
Exercise Session 2 (16/4): Solutions

1. Auxiliary equation method: The auxiliary equation is x−3 = 0, so the homogeneous

part of the solution is ah, n = C1 · 3n. Our guess for the particular solution is ap, n =
C2 · n+ C3. Insertion into the recurrence gives

ap, n − 3ap, n−1 = 2n− 7 ⇒ [C2n+ C3]− 3[C2(n− 1) + C3] = 2n− 7

⇒ n(−2C2) + (3C2 − 2C3) = 2n− 7

⇒ −2C2 = 2 and 3C2 − 2C3 = −7

⇒ C2 = −1, C3 = 2.

Hence,

an = ah, n + ap, n = C1 · 3n − n+ 2.

Inserting the initial condition yields

a1 = 4 = 3C1 − 1 + 2 ⇒ C1 = 1.

So, finally,

an = 3n − n+ 2. (0.1)

Generating function method: To simplify notation a bit, set un := an+1 so that the

recursion in terms of un reads

u0 = 4, un−1 − 3un−2 = 2n− 7 ∀n > 1,

which is in turn equivalent to

u0 = 4, un+1 − 3un = 2(n+ 2)− 7 = 2n− 3 ∀n ≥ 0.

Let U(x) :=
∑

∞

n=0 unx
n. Given that u0 = 4 and the recursion we can write

U(x) = 4 +
∞
∑

n=1

unx
n = 4 + x

(

∞
∑

n=0

un+1 x
n

)

=

= 4 + x

(

3
∞
∑

n=0

unx
n + 2

∞
∑

n=0

nxn − 3
∞
∑

n=0

xn

)

. (0.2)

The last two sums on the RHS of (0.2) come from the inhomogeneity, so let’s first

concentrate on how to handle these, i.e.: on how to express them as rational functions.

The last sum is just the geometric series in eq. (5.4) from the lecture notes:

∞
∑

n=0

xn =
1

1− x
. (0.3)

The second-last sum is handled by differentiating both sides of this, as in Example 7.2

from the notes, which yields

∞
∑

n=0

nxn =
x

(1− x)2
. (0.4)
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We now substitute (0.3) and (0.4) into (0.2) and continue:

U(x) = 4 + x

(

3U(x) +
2x

(1− x)2
− 3

1− x

)

⇒ (1− 3x)U(x) = 4 +
2x2

(1− x)2
− 3x

1− x
=

=
4(1− x)2 + 2x2 − 3x(1− x)

(1− x)2
= · · · = 9x2 − 11x+ 4

(1− x)2

⇒ U(x) =
9x2 − 11x+ 4

(1− 3x)(1− x)2
.

Since the denominator of the rational function has a repeated factor, the partial fraction

decomposition takes the form

9x2 − 11x+ 4

(1− 3x)(1− x)2
=

A

1− 3x
+

B

1− x
+

C

(1− x)2

⇒ 9x2 − 11x+ 4 = A(1− x)2 + B(1− 3x)(1− x) + C(1− 3x)

= (A+B + C) + x(−2A− 4B − 3C) + x2(A+ 3B)

⇒ A+ B + C = 4, 2A+ 4B + 3C = 11, A+ 3B = 9.

Set up the augmented matrix and perform Gauss elimination:




1 1 1 | 4
2 4 3 | 11
1 3 0 | 9



 7→





1 1 1 | 4
0 2 1 | 3
0 2 −1 | 5



 7→





1 1 1 | 4
0 2 1 | 3
0 0 −2 | 2



 .

Back substitution gives C = −1, B = 2, A = 3. Hence,

U(x) =
3

1− 3x
+

2

1− x
− 1

(1− x)2
.

Now we are ready to apply the Binomial Theorem:

U(x) = 3
∞
∑

k=0

(3x)k + 2
∞
∑

k=0

xk −
∞
∑

k=0

(k + 1)xk.

Comparing coefficients of xn, we get

un = 3 · 3n + 2− (n+ 1) = 3n+1 − n+ 1.

Finally, then,

an = un−1 = 3(n−1)+1 − (n− 1) + 1 = 3n − n+ 2,

in accordance with (0.1).

