Fourier analysis. Additional exercises.

- 1. (a) Consider the wave equation $u''_{tt} = c^2 u''_{xx}$. Show that a solution defined in all of \mathbb{R}^2 can be written u(x,t) = f(x+ct) + g(x-ct), that is, as the sum of two waves travelling along the x-axis with speed c in opposite directions.
 - (b) Show that the standing wave $u(x,t) = \sin(x)\sin(ct)$ is a solution of the wave equation. What does it *look* like? Decompose it as a sum of two waves as in (a).
 - (c) Find a solution to the wave equation $u''_{tt} = 4u''_{xx}$, valid for all x and t, such that $u(x,0) = x^2$, $u'_t(x,0) = x$.
- 2. Consider the vibrating string with fixed endpoints on $0 \le x \le \pi$. Suppose that the initial conditions are $u(x, 0) = \sin(2x)$, $u'_t(x, 0) = 3\sin(5x)$. What is the solution u(x, t)?
- 3. If you know the Fourier coefficients of f, what can you say about the Fourier coefficients of f(x-a) and of $e^{ikx}f(x)$ (where a is real and k is integer)? Compare with the shift rules for Laplace transform.
- 4. When f and g are 2π -periodic Riemann integrable functions, define their convolution by

$$(f * g)(x) = \frac{1}{2\pi} \int_0^{2\pi} f(y)g(x - y) \, dy.$$

Denoting Fourier coefficients by $c_n(f)$, show that $c_n(f * g) = c_n(f)c_n(g)$.

- 5. Let f be the 2π -periodic function defined by $f(x) = e^{\cos(x^2)}$ for $0 \le x < 2\pi$. What is the value of its Fourier series at $x = 4\pi$?
- 6. Let f be the 2π -periodic function defined by $f(x) = \cosh(x) = (e^x + e^{-x})/2$ for $|x| \le \pi$. Express it as a Fourier series. Compute

$$\sum_{k=0}^{\infty} \frac{1}{k^2 + 1}.$$

7. Let f be the 2π -periodic function defined by $f(x) = \cos(ax)$ for $|x| \le \pi$, where a is not an integer. Express it as a Fourier series. Deduce the identity

$$\pi \cot(\pi a) = \lim_{N \to \infty} \sum_{n=-N}^{N} \frac{1}{a+n}, \qquad a \notin \mathbb{Z}.$$

8. Solve the heat conduction problem

$$\begin{cases} u'_t = 3u''_{xx}, & 0 \le x \le \pi, \quad t > 0, \\ u(0, t) = u(\pi, t) = 0, & t \ge 0, \\ u(x, 0) = \sin x \cos(4x), & 0 \le x \le \pi. \end{cases}$$

9. Solve the heat conduction problem

$$\begin{cases} u'_t = u''_{xx}, & 0 \le x \le \frac{\pi}{2}, \quad t > 0, \\ u(0,t) = u'_x(\pi/2,t) = 0, & t \ge 0, \\ u(x,0) = x(\pi-x), & 0 \le x \le \frac{\pi}{2} \end{cases}$$

10. A large steak with thickness l and heat diffusivity a is to be cooked in an oven with temperature T. It is taken directly from the fridge, where the temperature is 0. The temperature inside the steak can then be described by

$$\begin{cases} u'_t = au''_{xx}, & 0 \le x \le l, \quad t > 0, \\ u(0,t) = u(l,t) = T, & t > 0, \\ u(x,0) = 0, & 0 \le x \le l. \end{cases}$$

- (a) Determine, as a series, u(x, t). Since the boundary conditions are inhomogeneous, one should shift the temperature scale so that T corresponds to 0 (equivalently, introduce the function v(x, t) = u(x, t) T).
- (b) Suppose all terms in the series except the first can be ignored. When will the steak be cooked if that happens when the temperature is everywhere at least T/4? How much longer does it take if the thickness of the steak is doubled?
- 11. Addendum to Folland, Exercise 2.5.5: Where should the string be plucked if we do not wish to hear the sixth overtone (corresponding to the seventh term in the Fourier series)? Motivation: The first five overtones are close to tones in the usual scale. The sixth overtone is somewhere between two half-tones, and thus sounds false (at least to people accustomed to European music).
- 12. Addendum to Folland, Exercise 2.5.6: Can we choose δ so the sixth overtone is avoided?
- 13. Find a 2π -periodic solution to the equation

$$x'' + 2x' + x = \cos(t).$$

Try to do this in several different ways! Also find the solution to

$$x'' + 2x' + x = \cos(t),$$
 $x(0) = x'(0) = 0$

and observe that it approaches the periodic solution as t grows.

