
Extra Notes 6 (24/5)

Definition E.27. Let G = (V, E) be a graph. A subset W ⊆ V is said to be a vertex

cover for G if, for every edge {x, y} ∈ E, either x ∈ W or y ∈ W (or both).

Theorem E.28. (König’s theorem) Let G = (X, Y, E) be a bipartite graph. Then

the maximum size of a matching in G equals the minimum number of vertices in a cover

of G.

Proof: If M is any matching and W is any cover, then it is clear that |M | ≤ |W |
since

- W a cover ⇒ every edge of M matches either one or two vertices of W

- M a matching ⇒ no element of W is matched twice.

It therefore suffices to prove the existence of a matching M and a cover W such that

|M | = |W |. To do so, we consider the network ~G = (V, ~E) where

• V = X ⊔ Y ⊔ {s, t},

• ~E = {(x, y) : {x, y} ∈ E} ⊔ {(s, x) : x ∈ X} ⊔ {(y, t) : y ∈ Y },

• c(~e) = 1 ∀~e ∈ ~E.

We apply the Ford-Fulkerson algorithm to ~G, starting from the everywhere-zero flow.

Considering how the algorithm works, we can without further comment make the fol-

lowing observations:

• At every stage of the procedure, the flow along every edge will be either zero or

one - so each edge is always either empty or saturated.

• Each time an f -augmenting path is found, the total flow increases by one. Ex-

actly one extra edge from s to X becomes saturated, plus exactly one extra edge

from Y to t.

• At every stage of the procedure, the saturated edges between X and Y form a

matching M in G (by conservation of flow since, for every x ∈ X only one arc

enters x, namely that from s and similarly, for every y ∈ Y only one arc exits

y, namely that to t).

• Each f -augmenting path consists of three parts: (i) an edge from s to some

x ∈ X , (ii) an M -augmenting path from x to some y ∈ Y (iii) an edge from y

to t.

• At every step, an f -augmenting path exists if and only if an M -augmenting path

exists.

It follows from these observations and Proposition 19.1 that the strength of the final

flow f∞ equals the maximum size of a matching in G. Let (S, T ) be the corresponding

cut. We know by Theorem 20.5 that |f∞| = c(S, T ), so it just remains to produce a

vertex cover W for G such that |W | = c(S, T ).
A priori we have s ∈ S, t ∈ T and partitions1 X = A ⊔ B, Y = C ⊔ D such that

S = {s} ∪ A ∪ C and T = {t} ∪ B ∪D. The arcs contributing to the capacity of the

1The partitions need not be proper, i.e.: the four sets A, B, C, D need not all be non-empty.
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cut are those from s to B, those from C to t and those from A to D. Hence,

c(S, T ) = |B|+ |C|+ |E(A, D)|, (0.30)

where E(A, D) denotes the collection of arcs from A to D. Now A ⊆ S, which means

every vertex in A is reachable by an f∞-augmenting path from s. On the other hand,

no vertex in D is reachable. This means that every arc from A to D must be saturated.

But, as already noted in the 3rd observation above, for any a ∈ A, there is only one

arc in ~G entering a, namely the arc (s, a). Hence, by flow conservation, at most one

saturated arc can exit a. It follows that the edges in E(A, D) must form a matching and

if A1 ⊆ A is the set of matched vertices in A then |E(A, D)| = |A1|. Substituting into

(0.30) we have

c(S, T ) = |B|+ |C|+ |A1|. (0.31)

Now take W = B ∪ C ∪ A1. If {x, y} ∈ E(G) then either

- x ∈ B, or

- y ∈ C, or

- x ∈ A and y ∈ D, in which case x ∈ A1.

Hence W is a vertex cover for G, of size equal to c(S, T ), v.s.v.


