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OBS!

Motivate all your solutions !
In Exercise 1, you do not need to compute the answers as base-10 numbers.

Exercises

1. For their ill-fated adventure in Kiev on Saturday night. Liverpool named a squad of 18 (13p)
players, of whom 7 were British, 6 were from other parts of Europe, 3 from remaining parts
of Planet Earth and 2 from the DPRK (= Deep Pit of Reckless Keepers).

(a) In how many ways could a totally clueless coach, who just picks the team completely
at random, choose the starting 11 ?

(b) In that case, what is the probability that he picks no Keeper ?

(c) Suppose the coach at least realises that he must pick exactly one Keeper. Suppose
also there is a rule which says at least 4 British players must start the game. How
many possibilities does this leave for the starting 11 ?

(d) Of the 18 in the squad, 2 are Keepers, 7 are Defenders, 5 are Midfielders and 4 are
Attackers. Liverpool usually play 4-3-3, i.e.: Keeper + 4 Defenders + 3 Midfielders +
3 Attackers. How many possibilities would that leave for the starting 11 ?

(e) Just suppose for the sake of argument that there were 40 in the squad, 10 from each
of the four “regions”. How many possibilities would there be for the starting 11 if all
we cared about was how many were chosen from each “region”, not the individual
identities of the players ?

Note: In parts (a)-(d) we do care about the individual identities of the starting 11 players.

2. Using the method of generating functions, solve the recursion (12p)

a0 = 1, a1 = 2, an+2 = an+1 + 6an + 5 · 3n ∀ n ≥ 0.

Obs! Zero points will be awarded for a solution not employing generating functions, even
if fully correct otherwise.

Var god vänd!



3. (a) Define what is meant by a Dyck path of length 2n. (1p)

(b) Draw all Dyck paths of length 6. (2p)

(c) Without using generating functions, prove that the number Cn of Dyck paths of (9p)
length 2n is Cn = 1

n+1

(

2n
n

)

.

Obs! Zero points for a proof which does use generating functions, even if otherwise
fully correct.

4. (a) Formulate the addition and multiplication principles in probabilistic language. (2p)

(b) Let k, n be positive integers. Prove that if
(

n

k

)

21−(
k

2
) < 1 then R(k, k) > n. (10p)

5. You are referred to the network G0 in the attached Figure 1. Let G1 be the underlying
graph (i.e.: remove both the arrows and the weights).

(a) Determine a Hamilton cycle, an Euler path and a maximum size matching in G1. (5p)

(b) Interpreting the weights as distances, implement Dijkstra’s algorithm to determine a (5p)
shortest path in G0 from s to t.

Obs! Write down which edge is added and which label is assigned at each step, in
table form.

(c) Interpreting the weights as capacities, implement the Ford-Fulkerson algorithm to (7p)
determine a maximum flow from s to t in G0 and a corresponding minimum cut.

Obs! Start from the everywhere-zero-flow and write down which augmenting path
you choose and the increase in flow strength at each step, in table form. Then draw
the final flow in full.

6. Prove that if G = (V, E) is a graph such that |V | > 2 and deg(v) ≥ |V |/2 ∀ v ∈ V , then (11p)
G possesses a Hamilton cycle.

7. (a) Define what is meant by the edge chromatic number Φ(G) of a graph G = (V, E). (1p)

(b) Prove that if G is bipartite, then Φ(G) = ∆(G), where ∆(G) denotes the maximum (10p)
degree of a vertex in G.

8. Implement the Gale-Shapley algorithm on the dataset in the attached Figure 2. Here (12p)
X = {α, β, γ, δ} are the boys, Y = {A, B, C, D} are the girls and the boys do the
proposing. Present your results as a table indicating how the algorithm proceeds:

Round Proposals Rejections Strings

In the second column write all pairs (x, y) such that x proposes to y in the current round.
In the third column write all pairs (y, x) such that y rejects x in the current round.
In the fourth column write all pairs (y, x) such that y has x on her string after the current
round.
Finally, indicate the stable matching M produced by the algorithm.

Lycka till!



Solutions: Diskret Matematik GU, 180530

1. (a) We must choose 11 players from 18, so there are
(

18
11

)

options.

(b) If we choose no Keeper, then we must choose 11 from 16, leaving
(

16
11

)

options. The

probability of choosing no Keeper is thus
(

16
11

)

/
(

18
11

)

= 7/51.

(c) If we choose exactly one of the two Keepers, then it remains to choose 10 from 16.
Of these at least 4 must be Brits, so we can choose either 4,5,6 or all 7 of the 7 Brits
and then, respectively, 6,5,4 or 3 of the remaining 9 playerss.

By MP+AP, the total number of possibilities is

2×

[(

7

4

)(

9

6

)

+

(

7

5

)(

9

5

)

+

(

7

6

)(

9

4

)

+

(

7

7

)(

9

3

)]

= · · · = 13104.

(d) We choose 1 out of 2 Keeepers, 4 out of 7 Defenders, 3 out of 5 Midfielders and 3 out
of 4 Attackers. By MP, the number of options is

2×

(

7

4

)

×

(

5

3

)

×

(

4

3

)

= · · · = 2800.

(e) Let x1, x2, x3, x4 be the number of players chosen from Britain, rest of Europe, rest
of Planet Earth and the DPRK respectively. Then x1 + x2 + x3 + x4 = 11 and
0 ≤ xi ≤ 10. If the xi could be arbitrary non-negative integers, then the number of
solutions to the equation would be

(

11+4−1
4−1

)

=
(

14
3

)

= 364. We must exclude, however,
the 4 solutions where one of the xi equals 11 and all others are zero. Thus, we are
left with 364− 4 = 360 options.

