
Extra Notes 4 (3/5 and 7/5)

Theorem E.13. Let ε > 0. Let En be the event that G(n, 1/2) contains a clique of size

at least (2 + ε) log2 n. Then P(En) → 0 as n → ∞.

Proof: Let k = ⌈(2 + ε) log2 n⌉. Since
(2+ε)2

2
= 2 + 2ε + ε2

2
> 2 + 2ε, if n is

sufficiently large then
k(k−1)

2
> (2 + 2ε)(log2 n)

2. We have

En =

(nk)
⋃

i=1

En, i,

where the
(

n

k

)

subsets of V (G(n, 1/2)) are ordered arbitrarily, and En, i is the event that

the subgraph induced by the i:th subset is a clique. By MP,

P(En, i) =

(

1

2

)(k2)

and hence, when n is sufficiently large,

P(En, i) < 2−(2+2ε)(log2 n)
2

.

Thus, for n sufficiently large,

P(En) ≤

(nk)
∑

i=1

P(En, i) <

(

n

k

)

2−(2+2ε)(log2 n)
2

<

< nk(2log2 n)−(2+2ε)(log2 n) ≤ n1+(2+ε)(log2 n)n−(2+2ε)(log2 n) = n1−ε(log2 n),

which goes to zero as n → ∞, for any fixed ε > 0.

Corollary E.14. Let ε > 0. Then, as n → ∞,

P(ω(G(n, 1/2)) > (2 + ε)(log2 n)) → 0, (0.13)

P

(

χ(G(n, 1/2)) <
n

(2 + ε)(log2 n)

)

→ 0. (0.14)

Proof: Eq. (0.13) is an immediate consequence of Theorem E.13. For (0.14), first

observe that Proposition 16.12 implies that

χ(G(n, 1/2)) <
n

(2 + ε)(log2 n)
⇔ α(G(n, 1/2)) > (2+ε)(log2 n) ⇔ ω(G(n, 1/2)) > (2+ε)(log2 n).

But the random graph G(n, 1/2) and its complement have the same distribution (since

each edge appears with probability 1/2 in each, independent of all other edges), which

implies that the events ω(G(n, 1/2)) > (2 + ε)(log2 n) and ω(G(n, 1/2)) > (2 +
ε)(log2 n) have the same probability. The probability of the former goes to zero, by

(0.13), so we’re done.

Full proof of Theorem 16.8. The idea here is once again to apply a probabilistic

method to the random graph G(n, p), but the novelty in this proof is that p will depend

on n. Before giving the proof, we will need some terminology and lemmas. Note that
1
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Definitions E.15 - E.18 and Lemmas E.19, E.20 can be extended beyond finite sets, as

would be the case in any standard text on probability. It suffices for our purposes to

consider the simplest case of finite sets, however (this is not a course in probability,

after all !).

Definition E.15. A probability space is a pair (Ω, µ) where Ω is a finite set and

µ : Ω → R+ is a non-negative function such that
∑

ω∈Ω µ(ω) = 1. Usually µ is

called a probability measure/distribution on the set Ω.

Definition E.16. Let (Ω, µ) be a probability space. A function X : Ω → R is called

a (real-valued) random variable on Ω. Even though, formally, a random variable is

just a function, it is common to use letters X, Y, . . . for random variables, instead of

f, g, . . . , in order to reflect the “randomness”.

Definition E.17. Let (Ω, µ) be a probability space, X a random variable on Ω and

A ⊆ R. The probability of the event “X ∈ A” is given by

P(X ∈ A) :=
∑

ω∈Ω

µ(w) · δ(ω), where δ(ω) =

{

1, if X(ω) ∈ A,
0, if X(ω) 6∈ A.

Definition E.18. Let (Ω, µ) be a probability space and X a random variable on Ω. The

expected/average value of X , denoted E[X], is given by

E[X] :=
∑

ω∈Ω

X(ω) · µ(ω).