14. Find a 1-periodic solution to the equation

$$x'' + 2x' + x = \{t\},\$$

where $\{t\}$ is the fractional part of t (that is, the 1-periodic function defined by t for $0 \le t < 1$). Give the answer in real form.

- 15. Show that, in an inner product space, if $u_n \to u$ and $v_n \to v$ (in norm), then $\langle u_n, v_n \rangle \to \langle u, v \rangle$.
- 16. Show that, if $(e_k)_{k=1}^{\infty}$ is a complete orthonormal system in an inner product space, then

$$\langle f, g \rangle = \sum_{k=1}^{\infty} \langle f, e_k \rangle \langle e_k, g \rangle.$$

17. Find an orthonormal basis for the space of first degree polynomials, with inner product

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx.$$

18. Use the previous exercise to determine the constants a, b that minimize the integral

$$\int_{-1}^{1} |e^x - ax - b|^2 dx.$$

- 19. Apply Parseval's formula to the 2π -periodic function f(x) = x, $|x| < \pi$. Use the result to compute $\sum_{1}^{\infty} \frac{1}{n^2}$.
- 20. Apply Parseval's formula to the 2π -periodic function $f(x) = x^2$, $|x| < \pi$. Use the result to compute $\sum_{1}^{\infty} \frac{1}{n^4}$.
- 21. Define $J_n(x)$ through the Fourier series

$$e^{ix\sin(t)} = \sum_{n=-\infty}^{\infty} J_n(x)e^{int}$$

(they are called Bessel functions). Compute, for $x \in \mathbb{R}$,

$$\sum_{n=-\infty}^{\infty} |J_n(x)|^2.$$

- 22. Compute the Fourier transform of
 - (a) $e^{-|x|}$,
 - (b) $x \chi_{[-1,1]}(x)$,
 - (c) $\sin x \, \chi_{[-\pi,\pi]}(x)$,
 - (d) $e^{-x}H(x)$,
 - (e) $e^{-|x|}\cos(x)$.

Here, H is Heaviside's function and $\chi_{[a,b]}(x)$ is the characteristic function of [a,b], that is, $\chi_{[a,b]}(x) = 1$ for $x \in [a,b]$ and 0 else.

- 23. If f(x) has Fourier transform $\hat{f}(\xi)$, what is then the Fourier transform of $\cos(x) f(2x+1)$?
- 24. Complete the proof of (a) and (b) in Folland, Theorem 7.5.
- 25. Using that $1/(x^2+1)$ has Fourier transform $\pi e^{-|\xi|}$, find the Fourier transforms of

(a)
$$\frac{1}{x^2 + 6x + 13}$$
,

(b)
$$\frac{x}{(x^2+1)^2}$$
.

26. Use Fourier transform to find a function f such that

$$\int_{-\infty}^{\infty} f(x-y)e^{-|y|} dy = 2e^{-|x|} - e^{-2|x|}.$$

27. For a and b positive, use Fourier transform to compute the integrals

(a)
$$\int_{-\infty}^{\infty} \frac{\sin(at)\sin(b(u-t))}{t(u-t)} dt,$$

(b)
$$\int_{-\infty}^{\infty} \frac{\sin(at)\sin(bt)}{t^2} dt.$$

28. Using Exercise 22(e), compute

$$\int_{-\infty}^{\infty} \frac{(x^2+2)^2}{(x^4+4)^2} \, dx.$$

- 29. Find (as an integral) a solution to the heat equation $u_{xx} = u_t$ for t > 0, $x \in \mathbb{R}$, where u(x,0) = 1 for |x| < 1 and 0 else.
- 30. Show that, if f is even, then under suitable conditions

$$f(x) = \frac{2}{\pi} \int_0^\infty F(\xi) \cos(\xi x) d\xi,$$

where

$$F(\xi) = \int_0^\infty f(x) \cos(\xi x) \, dx.$$

Also give a corresponding formula for odd functions.

