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Definition E.7. Let G be a (simple) graph containing at least one edge. For each

n ≥ |V (G)| we denote by ex(n, G) the largest integer e = en such that there exists a

simple graph with n vertices and e edges containing no subgraph isomorphic to G.

Note that ex(n, G) <
(

n
2

)

since Kn contains a copy of every graph on at most n
vertices. We study the case when G = Kk, a complete graph. It is obvious that

ex(n, K2) = 0. Already the next step is non-trivial.

Lemma E.8. (Cauchy-Schwarz inequality) For any n ∈ N and any two vectors x,

y ∈ R
n one has

|x · y|2 ≤ ||x||2||y||2. (0.7)

Proof: For any t ∈ R one has

0 ≤ ||x− ty||2 = (x− ty) · (x− ty) =

= (x · x)− 2t(x · y) + t2(y · y) = ||x||2 − 2t(x · y) + t2||y||2.

The RHS is thus a positive semi-definite quadratic function of t, which means that its

discriminant must be non-positive, i.e.:

b2 ≤ 4ac ⇔ |x · y|2 ≤ ||x||2||y||2, v.s.v.

Corollary E.9. For any real numbers x1, x2, . . . , xn one has

n
∑

i=1

x2

i ≥
1

n

(

n
∑

i=1

xi

)2

. (0.8)

Proof: Apply (0.7) to the pair x = (x1, x2, . . . , xn), y = (1, 1, . . . , 1).

Theorem E.10. ex(n, K3) = ⌊n2/4⌋.

Proof: The complete bipartite graph K⌊n/2⌋, ⌈n/2⌉ contains exactly ⌊n2/4⌋ edges and

no K3. Now let G = (V, E) be any graph on n vertices not containing any K3. We

must show that |E| ≤ n2/4. Consider
∑

{v, w}∈E

deg(v) + deg(w). (0.9)

On the one hand, if for some edge {v, w} one had deg(v)+ deg(w) > n then, by the

Pigeonhole Principle, there would have to exist a third vertex x ∈ V which is a common

neighbor of v and w. In that case, {v, w, x} would form a K3 in G. Hence, each term

in (0.9) is at most n and so
∑

{v, w}∈E

deg(v) + deg(w) ≤ n · |E|. (0.10)

On the other hand, for each v ∈ V , deg(v) appears in exactly deg(v) terms of the sum

(0.9). In other words, the sum is identical to
∑

v∈V (deg(v))2. By Corollary E.9 and
1



2

Theorem 13.12,

∑

v∈V

(deg(v))2 ≥
1

|V |

[

∑

v∈V

deg(v)

]2

=
1

n
(2|E|)2 =

4|E|2

n
.

Thus,
∑

{v, w}∈E

deg(v) + deg(w) ≥
4|E|2

n
. (0.11)

From (0.10) and (0.11) it follows that

4|E|2

n
≤ n · |E| ⇒ · · · ⇒ |E| ≤

n2

4
, v.s.v.

Definition E.11. Let r ≥ 2. A graph G = (V, E) is said to r-partite if there is a

partition

V =
r
⊔

i=1

Vi, Vi 6= φ, (0.12)

such that no edge in G is between a pair of vertices in the same Vi.

Let n1, . . . , nr be positive integers. The complete r-partite graph Kn1, ..., nr
= (V, E)

satisfies, in the notation of (0.12), |Vi| = ni for each i and E = {{vi, vj} : vi ∈ Vi, vj ∈
Vj, i 6= j}.

Theorem E.10 can be generalised in the following way. Let r ≥ 2 and n ≥ r. We

can uniquely write n = qr + t, where 0 ≤ t < r. Set n1 = · · · = nt = q + 1,

nt+1 = · · · = nr = q. Then

Theorem E.11. (Turán’s Theorem) ex(n, Kr+1) = |E(Kn1, ..., nr
)|.

The proof of this result is beyond the scope of our course, but is easy to locate in the

literature.

Remark E.12. The proof of Theorem E.10 employed the fact that a bipartite graph

contains no K3. More generally, a bipartite graph contains no odd cycles (see Theorem

16.9). So if a graph G contains even cycles, we can’t employ bipartite graphs as freely

when attempting to construct dense graphs without any copies of G. This turns out to

make a big difference. For example, it is known that ex(n, C4) = O(n3/2). For a fairly

recent discussion of such matters, see for example

https://www.sciencedirect.com/science/article/pii/S0095895613000038.


