Fourier analysis (MMG710/TMA362)

Time: 2008-10-25, 08.30-13.30

Tools: No calculator or handbook is allowed **Questions:** Adam Wojciechowski, 0762-721860

Grades: Each problem gives 4 points. For MMG710 grades are G (12-17 points) and VG (18-24 points).

For TMA362 grades are 3 (12-14 points), 4 (15-17 points) and 5 (18-24 points).

- 1 (a) Show that the Fourier transform of $f(x) = e^{-|x|}$ is $\hat{f}(\xi) = 2/(\xi^2 + 1)$.
 - (b) Use the result of (a) to compute, for $a \in \mathbb{R}$,

$$\int_{-\infty}^{\infty} \frac{\cos(ax)}{x^2 + 1} \, dx.$$

2 Explain Fourier's method (separation of variables and superposition) using the example

$$u'_t = u''_{xx}, \qquad t > 0, \quad 0 < x < \pi,$$

$$u'_x(0,t) = u'_x(\pi,t) = 0, \qquad u(x,0) = f(x).$$

Also find explicitly the solution in the case $f(x) = 1 + \cos(3x)$.

3 Find numbers c_n such that

$$\sum_{n=1}^{\infty} c_n \sin(nx) = \begin{cases} x, & 0 < x < \frac{\pi}{2}, \\ 0, & \frac{\pi}{2} < x < \pi. \end{cases}$$

What is the sum of the series for $x = \pi/2$?

4 Let

$$f(t) = \begin{cases} \sin t, & 0 \le t \le \pi, \\ 0, & \text{else.} \end{cases}$$

- (a) Compute the Laplace transform of f.
- (b) Solve the initial value problem

$$x'(t) + x(t) = f(t),$$
 $x(0) = 0.$

- 5 Formulate and prove a theorem on uniform convergence of Fourier series.
- 6 Derive Poisson's integral formula for the upper half-plane $\{(x,y) \in \mathbb{R}^2; y > 0\}$. You may use that $f(x) = 1/(x^2 + a^2)$ has Fourier transform $\hat{f}(\xi) = \pi e^{-a|\xi|}/a$. Also find a bounded harmonic function u(x,y) in the upper half-plane with boundary values

$$u(x,0) = \begin{cases} 1, & |x| < 1, \\ 0, & \text{else.} \end{cases}$$

Good luck! Hjalmar