2. Auxiliary equation method: The auxiliary equation is x2 − 5x + 6 = 0, with roots

x1 = 2, x2 = 3. So bh, n = C1 · 2n + C2 · 3n. Our guess for the particular solution is

bp, n = C3 · 4n. Inserting into the recurrence

bn+2 − 5bn+1 + 6bn = 2 · 4n ⇒ C3 · 4n+2 − 5C3 · 4n+1 + 6C3 · 4n = 2 · 4n
divide by 4n⇒ 16C3 − 20C3 + 6C3 = 2 ⇒ C3 = 1.
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Hence,

bn = bh, n + bp, n = C1 · 2n + C2 · 3n + 4n.

Inserting the initial conditions

n = 0 : b0 = 3 = C1 + C2 + 1 ⇒ C1 + C2 = 2,

n = 1 : b1 = 9 = 2C1 + 3C2 + 4 ⇒ 2C1 + 3C2 = 5.

The solution is C1 = C2 = 1. Hence, finally,

bn = 2n + 3n + 4n. (0.5)

Generating function method: Let B(x) :=
∑

∞

n=0 bnx
n. Given that b0 = 3 we can write,

firstly,

B(x) = 3 +
∞
∑

n=1

bnx
n = 3 + x

(

∞
∑

n=0

bn+1 x
n

)

⇒

⇒
∞
∑

n=0

bn+1 x
n =

B(x)− 3

x
. (0.6)

Then, using also b1 = 9 and the recursion,

B(x) = 3 + 9x+
∞
∑

n=2

bnx
n = (3 + 9x) + x2

(

∞
∑

n=0

bn+2 x
n

)

=

= (3 + 9x) + x2

(

5
∞
∑

n=0

bn+1x
n − 6

∞
∑

n=0

bnx
n + 2

∞
∑

n=0

4nxn

)

. (0.7)

The last sum on the RHS of (0.7) comes from the inhomogeneity, so let’s first concen-

trate on how to handle this, i.e.: on how to express it as a rational function. Indeed it is

just a geometric series:

∞
∑

n=0

4nxn =
∞
∑

n=0

(4x)n =
1

1− 4x
. (0.8)

We now substitute (0.8) and (0.6) into (0.7) and continue:

B(x) = (3 + 9x) + x2

(

5× B(x)− 3

x
− 6B(x) +

2

1− 4x

)

⇒ B(x) = (3 + 9x) + 5x(B(x)− 3)− 6x2B(x) +
2x2

1− 4x

⇒ (1− 5x+ 6x2)B(x) = 3− 6x+
2x2

1− 4x
=

3− 18x+ 26x2

1− 4x
= (1− 2x)(1− 3x)B(x)

⇒ B(x) =
3− 18x+ 26x2

(1− 2x)(1− 3x)(1− 4x)
.
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The partial fraction decomposition takes the form

3− 18x+ 26x2

(1− 2x)(1− 3x)(1− 4x)
=

A

1− 2x
+

B

1− 3x
+

C

1− 4x

⇒ 3− 18x+ 26x2 = A(1− 3x)(1− 4x) + B(1− 2x)(1− 4x) + C(1− 2x)(1− 3x)

⇒ 3− 18x+ 26x2 = (A+ B + C) + x(−7A− 6B − 5C) + x2(12A+ 8B + 6C)

⇒ A+B + C = 3, 7A+ 6B + 5C = 18, 12A+ 8B + 6C = 26.

Set up the augmented matrix and perform Gauss elimination:




1 1 1 | 3
7 6 5 | 18
12 8 6 | 26



 7→





1 1 1 | 3
0 −1 −2 | −3
0 −4 −6 | −10



 7→





1 1 1 | 3
0 1 2 | 3
0 0 2 | 2



 .

Back substitution gives C = 1, B = 1, A = 1. Hence,

B(x) =
1

1− 2x
+

1

1− 3x
+

1

1− 4x
.

Now we are ready to apply the Binomial Theorem:

B(x) =
∞
∑

k=0

(2x)k +
∞
∑

k=0

(3x)k +
∞
∑

k=0

(4x)k.

Comparing coefficients of xn, we get

bn = 2n + 3n + 4n,

in agreement with (0.5).

3. Let an denote the number of such n-digit numbers. We have a1 = 1, since obvi-

ously the only single-digit number with an odd number of ones is 1. I claim that, for all

n ≥ 1,

an+1 = 8an + 9 · 10n−1. (0.9)

To see this, consider (n+1)-digit numbers satisfying our requirement and the following

two cases:

CASE 1: The last digit is 1. In this case, the first n digits comprise an n-digit num-

ber with an even number of ones. So the number of possibilities equals the number of

n-digit numbers not satisfying our requirement. This is 9 · 10n−1−an, since 9 · 10n−1 is

the total number of n-digit numbers (there are 10 choices for each digit except the first,

which can’t be a zero).