Lemma E.19. (Linearity of Expectation) Let X1, . . . , Xn be random variables on

the same probability space (Ω, µ) and let X =
∑n

i=1 Xi be their pointwise sum (as

functions). Then

E[X] =
n
∑

i=1

E[Xi]. (0.15)

Proof: By Definition E.18,

E[X] =
∑

ω∈Ω

X(ω) · µ(ω) =
∑

ω∈Ω

(

n
∑

i=1

Xi(ω)

)

· µ(ω) =

=
n
∑

i=1

(

∑

ω∈Ω

Xi(ω) · µ(ω)

)

=
n
∑

i=1

E[Xi], v.s.v.

Lemma E.20. (Markov’s Inequality) Let X be a non-negative valued random variable

on a probability space (Ω, µ). Then, for any λ > 0,

P(X > λ · E[X]) ≤
1

λ
. (0.16)

Proof: First note that the inequality is trivial if E[X] = 0, since in that case X , being

non-negative, must be identically zero (i.e.: P(X > 0) = 0).
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So we may assume that E[X] 6= 0. Let A := (λ · E[X], ∞), so we must show that

P(X ∈ A) ≤ 1/λ. We have

E[X] =
∑

ω∈Ω

X(ω) · µ(ω) =
∑

ω:X(ω)≤λ·E[X]

X(ω)µ(ω) +
∑

ω:X(ω)>λ·E[X]

X(ω) · µ(ω).

Since X is non-negative valued, the first sum is, at the very least, non-negative. In the

second sum, X(ω) > λ · E[X] for each ω by definition. Hence the second sum is at

least λ · E[X] ·
∑

ω:X(ω)>λ·E[X] µ(ω) = λ · E[X] · P(X ∈ A). Thus, we’ve shown that

E[X] ≥ 0 + λ · E[X] · P(X ∈ A) · · · ⇒ · · ·P(X ∈ A) ≤
1

λ
, v.s.v.

Proof of Theorem 16.8: Fix a positive integer t and fix a real number θ such that

0 < θ < 1/t. We consider G(n, p) with p = nθ−1. Roughly speaking, the proof

consists of three parts. In the first part, we show that G(n, p) contains relatively few

cycles of length at most t with high probability (that is, with probability tending to 1 as

n → ∞). In the second part, we show that G(n, p) also has low independence number,

and hence high chromatic number, with high probability. Hence, both of the events de-

scribed in parts 1 and 2 occur simoultaneously with high probability, which proves that

some graph G satisfying both conditions exists. Finally, in part 3, we show that some

modification G∗ of G satisfies the exact statement of the theorem.

PART I: Let X = Xn, p be the number of simple cycles of length at most t in G(n, p).
Thus, formally speaking, X is a random variable on the probability space G(n, p). We

need an upper bound for E[X]. Firstly,

X =
t
∑

i=3

Xi, (0.17)

where Xi is the number of simple cycles of length i in G(n, p). Let ni be the number

of simple cycles of length i in the complete graph Kn. Then in turn,

Xi =

ni
∑

j=1

Xi, j, (0.18)

where the ni possible simple cycles have been ordered arbitrarily and Xi, j is the so-

called indicator variable of the event that the j:th possible simple cycle is present in

G(n, p) - that is,

Xi, j =

{

1, if the j:th simple cycle is present in G(n, p),
0, otherwise.

(0.19)

Applying linearity of expectation to both (0.17) and (0.18), we have

E[X] =
t
∑

i=3

ni
∑

j=1

E[Xi, j]. (0.20)

Firstly, since each Xi, j is an indicator variable,

E[Xi, j] = P(Xi, j = 1) = P[jth simple cycle of length i present] = pi = n(θ−1)i,
(0.21)
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where the second-last equality is because a simple cycle of length i contains i different

edges and, by definition of G(n, p), each edge is present, independently of all others,

with probability p.

Furthermore,

ni =
P (n, i)

2i
=

n(n− 1) . . . (n− i+ 1)

2i
< ni, (0.22)

where the first equality comes from the facts that:

- there are P (n, i) possible choices of an ordered sequence of i vertices, and each

such choice defines a simple cycle of length i,
- for each simple cycle, there are 2i choices of the ordered sequence of vertices, cor-

responding to i possible start/end points and two possible orientations.