2. Call the given recursion (*). Let A(x) :=
∑

∞

n=0 anx
n. Then,

A(x) = a0 + a1x+
∞
∑

n=2

anx
n (∗)
= 1 + 2x+

∞
∑

n=2

anx
n,

xA(x) =
∞
∑

n=0

anx
n+1 =

∞
∑

n=1

an−1x
n (∗)
= x+

∞
∑

n=2

an−1x
n,

x2A(x) =
∞
∑

n=0

anx
n+2 =

∞
∑

n=2

an−2x
n.

Hence,

(1− x− 6x2)A(x) = [(1 + 2x)− x] +
∞
∑

n=2

(an − an−1 − 6an−2)x
n

(∗)
= 1 + x+

∞
∑

n=2

5 · 3n−2 · xn = 1 + x+
5

9

∞
∑

n=2

(3x)n

= 1 + x+
5

9

(3x)2

1− 3x
= 1 + x+

5x2

1− 3x
=

1− 2x+ 2x2

1− 3x
.

Since 1 − x − 6x2 = (1 − 3x)(1 + 2x), we thus have an expression for A(x) as a rational
function:

A(x) =
1− 2x+ 2x2

(1− 3x)2(1 + 2x)
.

The partial fraction decompostion of the right-hand side has the form

1− 2x+ 2x2

(1− 3x)2(1 + 2x)
=

A

1− 3x
+

B

(1− 3x)2
+

C

1 + 2x
.

Multiplyting up and out we get

1−2x+2x2 = A(1−3x)(1+2x)+B(1+2x)+C(1−3x)2 = · · · = (A+B+C)+x(−A+2B−6C)+x2(−6A+9C),



which leaves us with three linear equations in three unknowns:

A+B + C = 1, −A+ 2B − 6C = −2, −6A+ 9C = 2.

Solving in the normal manner, we get A = 4/15, B = 1/3, C = 2/5. Thus,

A(x) =
4/15

1− 3x
+

1/3

(1− 3x)2
+

2/5

1 + 2x

=
4

15

∞
∑

n=0

3nxn +
1

3

∞
∑

n=0

(n+ 1)3nxn +
2

5

∞
∑

n=0

(−2)nxn

=
∞
∑

n=0

[

3n ·

(

4

15
+

n+ 1

3

)

+
2

5
· (−2)n

]

xn,

and so

an =

(

3

5
+

n

3

)

· 3n +
2

5
· (−2)n.

3. (a) Definitions 7.3 and 7.4 in the lecture notes.

(b) See Figure L.1.

(c) Theorem 7.6, 2nd proof, in the lecture notes.

4. (a) Equations (11.4), (11.5), (11.8) and (11.9) in the lecture notes.

(b) Theorem 11.2 in the lecture notes.

5. (a) An example of a Hamilton cycle is

s → a → d → f → t → g → e → c → b → s.

The only two nodes of odd degree are s and b, so an Euler path must go between
these. An example is

s → a → f → d → a → b → s → c → g

→ t → f → g → e → d → b → e → c → b.

Regarding matchings, G1 has an odd number of nodes, namely 9 of them, so at most
8 of them can be matched. An example of a maximum size matching is

M = {{s, a}, {b, c}, {d, e}, {f, g}}.

(b) Dijkstra’s algorithm will proceed as follows. Steps 3 and 4 are interchangeable.

Step Edge chosen Label assigned

1 {s, b} l(b) := 6

2 {s, c} l(c) := 7

3 {s, a} l(a) := 8

4 {b, d} l(d) := 8

5 {b, e} l(e) := 9

6 {d, f} l(f) := 11

7 {e, g} or {c, g} l(g) := 13

8 {f, t} l(t) := 21

The unique shortest path between s and t thus located is

s → b → d → f → t

which has total length 21.



(c) One can find, for example, the following sequence of f -augmenting paths:

Step Augmenting path Increase in flow strength

1 s → a → f → t 5

2 s → b → e → g → t 3

3 s → c → g → t 6

4 s → c → e → g → t 1

5 s → b → d → f → t 2

6 s → a → d → f → t 1

The flow at this stage is illustrated in Figure L.2. Its strength is f(s, a) + f(s, b) +
f(s, c) = 6 + 5 + 7 = 18. The set of nodes which can be reached from s by an
f -augmenting path is S = {s, a, b, c, d, e}. Let T := V (G0)\S = {f, g, t}. We have

c(S, T ) = c(a, f) + c(d, f) + c(e, g) + c(c, g) = 5 + 3 + 4 + 6 = 18.

So we have found a maximum flow and a minimum cut.

6. Theorem 15.3 in the lecture notes.

7. (a) Definition 19.4 in the lecture notes.

(b) Theorem 19.6 in the lecture notes.

8. The algorithm will proceed as follows:

Round Proposals Rejections Strings

1 (α, A), (β, A), (γ, B), (δ, C) (A, β) (A, α), (B, γ), (C, δ)

2 (β, B) (B, γ) (A, α), (B, β), (C, δ)

3 (γ, C) (C, δ) (A, α), (B, β), (C, γ)

4 (δ, A) (A, α) (A, δ), (B, β), (C, γ)

5 (α, B) (B, β) (A, δ), (B, α), (C, γ)

6 (β, C) (C, γ) (A, δ), (B, α), (C, β)

7 (γ, A) (A, δ) (A, γ), (B, α), (C, β)

8 (δ, B) (B, α) (A, γ), (B, δ), (C, β)

9 (α, C) (C, β) (A, γ), (B, δ), (C, α)

10 (β, D) (A, γ), (B, δ), (C, α), (D, β)

Since no rejections are issued in Round 10, the algorithm now terminates and the girls
accept the boys on their strings, thus giving the stable matching

M = {(α, C), (β, D), (γ, A), (δ, B)}.


