
Exercise Session 1 (9/4): Solutions

1. (a) All congruences are mod p, where p is a prime. If x2 ≡ y2 then p | x2 − y2, so

p | (x − y)(x + y) and, since p is prime, it follows from the Fundamental Theorem of

Arithmetic1 that either p | x− y or p | x + y. In the former case, x ≡ y and in the latter

case, x ≡ −y.

(b) Equivalently, we must show there exist elements a, b of Zp such that a2 = −1− b2.

Now, if x, y ∈ Zp then it follows from part (a) that x2 = y2 ⇔ x = ±y. Thus each non-

zero element of Zp has either zero or two square roots, while 0 has only itself as a square

root. In other words, as x ranges over all p elements of Zp, x2 attains 1+ 1
2
(p−1) = p+1

2

different values. The same is true for the expression −1−x2, since neither reflection in

the origin nor translation affect the size of the image.

Hence, when we consider the congruence

a2 ≡ −1− b2 (mod p),

there are exactly p+1
2

possibilities for both the left- and the right-hand side (mod p).

But p+1
2

+ p+1
2

> p so, by the Pigeonhole Pirnicple, some congruence class must be

attained on both sides. In other words, there do indeed exist integers a, b such that

a2 ≡ −1− b2 (mod p).

2. (a) There are 20 “pigeonholes”, one for each pair of socks. Once he has at least

21 socks (i.e.: “pigeons”), then at least two must go in the same pigeonhole (i.e.: be a

pair).

ANSWER: 21.

(b) He’ll have to wait until the 21st sock if and only if the first 20 are all in differ-

ent pairs. The probability is A/B, where B is the total number of possibilities for a

collection of 20 socks, and A is the number of such collections which contain no pairs.

We have B =
(

40
20

)

and A = 220, the latter since there are 2 possible socks to choose

from in each pair.

ANSWER: 220/
(

40
20

)

.

3. We count the set of all pairs (v, r), where v is a node and r is a region (i.e.: a

pentagon or a hexagon) to which v is incident. We are told that there are three regions

r incident to each v, hence the number of pairs is 3V , where V is the number of nodes.

On the other hand, each of the 12 pentagons has 5 nodes and each of the 20 hexagons

has 6 nodes, to the total number of node-region pairs must be 5 × 12 + 6 × 20 = 180.

Thus 3V = 180, so V = 60.

4. (a) P (20, 8) = 5, 079, 110, 400.

1Actually, it follows from Euclid’s Lemma that, if p is prime and a, b are integers such that p | ab, then

p must divide at least one of a and b. This is in fact a step in the proof of FTA, rather than a consequence

of it.
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(b) Let the two new checkouts be C1 and C2 (they are obviously distinguishable), and

let c1, c2 be the number of people in each. We’re told that c1 + c2 = 8 and each ci ≥ 2.

This leaves five possibilities:

(c1, c2) ∈ {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}.

No matter what the pair (c1, c2) is, we can imagine filling both queues at once by first

choosing eight people in order, in P (20, 8) ways, and then placing the first c1 people

in the first queue and the remaining c2 in the second queue. This means that the total

number of possibilities for the pair of queues is 5× P (20, 8) = 25, 395, 552, 000.

5. (a)
(

12
6

)

= 924.

(b)
(

7
3

)

×
(

5
3

)

= 35× 10 = 350.

(c)
(

7
2

)(

5
4

)

+
(

7
3

)(

5
3

)

+
(

7
4

)(

5
2

)

= 21× 5 + 35× 10 + 35× 10 = 805.

(d) If both Pelle and Anna are chosen, then it remains to choose 4 people from 10,

which can be done in
(

10
4

)

= 210 ways. Thus the number of ways to choose the group

which avoids this problem is 924− 210 = 714.

6. (a) 8!
(2!)3

= 5040.

(b) Let X denote the set of all possible words and let S , O, N be the subsets consisting

of those words in which SS, OO and NN occur respectively. We seek |X\(S ∪O∪N )|.
By the Inclusion-Exclusion principle,

|X\(S ∪ O ∪N )| = |X | − |S| − |O| − |N |

+|S ∩ O|+ |S ∩ N |+ |O ∩ N| − |S ∩ O ∩N|. (0.1)

In part (a) we have already computed |X | = 5040.

Next consider |S|, say. If the two S’s occur together, then we can imagine that we

have a total of 7 letters instead of 8, namely: J, O, N, A, SS, O, N. The number of

possible words is then 7!
(2!)2

= 1260. Thus, |S| = |O| = |N | = 1260.

Next consider |S ∩ O|, say. If the two S’s occur together and also the two O’s, then

we can imagine that we have a total of 6 letters instead of 8, namely: J, OO, N, A,

SS, N. The number of possible words is then 6!
2!

= 360. Thus, |S ∩ O| = |S ∩ N | =
|O ∩ N| = 360.

Finally consider |S ∩ O ∩ N|. If the two S’s occur together, as well as the two O’s,

and also the two N’s, then we can imagine that we have a total of 5 letters instead of

8, namely: J, OO, NN, A, SS. The number of possible words is then 5! = 120. Thus,

|S ∩ O ∩N| = 120.

Substituting everything into (0.1), we obtain

|X\(S ∪ O ∪N )| = 5040− 3× 1260 + 3× 360− 120 = 2220.

7. (a) Let xi be the number of cakes eaten by mathematician number i. Then we seek

the number of solutions to

x1 + x2 + x3 + x4 + x5 = 20, xi ∈ N0,
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which is
(

20+5−1
5−1

)

=
(

24
4

)

= 10626.

(b) Now xi ≥ 2 for every i. Let yi := xi − 2. Then we seek the number of solu-

tions to

y1 + y2 + y3 + y4 + y5 = 10, yi ∈ N0,

which is
(

10+5−1
5−1

)

=
(

14
4

)

= 1001.

(c) Let x6 be the number of uneaten cakes. Then we seek the number of solutions

to

x1 + x2 + x3 + x4 + x5 + x6 = 20, xi ∈ N0,

which is
(

20+6−1
6−1

)

=
(

25
5

)

= 53130.


