Second Exercise Session: 16/4

Theme: Recursion

Relevant Chapters: 19, 25, 12

1. (4.6(a) in EG-2) Solve the recursion

 $a_1 = 4$, $a_n - 3a_{n-1} = 2n - 7 \quad \forall n > 1$,

on the one hand using the auxiliary equation method and, on the other, using generating functions.

2. (4.6(b) in EG-2) Solve the recursion

 $b_0 = 3, \ b_1 = 9, \ b_{n+2} - 5b_{n+1} + 6b_n = 2 \cdot 4^n \ \forall n \ge 0,$

on the oe hand using the auxiliary equation method and, on the other, using generating functions.

3. (4.8 in EG-2) Derive and solve a recursion for the number of *n*-digit positive integers which have an odd number of ones. What proportion of all *n*-digit numbers do these comprise ?

4. (6.19 in EG-2) Let A(x) and B(x) be the generating functions for the sequences $(a_n)_{n=0}^{\infty}$ and $(b_n)_{n=0}^{\infty}$ respectively.

(a) For which sequence is A(x) + B(x) the generating function ?

(b) For which sequence is A(x)B(x) the generating function ?

(c) For which sequence is $A(x^2)$ the generating function ?

(d) For which sequence is the derivative of A(x) the generating function ?

(e) For which sequence is $(A(x) - a_0)/x$ the generating function ?

(f) Let $a_{-1} \in \mathbb{R}$. For which sequence is $xA(x) + a_{-1}$ the generating function ?

5. Determine, with proof, the relationship between the following sequences and the Catalan numbers:

(a) For $n \ge 1$, a_n is the number of ways of computing a product $\prod_{i=1}^n x_i$ of noncommuting terms as a sequence of n-1 multiplications.

(b) For $n \ge 1$, b_n is the number of ways of placing 2n points round the circumference of a circle and drawing n chords between pairs in such a way that no two chords intersect.

6. Compute the Stirling number S(5, 3) and verify the answer by writing down all possible ways of partitioning the set $\{1, 2, 3, 4, 5\}$ into three parts.

7. Let $n = \prod_{i=1}^{k} p_i^{e_i}$ be a natural number with given prime factorisation. A factorisation $n = n_1 n_2$ is said to be *non-trivial* if min $\{n_1, n_2\} > 1$.

(a) Determine the number of non-trivial factorisations $n = n_1 n_2$ as a Stirling number, when n is squarefree, i.e.: $e_i = 1$ for every i.

(b) Determine a formula for the number of non-trivial factorisations $n = n_1 n_2$ in general.