Answers and hints

- 1. (a) **Hint:** Make the change of variables y = x + ct, z = x ct. (c) $x^2 + 4t^2 + xt$.
- 2. $u(x,t) = \sin(2x)\cos(2ct) + \frac{3}{5c}\sin(5x)\sin(5ct)$.
- 5. $\frac{e^{\cos(4\pi^2)} + e}{2}$.
- 6. The Fourier series is

$$\frac{\sinh(\pi)}{\pi} \sum_{n=-\infty}^{\infty} \frac{(-1)^n e^{inx}}{1+n^2}$$

and the sum is

$$\frac{\pi}{2} \coth(\pi) - \frac{1}{2}.$$

7. The Fourier series is

$$\frac{a\sin(\pi a)}{\pi} \sum_{n=-\infty}^{\infty} \frac{(-1)^n e^{inx}}{a^2 - n^2}.$$

8. $\frac{1}{2}(e^{-75t}\sin(5x) - e^{-27t}\sin(3x)).$

9.
$$\frac{8}{\pi} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^3} e^{-(2k+1)^2 t} \sin((2k+1)x)$$
.

10. (a)
$$T - \frac{4T}{\pi} \sum_{k=0}^{\infty} \frac{1}{2k+1} e^{-(2k+1)^2 \pi^2 at/l^2} \sin((2k+1)\pi x/l)$$
.

- (b) The cooking time is approximately $\frac{l^2}{a\pi^2} \ln\left(\frac{16}{3\pi}\right)$, so a twice as thick steak takes four times as long to cook.
- 11. Second question: In one of the points a = kl/7, k = 1, 2, ..., 6. Note that these are the nodes of the sixth overtone.
- 12. Second question: Yes, take $\delta = kl/7, k = 1, 2, \dots, 6$.

13.
$$x(t) = \frac{1}{2}\sin t$$
, $x(t) = \frac{1}{2}\sin t - \frac{1}{2}te^{-t}$.

14.
$$x(t) = \frac{1}{2} - \sum_{n=1}^{\infty} \frac{\sin(2\pi nt - 2\arctan(\pi n))}{\pi n(1 + 4\pi^2 n^2)}$$
.

- 15. **Hint:** Write $\langle u, v \rangle \langle u_n, v_n \rangle = \langle u, v v_n \rangle + \langle u u_n, v_n \rangle$.
- 16. Hint: Use Exercise 15.

- 17. For instance, $\frac{1}{\sqrt{2}}$ and $\sqrt{\frac{3}{2}}x$.
- 18. $a = 3e^{-1}, b = (e e^{-1})/2.$
- 20. $\frac{\pi^4}{90}$.
- 21. 1, for any x.
- 22. (a) $\frac{2}{\xi^2 + 1}$, (b) $2i\frac{\xi\cos\xi \sin\xi}{\xi^2}$, (c) $\frac{2i\sin(\pi\xi)}{\xi^2 1}$, (d) $\frac{1}{1 + i\xi}$, (e) $\frac{2(\xi^2 + 2)}{\xi^4 + 4}$.
- 23. $\frac{1}{4} \left(e^{\frac{1}{2}i(\xi-1)} \hat{f}\left(\frac{\xi-1}{2}\right) + e^{\frac{1}{2}i(\xi+1)} \hat{f}\left(\frac{\xi+1}{2}\right) \right).$
- 25. (a) $\frac{1}{2}\pi e^{3i\xi-2|\xi|}$, (b) $-\frac{1}{2}\pi i\xi e^{-|\xi|}$.
- 26. $f(x) = \frac{3}{2}e^{-2|x|}$.
- 27. (a) $\pi \frac{\sin(cu)}{u}$, (b) πc , where $c = \min(a, b)$.
- 28. $3\pi/8$.
- 29. $u(x,t) = \frac{1}{\sqrt{4\pi t}} \int_{-1}^{1} e^{-(x-y)^2/4t} dy$.
- 30. See Folland, page 238.