CASE 2: The last digit is not 1. Then there are 9 possibilities for the last digit. The first

n digits comprise a number with an odd number of ones, so there are an possibilities

for it. So we have a total of 9an possibilities in this case.

From Cases 1 and 2 together it follows that an+1 = (9 · 10n−1 − an) + 9an = 8an + 9 ·
10n−1, as claimed.
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We now solve the recurrence using the auxiliary equation. This is x − 8 = 0, so

ah, n = C1 · 8n. We have ap, n = C2 · 10n. Inserting into (0.9),

C2 · 10n+1 = 8C2 · 10n + 9 · 10n−1 ⇒ (divide by 10n−1)

⇒ 100C2 = 80C2 + 9 ⇒ C2 =
9

20
.

Hence, un = uh, n + up, n = C1 · 8n + 9
20

· 10n. Inserting the initial condition gives

a1 = 1 = 8C1 +
9

20
· 10 ⇒ C1 = − 7

16
.

Thus,

an =
9

20
· 10n − 7

16
· 8n =

1

2

(

9 · 10n−1 − 7 · 8n−1
)

.

Remark: Note that an is a bit less than half of 9 · 10n−1. In other words, a bit less than

half of all n-digit numbers have an odd number of ones.

4. Let (cn)
∞

n=0 denote the sequence whose generating function is being asked about.

We are supposed to express cn in terms of the a:s and b:s.

(a) cn = an + bn.

(b) cn =
∑n

m=0 ambn−m.

(c) cn = an/2 for n even and cn = 0 for n odd.

(d) cn = (n+ 1)an+1.

(e) cn = an+1.

(f) cn = an−1.

5. (i) I claim that an = Cn−1. We can prove this by strong induction on n.

Step 1: Base case n = 1. We have a1 = 1 since obviously there’s only one way to

compute x1, namely do nothing. Since also C0 = 1, the base case holds.

Step 2: Suppose that n ≥ 2 and that ak = Ck−1 for all 1 ≤ k < n. We wish to deduce

that an = Cn−1. I claim that the sequence (an) satisfies the following recurrence:

an =
n−1
∑

m=1

aman−m. (0.10)

Assuming this is true, and using the strong induction hypothesis, we could deduce that

an =
n−1
∑

m=1

Cm−1Cn−1−m = Cn−1,

where the last inequality follows from eq. (8.1) in the lecture notes. Hence it suffices to

prove (0.10).

For each m = 1, . . . , n − 1, consider all possible ways of computing the product
∏n

i=1 xi, such that the final multiplication performed is A · B, where A =
∏m

i=1 xi and

B =
∏n

j=m+1 xj . Note that, because we can’t rearrange the xi, the final multiplication

must be of this form, for some m ∈ {1, . . . , n − 1}. Since A is a product of m terms



6

with the same rules for multiplication as before, there are am possibilities for its compu-

tation. Similarly, there are an−m possible ways to compute B. Hence, by MP, there are

aman−m ways to compute the product of all n terms, given the value of m defining the

final multiplication. Finally, by AP, we sum over m to find the total number of possible

computations, which proves (0.10).

(ii) I claim that bn = Cn for every n ≥ 1. It suffices to show that the sequence (bn)
satisfies the same recurrence as (8.1), namely that

b1 = 1, bn =
n
∑

m=1

bm−1bn−m ∀n ≥ 2. (0.11)

That b1 = 1 is obvious since, if there are just 2 = 2 · 1 points, then there’s only one way

to draw the single chord between them. Now consider a general n ≥ 2. Label the points

1, 2, . . . , 2n in anti-clockwise order, say. Since no two chords can cross, I first claim

that the point 1 must be joined to an even-numbered point. For if it were joined to an

odd-numbered point, then this chord would partition the remaining 2n − 2 points into

two sets of odd size on either side of the chord. Hence, at least one of the remaining

pairs would have to consist of points on opposite sides of this chord, contradicting the

condition that no two chords may cross.

