1, k) = n · s(n, k) + s(n, k − 1) ∀n ≥ 0, 1 ≤ k ≤ n. (0.6)

Proof: Eqs. (0.5) are obvious: note that, if n ≥ 1, the only permutation of [n] consist-

ing of n cycles is the identity permutation. So we turn to (0.6). Let π be a permutation

of [n+ 1] containing k cycles. We consider two cases:

CASE 1: n + 1 forms a cycle on its own. In other words, π(n + 1) = n + 1. Then

the restriction of π to [n] is a permutation of the latter involving k − 1 cycles. So the

number of possibilities for π in Case 1 is s(n, k − 1).

CASE 2: π(n + 1) = j, for some j ∈ [n]. Let π∗ be the following permutation of

[n]:

π∗(i) =

{

π(i), if π(i) 6= n+ 1,
j, if π(i) = n+ 1.
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We consider in turn two subcases:

Subcase 2.A: j forms a cycle on its own in π∗. This means that π(j) = n + 1 and

hence one of the cycles in π is the involution (j n + 1). It is easy to see that all other

cycles are the same in π and π∗. Hence, if π has k cycles then so does π∗.

Subcase 2.B: j is part of a cycle of length at least 2 in π∗. Say that the cycle is

(j x1 x2 . . . xr).

In terms of π this means that

π(j) = x1, π(x1) = x2, . . . , π(xr−1) = xr, π(xr) = n+ 1.

Together with the fact that π(n+ 1) = j, this means that π contains the cycle

(n+ 1 j x1 . . . xr).

It is also easy to see in this case that all remaining cycles of π and π∗ coincide so, once

again, if π has k cycles then so does π∗.

To summarise, the map π → π∗ establishes a 1-1 correspondence between the per-

mutations of [n+1] which involve k cycles and send n+1 to some fixed element of [n]
and all permutations of [n] involving k cycles. Hence, given j ∈ [n], there are s(n, k)
possibilities for π. Since there are n choices for j, the total number of possible permu-

tations in Case 2 is n · s(n, k).

A final application of the addition principle then yields (0.6).