Substituting (0.21) and (0.22) into (0.20) we find that

E[X] <
t
∑

i=3

nθi. (0.23)

For any fixed t, since θt < 1 we have that, for any ε > 0,

E[X] < εn, for all sufficiently large n. (0.24)

Hence, by Markov’s inequality, for any ε > 0,

P(X < εn) → 1, as n → ∞. (0.25)

PART II: For any x ∈ N, let Fx denote the event that G(n, p) contains an independent

set of size x. Then

Fx =

(nx)
⋃

j=1

Fx, j, (0.26)

where the x-element subsets of the n vertices have been ordered arbitrarily and Fx, j is

the event that the j:th subset forms an independent set. By definition of G(n, p) we

have, for each j, that

P(Fx, j) = (1− p)(
x

2). (0.27)

Note that, for any p ∈ (0, 1), 1 − p < e−p. Substituting this and (0.27) into (0.26) and

using just a union bound we find that

P(Fx) ≤

(

n

x

)

e−p
x(x−1)

2 <
(

n e−
p(x−1)

2

)x

. (0.28)

Now take x = ⌈2+ε
p

lnn⌉+ 1, for any fixed ε > 0. Then

e−
p(x−1)

2 ≤ e−
p

2
2+ε
p

lnn = (elnn)−
2+ε
2 = n−(1+ ε

2).

Substituting into (0.28) we have

P(Fx) ≤ (n · n−(1+ ε
2))x = n− εx

2 ,
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which obviously goes to zero as n → ∞.So as n → ∞, the probability that G(n, p)
contain an independent set of size ⌈2+ε

p
lnn⌉+ 1 tends to zero. In other words, for any

ε > 0,

P

(

α(G(n, p)) > ⌈
2 + ε

p
lnn⌉

)

→ 0, as n → ∞. (0.29)

PART III: Fix 0 < ε < 1. From (0.25) and (0.29) it follows that, for any given t and

θ ∈ (0, 1/t), there exists, for all sufficiently large n, a graph G = Gn on n vertices

satisfying the following two conditions:

(a) G has at most εn simple cycles of length at most t,
(b) α(G) ≤ (2 + ε)n1−θ(lnn).

Take such a G, pick any vertex from each of its simple cycles of length at most t and

remove all these vertices from G, along with all their adjacent edges. Let G∗ be the

remaining graph (note that G∗ could be disconnected, even if G were originally con-

nected). Since we’ve removed at most εn vertices, G∗ has at least n(1 − ε) vertices.

It has girth strictly greater than t, by construction. Any independent set of vertices in

G∗ was already independent in G, hence α(G∗) ≤ α(G). But then, by Proposition

16.12(ii),

χ(G∗) ≥
|V (G∗)|

α(G∗)
≥

n(1− ε)

(2 + ε)n1−θ lnn
=

1− ε

2 + ε

nθ

lnn
.

Since θ > 0, for any fixed ε ∈ (0, 1) this goes to infinity as n does so. In particular, for

n sufficiently large, it will be greater than t. So we have proven that, for n sufficiently

large, the graph G∗ = G∗
n satisfies

min{χ(G∗), girth(G∗)} > t, v.s.v.

Remark on Theorem 16.13. It is worth noting the following:

For any graph G, there exists an ordering of its vertices for which the greedy algo-

rithm would use exactly χ(G) colors.

Proof: Consider any χ(G)-coloring, and label the colors as 1, , 2, . . . , χ(G), in any

order. Let c(v) denote the color assigned to vertex v. Thus c is a function c : V (G) →
{1, 2, . . . , χ(G)}. Now order the vertices in such a way that

i ≤ j if and only if c(vi) ≤ c(vj).

In other words, first write down the vertices that get color 1, in any internal order, then

write down those that get color 2 and so on.

If we apply the greedy algorithm to this ordering, then the color it assigns to a vertex

v will always be less than or equal to c(v) since the vertices that are assigned a given

color in the coloring c form an independent set, so there will be no reason for the greedy

algorithm to seek a higher-numbered color when coloring them. Thus the greedy algo-

rithm will use at most χ(G) colors, hence exactly this number of colors, by definition

of χ(G).