So suppose 1 is joined to the point 2m, where 1 ≤ m ≤ n. This chord partitions the

remaining 2n− 2 points into subsets of size 2(m− 1) and 2(n−m) on opposite sides

of the chord. The points must be paired off within each subset, with the same condition

as before that no two chords can cross. Hence there are, by definition, bm−1 and bn−m

possibilities respectively for how to pair off the points on the two sides. By MP, there

are thus bm−1bn−m possibilities for how to draw all n chords, given that 1 is joined to

2m. By AP, we sum over m = 1, . . . , n to get the total number of possible pairings,

which proves (0.11).

6. (i) From Theorem 8.3 in the notes we have the recursion

S(n, k) = S(n− 1, k − 1) + k · S(n− 1, k). (0.12)

Taking n = 5 and k = 3 we get

S(5, 3) = S(4, 2) + 3 · S(4, 3).
But from Exercise 12.1.2 in Biggs we also have the formulae

S(n, 2) = 2n−1 − 1, S(n, 2) =

(

n

2

)

. (0.13)

Hence, S(4, 2) = 24−1 − 1 = 7 and S(4, 3) =
(

4
2

)

= 6, so S(5, 3) = 7 + 3 · 6 = 25.

(ii) In order to list in an efficient manner all the ways to divide up a 5-element set

into three parts, we think about how the formulae (0.12) and (0.13) are derived. To get

(0.12), we isolate one element, say 1, and consider two cases:

CASE 1: It is in a bin by itself. Then the remaining four elements are divided into

two bins. Eq. (0.13) says that the 7 ways of doing this are in 1− 1 correspondence with
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pairs {A, Ac} of non-empty subsets of {2, 3, 4, 5}. Thus, we get the following seven

distributions of balls in bins:

{2}, {3, 4, 5}, {1};
{3}, {2, 4, 5}, {1};
{4}, {2, 3, 5}, {1};
{5}, {2, 3, 4}, {1};
{2, 3}, {4, 5}, {1};
{2, 4}, {3, 5}, {1};
{2, 5}, {3, 4}, {1}.

CASE 2: Ball 1 is not on its own. We first distribute the remaining four balls into three

bins. The
(

4
2

)

ways of doing so are in 1-1 correspondence with the two-element subsets

of {2, 3, 4, 5}, since we must choose which two balls to place in the same bin - the

other two bins will then receive one ball each. For each of these six choices, there are

three choices for where to place ball 1. This gives the following list of 6 × 3 = 18
possibilities:

{2, 3, 1}, {4}, {5}; {2, 3}, {4, 1}, {5}; {2, 3}, {4}, {5, 1};
{2, 4, 1}, {3}, {5}; {2, 4}, {3, 1}, {5}; {2, 4}, {3}, {5, 1};
{2, 5, 1}, {3}, {4}; {2, 5}, {3, 1}, {4}; {2, 5}, {3}, {4, 1};
{3, 4, 1}, {2}, {5}; {3, 4}, {2, 1}, {5}; {3, 4}, {2}, {5, 1};
{3, 5, 1}, {2}, {4}; {3, 5}, {2, 1}, {4}; {3, 5}, {2}, {4, 1};
{4, 5, 1}, {2}, {3}; {4, 5}, {2, 1}, {3}; {4, 5}, {2}, {3, 1}.

7. (i) Every non-trivial factorisation corresponds to a partition of the set of k distin-

guishable primes into two non-empty, indistinguishable (since multiplication is com-

mutative) subsets. Hence the number of non-trivial factorisations is S(k, 2) = 2k−1−1.

(ii) I claim that the number of non-trivial factorisations is

1

2

[

k
∏

i=1

(ei + 1)− 2− δn

]

+ δn (0.14)

where

δn =

{

1, if n is a perfect square,

0, otherwise.

To see this, imagine that we have two indistinguishable boxes representing the two

factors in a non-trivial factorisation. The factorisation is determined by deciding, for

each i = 1, . . . , k, how many powers of pi to place in each box. There are ei + 1 ways

to divide up peii among the two factors. Hence, there are
∏k

i=1(ei+1) ways to divide up

all the prime factors of n. We disallow the two partitions where all the factors end up

in one box. If n is not a perfect square, then n1 6= n2 in every non-trivial factorisation,

hence we must divide by 2 to take account of the indistinguishability of the boxes.

When n is a perfect square, we do likewise except that the unique factorisation where

n1 = n2 =
√
n is only counted once. This explains (0.14).


